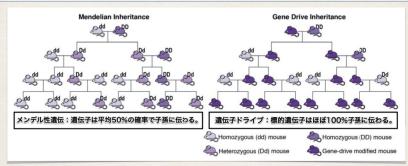
国立国会図書館 調査及び立法考査局

Research and Legislative Reference Bureau National Diet Library

論題 Title	ジーンドライブの倫理問題		
他言語論題 Title in other language	Ethical Issues of Gene Drive Technologies		
著者 / 所属 Author(s)	藤木 篤 (FUJIKI Atsushi) / 神戸市看護大学看護学部准教授		
書名 Title of Book	ゲノム編集技術―最前線で生じつつある課題と展望― 科学技術に関する調査プロジェクト報告書(Genome Editing Technologies: Issues arising on the frontline and future prospects)		
シリーズ Series	調査資料 2021-4(Research Materials 2021-4)		
編集 Editor	国立国会図書館 調査及び立法考査局		
発行 Publisher	国立国会図書館		
刊行日 Issue Date	2022-02-22		
ページ Pages			
ISBN	978-4-87582-887-7		
本文の言語 Language	日本語(Japanese)		
摘要 Abstract	_		

- * この記事は、調査及び立法考査局内において、国政審議に係る有用性、記述の中立性、客観性及び正確性、論旨の明晰(めいせき)性等の観点からの審査を経たものです。
- * 本文中の意見にわたる部分は、筆者の個人的見解です。

ジーンドライブの倫理問題 プレゼンテーション資料



スライド 1

"遺伝子(ジーン)ドライブでこれまで人間に許されなかったことが 可能になります。進化の操作です。これにより私たちの自然への 介入はまったく異なるレベルに達しました。"

– Dr. Fern Wickson (Research Professor of Environmental Governance, Norway) in *Gene Drive Film*

遺伝子(ジーン)ドライブとは

図の出典: NASEM 2016, Figure 1. (発表者により一部改変)

- * 「特定の遺伝因子を生物種集団内に優先的に拡散させる現象またはその技術の総称」[全国大 学等遺伝子研究支援施設連絡協議会 2017]
- * 「有性生殖をつうじて、ある遺伝要素が、一つの生物からその子孫に継承される能力を強化す るという、遺伝的形質を偏らせるシステム」[NASEM 2016; 大庭 2018]

スライド3

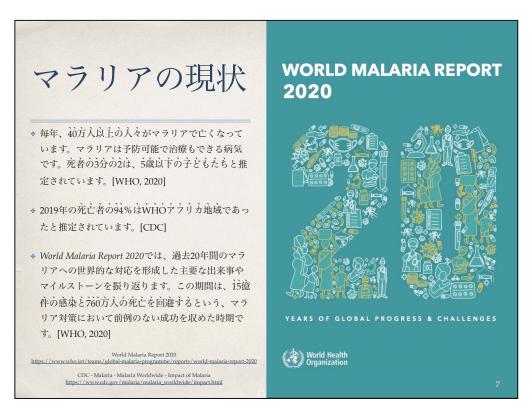
遺伝子ドライブの登場

- * 遺伝子ドライブは、不妊虫放飼法のひとつのヴァリエーションとして登場した。[Macias et al. 2017]
- * 背景には「ゲノム編集技術を用いて農業害虫や衛生害虫の特徴を改変するような遺伝子操作を加え ることで、害虫が引き起こす様々な問題を解消できないか」という意識がある。[丹羽 2016]
- * ゲノム編集技術の手法を巧みに組み合わせることによって、遺伝子ドライブを容易に引き起こせる という可能性は、まずキイロショウジョウバエにおいて実証され[Gantz & Bier 2015]、さらにはマ ラリア媒介虫であるハマダラカにおいても同様の事象が生じることも実証された[Gantz et al. 2015]。(cf. [丹羽 2016]) こうして、マラリア原虫への耐性を備えたハマダラカが実験室内で産み出さ れた。[小林 2016]
- * ただし遺伝子ドライブの安全性を巡って、現在でも多くの議論がある。[e.g. Ledford 2015]

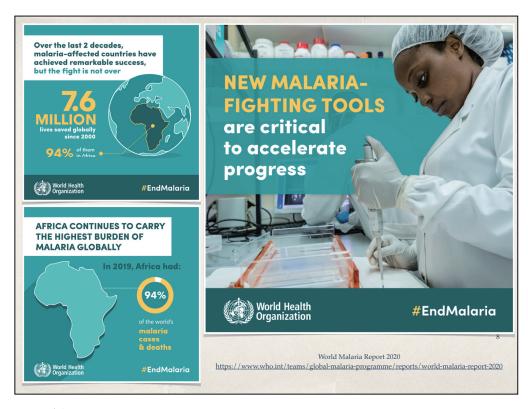
Heidi Ledford「遺伝子ドライブの安全対策」『Nature ダイジェスト』, Vol.13, No.2, Feb. 2016 http://www.nature.com/ndigest/journal/v13/n2/pdf/ndigest.2016.160206.pdf

"遺伝子ドライブは、病気の蔓延を防ぎ、昆虫や雑草の農薬や除 草剤への抵抗性を減じることで農業を支援し、有害な外来種を制 御できる可能性があります。"

- Esvelt, Kevin M., et al. "Concerning RNA-guided gene drives for the alteration of wild populations." Elife 3 (2014): e03401.


