交流電流加熱による Si(001)表面構造変化

土井 隆久・細木 茂行

日立製作所中央研究所 〒185 8601 東京都国分寺市東恋が窪1 280

(2002年10月25日受理)

Structural Change of Si(001) Surfaces after Alternating Current Heating

Takahisa DOI and Shigeyuki HOSOKI

Central Research Laboratory, Hitachi, Ltd., 1 280 Higashi-Koigakubo, Kokubunji, Tokyo 185 8601

(Received October 25, 2002)

Si(001) vicinal surfaces heated with a sine wave of 10^4 Hz AC are investigated by using scanning reflection electron microscopy. Surfaces of 1×2 that consist of wide 1×2 terraces (the 1×2 dimer is perpendicular to the direction of the heating current) and narrow 2×1 terraces (the 2×1 dimer is parallel to the direction of the heating current) terraces were obtained at temperatures below 850 . At temperatures between 850 and 1100 , on the other hand, double-domain surfaces where 2×1 and 1×2 terraces are arranged regularly with approximately equal widths were formed. The driving force for growth changes from thermal effect to evaporation effect at about 850 . At temperatures above 1100 , the surfaces are composed of mosaic domains due to the evaporation of the atoms.

1.はじめに

Si 半導体素子は高速化,高集積化,低電力化等によ り現代社会の発展を支えてきた。しかし,素子構造の微 細化や薄膜化が進み,従来技術に基づく設計規則が原理 的限界に近づくにつれて,素子の高性能化や高機能化に とってナノ構造導入による量子効果の利用が避けられな くなってきている。

表面の広い範囲にナノ構造を規則的に形成する技術 は,既存の半導体微細加工技術の活用により実用段階に 近づいている¹⁾。その一方で,応力²⁻⁴⁾や電場⁵⁻¹²⁾を加え てS(001)基板を加熱すれば,ナノ構造形成前の型板 (表面)を作製できることが報告されている。電場を加 えてS(001)表面を加熱する場合(Fig.1),原子蒸発の 影響が小さい低温では,電流を step-up 方向に流すと 2×1面(2×1ダイマーは電流方向と平行;Fig.1(a)) が,step-down 方向に流すと1×2面(1×2ダイマーは 電流と垂直;Fig.1(b))が,それぞれ成長することが 知られており⁵⁻¹²⁾, 電場の印加方向により表面構造を容 易に制御することができる。ここで,2×1面の前面は S_A ステップ(2×1ダイマーと垂直)で,1×2面の前面 は S_B ステップ(1×2ダイマーと平行)である¹³⁾。とこ ろが,同じS(001)基板を直流電流^{14,15)}, 交流電流⁶⁾, 電子衝撃¹⁶⁾等で高温に加熱すると,ほぼ等しい幅で2×1 面と1×2面とが交互に並ぶ Double Domain (DD)表面 が形成されることが観察された。

本報告では,S(001)表面を交流電流で加熱し,走査 型反射電子顕微鏡(scanning Reflection Electron Microscope)を使って表面構造の温度変化を調べた結果を示 す^{17,18}。交流加熱では,原子蒸発作用が熱拡散作用を抑 制するため,DD表面が形成されること等を示した。

2.実 験

走査型 REM¹⁹は,螢光板上で選択した反射電子回折 (Reflection High-Energy Electron Diffraction)スポット強 度を画像信号とする顕微鏡である。使用した装置は,真 空度(測定室)が1×10⁻⁸ Pa以下,電子線の加速電圧 が20 kV,その直径が約20 nm,試料入射角が3 以下で

E-mail: doit@crl.hitachi.co.jp

ある。電子線を低角で試料に入射するため, REM 像は 電子線入射方向に縮んだ像となる。

S(001) 試料は約 30×5×0.5 mm³の短冊形で,CZ-N 型基板(抵抗率8 12 Ωcm,傾き<2)から切り出した。 試料の長辺と短辺とは<110>方向とほぼ平行で,長辺 方向に電流を流して試料を加熱した。超高真空中で試料

Fig. 1 A Si(001) surface: (a) a 2×1 surface consisted of wide 2×1 and narrow 1×2 terraces, and (b) a 1×2 surface consisted of wide 1×2 and narrow 