スライド 5

記事


遺伝子ドライブでマラリアと闘う

- マラリア原虫に対する耐性遺伝子を持つ蚊をマラリアに苦しむ地域に迅速に広めるこ とができれば、この感染症を永久に根絶できる可能性がある。このほど、遺伝子ドラ イブでそれが実現でき得ることが示された。
- * これまでの研究から、体内に熱帯熱マラリア原虫が寄生しても、その増殖と伝播を阻 止することのできる遺伝子が組み込まれた蚊が報告されているが、このような耐性遺 伝子を野生型の蚊集団に迅速に広める方法がなかったのである。[傍点は発表者によ る。以下同様]
- * MITの政治学者 Kenneth Oyeは、「遺伝子ドライブを用いた野生型の集団の改変など の技術的進歩に、規制や政策議論が追いついていない」と言う([Ove et al. 2014])。遺伝 子ドライブは全生態系を変化させ得る力を持つと考えられるため、論議が必要な技術 なのだ。

Heidi Ledford & Ewen Callaway「遺伝子ドライブでマラリアと闘う」『Nature ダイジェスト』, Vol.13, No.2, Feb. 2016 http://www.nature.com/ndigest/journal/v13/n2/pdf/ndigest.2016.160204.pdf

スライド7

スライド8

Article

Bill Gates endorses genetically modified mosquitoes to combat malaria

- * "Gene drives, I do think, over the next three to five years will be developed in a form that will be extremely beneficial."
- * "Of course, that makes it a key tool to reduce malaria deaths."

Bill Gates endorses genetically modified mosquitoes to combat malaria - The Verge (Jun 17, 2016) $\underline{https://www.theverge.com/2016/6/17/11965176/bill-gates-genetically-modified-mosquito-malaria-crispr$

スライド 9

A secret weapon against Zika and other mosquito-borne diseases

"[B]iological control of harmful insects can be both more effective and very much more environmentally friendly than using insecticides, which are toxic chemicals. That was true in Rachel Carson's time; it's true today."

Nina Fedoroff: A secret weapon against Zika and other mosquito-borne diseases | TED Talk (Oct. 2016) https://www.ted.com/talks/nina fedoroff a secret weapon against zika and other mosquito borne diseases

スライド 11

遺伝子編集によるネズミの根絶:自然保護か虐殺か?

- 「遺伝子ドライブ」テクノロジー(DNAの継承に偏りを生じさせ、世代を重ねるごと に野生動物の遺伝子を改変し、種ごと絶滅させられるほど非常に強力な手法) は従 来、昆虫と酵母菌で実証されただけだった。
- * アメリカでは、ネズミを対象にした実証実験が開始されたという。改変された遺伝子 を持つネズミを自然界の母集団へ放つと、改変された遺伝子が拡散し、種ごと形質を 変えたり、絶命させたりできる。
- * 環境保護団体 Island Conservationは、遺伝子ドライブによる「daughterless (≒メスを 生まない)」ネズミ、つまりオスだけを生む種を作り出す研究を進めている。
- * 遺伝子編集でメスのネズミを根絶する「ミッキーしかいない世界」は、固有種を外来 種から守る自然保護といえるのだろうか。それとも自然保護の名を借りた根絶計画に 過ぎないのだろうか。

MIT Tech Review: 遺伝子ドライブによるネズミの根絶は、自然保護といえるのか?

https://www.technologyreview.jp/s/27705/first-gene-drive-in-mammals-could-aid-vast-new-zealand-eradication-plan/

記事

遺伝子ドライブで外来種駆除は生態系破壊の恐れ

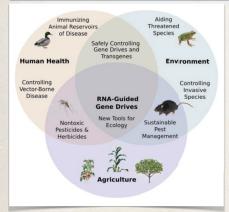
- * 遺伝子ドライブには危険が伴う。この手法が制御不能になり、予定よりも広い範囲で、意 図していなかった方法で生態系全体を変えてしまう事態も、想像に難くない。事実、遺伝 子ドライブの先駆者のひとりであるMITのケビン・エスベルトは、数年前から安全性に対 する懸念を表明している。
- * 2017年11月16日付でPLOS ONE上で発表された論文によれば、より強固な安全対策を設け ない限り、編集された遺伝子は、侵入生物がいない地域にまで広がってしまうという。エ スベルトらは、「遺伝子ドライブは、最終的には新しい非常に侵入的な種を作り出すのと 同じことだ」[Esvelt & Gemmell 2017, p.3]と主張している。
- * エスベルトらは、制御不能にならないように遺伝子ドライブを微調整することは可能だと 指摘する。だが、実際に使えるほどに成熟したアイデアはまだないのが現状。そうしたア イデアが登場するまでは、遺伝子操作された動物や昆虫を大量に野に放つのを延期した方 が賢明かもしれない。「性急にことを運ぶのに伴う代償としては、あまりにも大きすぎま す」とエスベルトらは結論づける。


MIT Tech Review: 遺伝子ドライブで外来種駆除は生態系破壊の恐れ、研究者が指摘

https://www.technologyreview.jp/nl/if-unleashed-in-the-wild-gene-drives-could-create-a-highly-invasive-species-researchers-say. 13

スライド 13

Gene editing can now change an entire species - forever



"Gene drives are so effective that even an accidental release could change an entire species, and often very quickly. [...] [I]t could be a disaster if your drive is designed to eliminate the species entirely."

> Jennifer Kahn: Gene editing can now change an entire species -- forever | TED Talk (Feb. 2016) https://www.ted.com/talks/jennifer_kahn_gene_editing_can_now_change_an_entire_species_forever

14

遺伝子ドライブの使用範囲が拡大される可能性

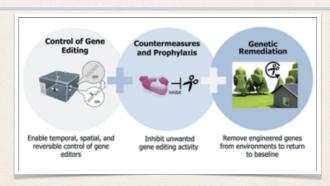
図の出典:Esvelt, Kevin M., et al. "Concerning RNA-guided gene drives for the alteration of wild populations." Elife 3 (2014): e03401., Figure 7

- * 遺伝子ドライブは汎用的あるいは応用 範囲の広い技術である。将来的に遺伝 子ドライブが他分野へ応用される可能 性も考えておく必要がある(左図)。
- * 遺伝子組み換え作物(GMO)の安全性と 生態系への影響、あるいはその普及と 制限を巡る議論の再来となる可能性

スライド 16

遺伝子ドライブに関する技術的楽観論と耐性株出現の懸念

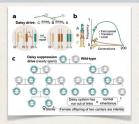
- ◆ もし想定外あるいは不慮の事態が生じた場合、悪影響を上書きするような第二の ドライブ(リバーサルドライブ reversal drive (cf. [Vella et al. 2017])や免疫ドライ ブ immunizing drive)を実行すればよい、という意見もある。前者は誤ったドラ イブ(の影響)を取り除いて、対象となる生物をほぼ元の状態に戻すものであり、 後者は不正なドライブが標的とする遺伝子配列を攻撃し、先制的に変化させるも のである。[Wade 2015]
- * 一方、キイロショウジョウバエを用いた実験で、遺伝子ドライブに対する抵抗性 遺伝子の形成が確認された[Champer et al. 2017] という報告もある。

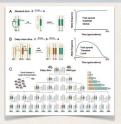

Vella, M. R., Gunning, C. E., Lloyd, A. L., & Gould, F. (2017). Evaluating strategies for reversing CRISPR-Cas9 gene drives. Scientific reports, 7(1), 11038.

Nicholas Wade, Gene Drives Offer New Hope Against Diseases and Crop Pests - The New York Times (Dec. 22, 2015) https://www.nytimes.com/2015/12/22/science/gene-drives-offer-new-hope-against-diseases-and-crop-pests.html

Champer, J., Reeves, R., Oh, S. Y., Liu, C., Liu, J., Clark, A. G., & Messer, P. W. (2017). Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS genetics, 13(7), e1006796

スライド 17


「安全な」遺伝子ドライブ?: Safe Genes



- より安全な(\(\subsets\)よりコントロール性を高めた)遺伝子ドライブの開発が望まれている。現在、米・防衛高等研究企画庁 (Defence Advanced Research Project Agency, DARPA) がスポンサーとなって、Safe Genes プロジェクトが進められている。
- * 資金源との関係から、軍民両用の用途両義性を有した技術 (デュアル・ユース) としての側面に、懸念を表明する報告書もあ る。cf. [CSS, VDW, ENSSER 2019, p.13]

Defence Advanced Research Project Agency (DARPA). Safe Genes. https://www.darpa.mil/program/safe-genes

自己消滅型遺伝子ドライブ:デイジードライブ

Esvelt, K. M., & Gemmell, N. J. (2017)

Noble, C., et al. (2019).

- * 理論研究の段階であるが、「自己消滅型 self-exhausting」[Noble et al. 2019]の「安全な」[Esvelt & Gemmell 2017]「デイジー(チェーン)ドライブ」の研究も進められている。
- * 「遺伝子ドライブの研究の安全性を確保するには、種全体に拡散するような遺伝子ドライブを作らないことで す。幸い拡散が止まる遺伝子ドライブを作ることは可能だと考えています。限られた世代にのみ形質が遺伝す るものです。」[Esvelt, 2020 in Gene Drive Film (発表者により公式字幕から一部改訳)]

- Esvelt, K. M., & Gemmell, N. J. (2017). Conservation demands safe gene drive. PLoS biology, 15(11), e2003850.
 Min, J., Noble, C., Najjar, D., & Esvelt, K. M. (2017). Daisyfield gene drive systems harness repeated genomic elements as a generational clock to limit spread. BioRxiv, 104877.
 Min, J., Noble, C., Najjar, D., & Esvelt, K. (2017). Daisy quorum drives for the genetic restoration of wild populations. BioRxiv, 115618.
 Noble, C., Min, J., Olejarz, J., Buchthal, J., Chavez, A., Smidler, A. L., ... & Esvelt, K. M. (2019). Daisy-chain gene drives for the alteration of local populations. Proceedings of the National Academy of Sciences, 116(17), 8275-8282.

スライド 19

「最新式」遺伝子ドライブとその関連技術

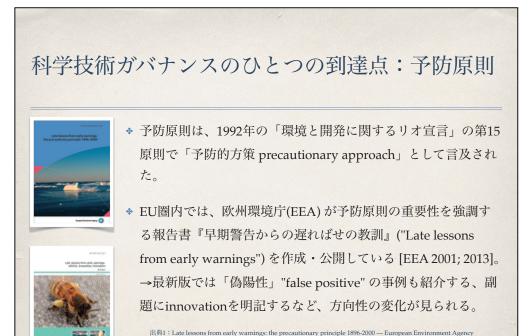
Approach	Examples	Temporal Dynamics	Geographic Reach
Gene Drives	Linked-homing, Medea, CleaveR, TARE/TADE	Self-propagating (low threshold)	Non-localized
	Translocations, Underdominance, UD ^{MEL}	Majority wins (high threshold)	Localized
	Daisy, split-homing, killer rescue	Self-limiting (temporary limited)	
Non-Drives	SIT, RIDL, fsRIDL, pgSIT		

◆ 「リンクドホーミングドライブ」「スプリットホーミングドライブ」のいずれも、個体数抑制 population suppression / 集 団の改変 population modification のどちらにおいても使用可能。前者については、生態学的に孤立した島嶼部など、アク セスが制限された場所で放出するといった、地理的に局限する努力が必要。自己増殖式のため、リスク緩和方策としてリ バーサルドライブ等の対策も求められる。後者については(時間的にも地理的にも) 本来的に制限されているため、「安全」 かつ「効果的」で、さらに「自己制御式」であることから(リバーサルドライブ等の)対策も不要。

State of the Art Strategies for Gene Drive and Biological Risk Mitigation, Omar Akbari, Ph.D. November 9, 2020 https://osp.od.nih.gov/wp-content/uploads/Akbari_NExTRAC_110920.pdf

遺伝子ドライブに対する専門機関の態度

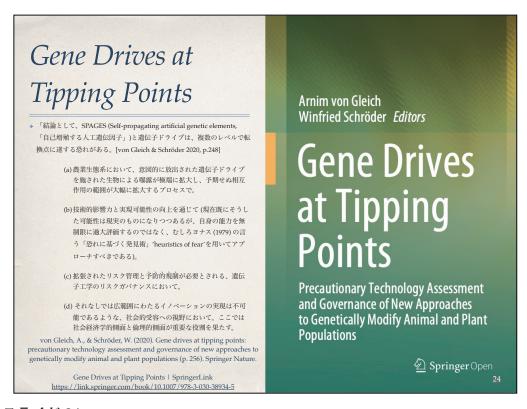
- * Gene Drive の環境への影響の大きさを鑑み、遺伝子協は、Gene Drive に関して下記のとおり注意喚起を 発します。[全国大学等遺伝子研究支援施設連絡協議会 2017]
 - 1. Gene Driveに関する情報を機関内に周知すること。
 - 2. Gene Driveを用いた遺伝子組換え実験計画の有無を把握すること。
 - 3. 適切な拡散防止措置が執られていることを確認すること。
 - →Gene Drive生物は、その遺伝的性質を対象となる生物種集団内に急速に拡散させる潜在的能力があ り、遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律に則った適切な拡散防 止措置が極めて重要です。
- * 米国科学アカデミーは遺伝子ドライブに関する報告書の中で、「現時点において遺伝子ドライブによっ て改変された生物を環境中に放つことを支持するための十分な証拠がない。しかしながら、遺伝子ドラ イブが持つ可能性は大変に意義深いものであり、施設内での研究あるいは厳格に管理された状況下で野 外実験を進めることは容認する」という態度を示している。 [The National Academies of Science, Engineering, and Medicine 2016, p.177]
- * いずれにせよ、無規制のままで良いと考えている研究者、国は現状においてほとんどないと思われる。


スライド 21

Gene Drives on the Horizon

◆ 「遺伝子ドライブで改変された生物は、容易に解決 できない課題への対処、たとえば昆虫媒介感染症の 根絶や脅威と危険にさらされた種の保全などに、有 望である。しかしながら、現時点のいくつかの実験 室での研究における概念実証では、遺伝子ドライブ で改変した生物を環境に解き放つ決断を支持するに は木十分である。生物と生態系に不可逆的な効果を 引き起こす遺伝子ドライブの潜在性は、リスクを評 価するのに強力な方法を要求する。試験、ステーク ホルダーと社会の関与、明快な規制監視における段 階的方法は、新たな知識の増進を止めることなく、 遺伝子ドライブ研究の、事前予防的で段階を追った (step-by-step)アプローチを可能にすることができ る。」(邦訳は[大庭 2018]を参照)

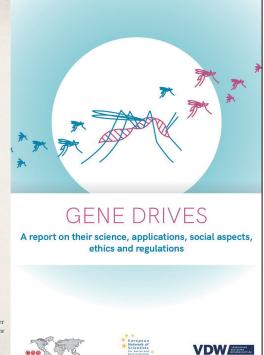
National Academies of Sciences, Engineering, and Medicine. (2016). Gene drives on the horizon: advancing science, navigating uncertainty, and aligning research with public values. National Academies Press. http://nap.edu/23405



https://www.eea.europa.eu/publications/environmental issue report 2001 22 出典2:Late lessons from early warnings: science, precaution, innovation — European Environment Agency

https://www.eea.europa.eu/publications/late-lessons-2

23



スライド 24

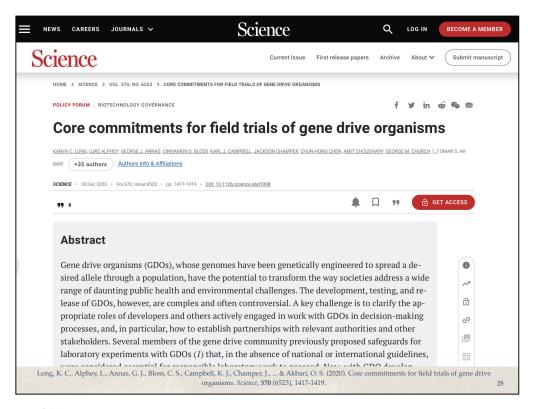
- German Scientists (VDW) and the European Network of Scientists for Social and Environmental Responsibility (ENSSER)の三団体が2019年5月に公開した、遺伝子ドライ ブに関する報告書。
- ◆ 科学的・技術的側面だけではなく、ELSI(倫理的・法的・社 会的問題)の面からの検討がなされている。
- 「予測不可能性の高さ、知識の不足、農業生態系を含む生 物多様性や生態系への深刻な悪影響の可能性を考慮して、 本報告書では、十分な知識が得られるまで、あるいは問題 に対する別の解決策が得られるまで、遺伝子ドライブ生物 (Gene Drive Organisms, GDOs) の放出 (実験的なものを含 む)を保留することを推奨する。[中略] 予防原則を適用する という知恵は、この新しく強力な技術に直面する際の最良 の指針となるだろう。」[CSS, VDW, ENSSER 2019, p.13]

Critical Scientists Switzerland (CSS), Vereinigung Deutscher Wissenschaftler (Federation of German Scientists, VDW), European Network of Scientists for Social and Environmental Responsibility (ENSSER). (2019). Gene Drives. A report on their science, applications, social aspects, ethics and regulations. https://genedrives.ch/wp-content/uploads/2019/05/Gene-Drives-

スライド 25

"Gene Drive Film"

- ENSSER、VDW、CSS協力のもと、環境団体 "Save our Seeds"によって作成されたドキュメン タリーフィルム。
- 動画説明文より(発表者により一部改訳):


「遺伝子ドライブ生物は、おそらくこれまでに開発された遺伝子工学の最も危険な応用で す。[中略] 遺伝子ドライブ生物は、自然界の同種のものを置き換えるか、さらには根絶するよ うに設計されています。それらの放出は、生態系と食物網に予測できない結果をもたらす可能 性があります。元に戻すことはできません。最悪の場合、それはさらなる種の絶滅と生態系 全体の崩壊につながる可能性があり、人間の健康と食物 nutrition を脅かす可能性がありま す。

[中略]

Save Our Seedsは、ドイツ、ヨーロッパ、そして世界中での遺伝子ドライブ生物の放出に関す る世界的なモラトリアムを要求しています!」

> Gene Drive Film - YouTube https://www.youtube.com/watch?v=PLt6ILhQZ7E

スライド 28

安全性に対する懸念と 倫理的・法的・社会的議論の必要性

- ・ 侵略的外来生物の駆除や、重篤な感染症を媒介する衛生昆虫・動物の制御、そして農業と競合 する雑草の撲滅のための技術として、遺伝子ドライブが有望視されている。
- * しかし科学者達からは、遺伝子ドライブの安全性に関する懸念も示されている[e.g. Esvelt et al. 2014; Esvelt & Gemmell 2017; Ledford 2015; Reeves et al. 2018].
- * 現在は同技術に対しては、専門家の間でも意見が分かれている状態である。そのため、将来的 に社会全体での議論へとフェーズが移行した場合には、さらなる紛糾が予想される。したがって、今後生じうる議論に備え、遺伝子ドライブの倫理的・法的・社会的課題を事前に明らかに しておくことには、一定の意義があると考えられる。
- * 「アメリカでは、遺伝子ドライブを含む近年の遺伝学の発展が、いわゆる市民参加の専門家と 同じく倫理学者の需要を生み出している。こうした専門家は、入り組んだ、高度に技術的な領 域の研究について、人々に真剣に考えてもらうにはどのようにすればよいか、という悩ましい 問題を抱えている。」[Kahn 2020]

Jennifer Kahn, The Gene Drive Dilemma: We Can Alter Entire Species, but Should We? - The New York Times (Jan. 8, 2020) https://www.nytimes.com/2020/01/08/magazine/gene-drive-mosquitoes.html

スライド 29

参考: Draft Report of the Gene Drives in Biomedical Research Working Group

- * 米国立衛生研究所 (NIH) は2019 年、「生物科学研究における遺伝 子ドライブの安全性と責任ある使 用について検討すること」を目的 の一つとして掲げる、"NExTRAC" を設置した。
- * 同委員会は、2021年6月にこれま での活動報告の草稿を公開してい

NEXTRAC: Considerations for Gene Drives Research and an Emerging Biotechnology
Framework – Office of Science Policy
https://osp.od.nih.gov/2020/11/09/nextrac-gene-drives-research-emergingbiotechnology-framework/

NExTRAC, Draft Report of the Gene Drives in Biomedical Research Working Group https://osp.od.nih.gov/wp-content/uploads/.
Draft Report of Gene Drives in Biomedical Research Working Group.pdf

Novel and **Exceptional Technology and Research Advisory** Committee

Draft Report of the Gene Drives in Biomedical Research **Working Group**

JUNE 2021

☎公益財団法人 日立財団

- * 本発表はJSPS 科研費 JP 20K20493「遺伝子ドライブの理的・法的・社会的諸課題に関する学際融合研究」(代表:藤木篤)および公益財団 法人 日立財団 倉田奨励金 人文・社会科学研究部門「遺伝子ドライブの倫理的・法的・社会的課題に関する環境衛生倫理学的考察」の 助成を受けたものである。
- * 本資料の一部は、以下の既刊論文の内容を反映したものである。
 - * Fujiki, A. (2021). Reconsidering Precautionary Attitudes and Sin of Omission for Emerging Technologies: Geoengineering and Gene Drive. In Risks and Regulation of New Technologies (pp. 249-267). Springer, Singapore.
- * 本資料は、以下の学会・研究会での口頭発表および質疑応答の内容が、部分的に反映されている。
 - ◆ 藤木 篤「害虫防除を巡る技術と思想:IPM(総合的有害生物管理)と遺伝子ドライブを主軸に」、科学技術社会論学会第18回年次研 究大会 オーガナイズドセッション「害虫・農薬・環境の倫理学 ― 「虫を管理する技術」をいかに評価するべきか? ―」 (オーガナ イザ:鈴木 俊洋 (崇城大学))、2019年11月10日
 - ◆ 藤木 篤「RRIは萌芽的先端技術にどう向き合うか:ジオエンジニアリングと遺伝子ドライブを事例に」(日本哲学会第77回大会 公 募ワークショップ「責任ある研究とイノベーションとは何か - 科学技術社会論と応用哲学の観点から考える」於神戸大学 (オーガ ナイザ:松田 毅 (神戸大学))、2018年5月20日
 - * Atsushi Fujiki "Reconsidering Precautionary Attitudes and Sin of Omission in Emerging Technology: Geoengineering and Gene Drive" (Panel Session on "Causality and Responsibility" (Organizer: Tsuyoshi Matsuda (Kobe University)) in 11th International Conference on Applied Ethics @ Kyoto University, Dec. 16, 2018

◆ 連絡先: fujiki@kobe-ccn.ac.jp

31

パネリスト報告 5 ジーンドライブの倫理問題

神戸市看護大学看護学部 准教授 藤木 篤

本日は、ジーン(遺伝子)ドライブの倫理的、法的、社会的な問題についてお話しいたします。

ジーンドライブは、ゲノム編集技術の一応用分野とみなされることが多いのですが、少し大 げさにいうと、これによって進化の操作や、自然を思いどおりに操作することが可能になりま す。私たちの自然に対しての向き合い方自体が変わってしまう可能性があると言われていま す。(スライド 2)

では、ジーンドライブとは何かというと、人によって表現が異なりますが、よく知られたメンデル性遺伝の法則を覆す方法だと言われています。スライド3において左側にメンデル性遺伝の模式図を示します。有性生殖の場合、遺伝子は雄と雌から半々の確率で形質を受け継ぐというように私達は学校で習いますが、ジーンドライブの技術を使うと、標的遺伝子を強制的にほぼ100%の確率で子孫に行き渡らせることができます。具体的な定義は、全国大学等遺伝子研究支援施設連絡協議会や米国の科学技術医学アカデミー(National Academies of Science, Engineering, and Medicine: NASEM)などが示していますが(1)、簡単にいうと、標的遺伝子を強制的に次世代へと受け継がせる技術です。

遺伝子ドライブ自体は自然界でも見られる現象です。ゲノム編集技術の登場と時を同じくして、これを人間の手で再現できるようになりました。2015 年頃から研究が本格的にスタートしました。農業害虫や衛生害虫の特徴を改変するような遺伝子操作を加えることで、害虫が引き起こす様々な問題を解消できないかという意識の下で研究がスタートしたという側面があります(スライド 4、5)。ただし、遺伝子ドライブの安全性については、現在でも意見の対立が様々な形であります。

一方、どんなことが期待されているかというと、病気の蔓延(まんえん)を防いだり、昆虫や雑草に対する農薬、除草剤への抵抗性を人為的に減じさせることで、無農薬栽培ができるようにして農業を支援したり、有害な外来種を絶滅させたり制御できる可能性です。『ネイチャー』誌の記事⁽²⁾では、今一番期待されていることとして感染症対策を挙げています(スライド 6)。マラリアは蚊によって媒介される感染症で、これまで蚊そのものの数を減らす試みは何度もなされてきました。また、マラリアを媒介する蚊の体内にマラリア原虫が寄生したとしても、その増殖を阻止することができる形質—つまりマラリアに対する抵抗性—を有した個体がいる

⁽¹⁾ 全国大学等遺伝子研究支援施設連絡協議会「Gene Drive の取り扱いに関する声明」2017.9.20, pp.3-4. http://www.idenshikyo.jp/_src/2910470/GeneDrive_JPN_20170920.pdf?v=1507611457061; National Academies of Sciences, Engineering, and Medicine. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values, Washington, DC: The National Academies Press, 2016, pp.15-21.

⁽²⁾ Heidi Ledford, Ewen Callaway(三谷祐貴子訳)「遺伝子ドライブでマラリアと戦う」『Nature ダイジェスト』 Vol.13 No.2 2016.2, pp. 4-5.

ことは知られていましたが、その形質を野生集団全体に広めることは困難でした。遺伝子ドライブがそれらを可能にするかもしれないと言うことができます。

マラリアは世界中で多くの方の健康を損ない、人命を奪っています(スライド7)。現在、毎年40万人以上がマラリアで亡くなっていますし、死者の3分の2は5歳以下の子どもたちです。特に高いリスクにさらされているのは、こうした5歳以下の子どもと妊婦です。死亡者の94%は2019年の段階でアフリカ地域です。"World Malaria Report 2020"(3)によれば、現在までのところ世界保健機関(WHO)は自らのマラリア対策事業は成功していると考えているようです。スライド8はWHOが公開しているインフォグラフィックで、「今、新しいマラリア対策ツールが求められている」と記述しており、まさにそのツールとして遺伝子ドライブが有望視されています。

ちなみに、Microsoft 社の創業者として広く知られているビル・ゲイツ(Bill Gates)が設立したビル・アンド・メリンダ・ゲイツ財団はマラリアの死者数を減らすことを目的の一つに掲げて活動しています。2016年の段階で、あと3年から5年の間に遺伝子ドライブが非常に有用な形で出てくるだろう、それはマラリアによる死者数を減らす上で非常に重要なツールになるだろうと述べています(スライド9)。

実際にOutreach Network for Gene Drive Research は、遺伝子ドライブの研究をどちらかというと推進する側に回っていますが、そのネットワークの中核となる活動をビル・アンド・メリンダ・ゲイツ財団が支援しています(スライド 10)。遺伝子ドライブについては、反対派だけではなく、推進派もそれなりにいるということです。

遺伝子ドライブを使って環境に拡散された生物は、カルタへナ法(遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律(平成15年法律第97号))の規制対象になります。生物を使った害虫制御、疾病のコントロールは、バイオロジカルコントロール(生物学的制御)と言われ、この生物学的な行為は化学合成農薬を使わないで済むから環境にやさしいと言われる方もいます(スライド11)。ものの見方によっては、遺伝子ドライブはある意味で環境にやさしいとも言えるわけです。

別の利用方法として、性染色体を操作することで、「daughterless (≒メスを産まない)」ネズミ、つまりオスだけしか生まれないネズミを作出して、自然環境中に拡散させることで、外来種を絶滅させることもできるかもしれないということで、研究が進められています (スライド12)。一方で、当然ながら懸念もあります。遺伝子ドライブの開発者の1人であるケビン・エスベルト (Kevin Esvelt) は、「遺伝子ドライブは、最終的には新しい非常に侵入的な種を作り出すのと同じであって、簡単に実行してはいけないのではないか」と主張しています(スライド

13)。また、ジャーナリストのジェニファー・カーン(Jennifer Kahn)も、「種全体を丸ごと塗り替えて一括して変えることは、これまで誰もやったことがない試みであるため、懸念されることが非常に多い」と言っています(スライド 14)。

遺伝子ドライブは、ここまで述べてきたような疾病対策や害虫対策だけではなく、各方面に 応用が効く汎用性の高い技術なので、これから先どうなるか、まだ予想がつかないところがあ ります。したがって、遺伝子ドライブという技術を、もう少ししっかりと確認し、事前に議論

⁽³⁾ WHO, World malaria report 2020: 20 years of global progress and challenges, 2020. https://apps.who.int/iris/rest/bitstreams/1321872/retrieve

しておく必要があります (スライド 15、16)。

遺伝子ドライブの危険性や環境に対する懸念はいろいろありますが、悪影響を上書きするような第二の遺伝子ドライブを実行すればよいという技術的楽観論もあります。ただ、うまくいかなかった方法を、(うまくいかなかった)まさに同じ方法で塗り替えることが本当にできるのか、という点で疑問が残ります(スライド 17)。さらに、技術的に洗練されて、コントロールが意のままにできるようになれば、遺伝子ドライブは野外環境で実施してもよいのではないかと言われることもありますが、こういった研究に携わっているところの資金源は、軍事関係であることも多いので、軍事転用可能な技術(軍民両用の技術(≒デュアルユース、用途両義性))という点に関して、不安が表明されることもあります(スライド 18)。

こうした安全性や制御性を向上させるための試みの一環として、現在、自己消滅型遺伝子ドライブも開発されています(スライド 19)。時間の制約上詳しくは説明できませんが、遺伝子ドライブといっても、近年急速に技術が細分化され、洗練化されてきているので、今後こうした技術について議論するとき、これらの違いを認識する必要があるように思われます(スライド 20)。

遺伝子ドライブに対する専門機関の態度としては、例えば国内であれば全国大学等遺伝子研究支援施設連絡協議会は、カルタヘナ法の範囲内で管理しましょうと提言しています。米国科学技術医学アカデミーも、「遺伝子ドライブが持つ可能性は大変に意義深いものであり、施設内での研究あるいは厳格に管理された状況下で野外実験を進めることは容認する」と言っています(スライド 21)。なお、この分野で最もよく参照されるのが、2016 年に米国科学技術医学アカデミーが出したこの報告書 $^{(4)}$ です(スライド 22)。その中では、「現時点のいくつかの実験室での研究における概念実証では、遺伝子ドライブで改変した生物を環境に解き放つ決断を支持するには不十分である」としています。

科学技術ガバナンスの一つの到着点として予防原則があり(スライド 23)、この原則に基づいてモラトリアム、すなわち一時停止措置を設定しましょうという動きがいろいろなところから出てきています。最近出た本 $^{(5)}$ では、予防原則に基づいた規制が重要かつ必要であると述べています(スライド 24)。ヨーロッパでは、三つの科学者団体が共同で遺伝子ドライブに関するレポート $^{(6)}$ を公表し、予防的な措置が非常に重要であり、モラトリアムを設定しなければいけないと述べています(スライド 25)。この 3 科学者団体は協力して YouTube で見られる動画 $^{(7)}$ を作成しています。御参照いただけましたら幸いです(スライド 26)。

ただし、モラトリアムを設定しようという試みは、正直なところあまりうまくいっていません (スライド 27)。国連生物多様性条約 (CBD) も 2016 年と 2018 年の 2 回にわたってモラトリアムの設定を否定しています。そもそもモラトリアムを設定する、しないに関わらず、どのような状況で野外実験を行っていいかという技術の評価が必要ではないかという論文が 2020年に出ました (8) (スライド 28)。やはり、遺伝子ドライブの倫理的・法的・社会的な課題につ

⁽⁴⁾ National Academies of Sciences, Engineering, and Medicine, op.cit.(1)

⁽⁵⁾ Arnim von Gleich and Winfried Schröder, Gene Drives at Tipping Points, Cham: Springer, 2020.

⁽⁶⁾ Critical Scientists Switzerland et al., GENE DRIVES: A report on their science, applications, social aspects, ethics and regulations, 2019, p.338. https://genedrives.ch/wp-content/uploads/2019/05/Gene-Drives-Report.pdf

⁽⁷⁾ Save Our Seed, "Gene Drive Film," 2020.1.16. https://www.youtube.com/watch?v=PLt6ILhQZ7E

⁽⁸⁾ Kanya C. Long et al., "Core commitments for field trials of gene drive organisms," *Science*, 370(6523), 2020.12.18, pp.1417-1419.

いては今から議論を進めておくことが必要です。ただし、米国でも言われていますが、人々に 真剣にこうした問題を考えてもらうことは容易ではありません(**スライド 29**)。

(ふじき あつし)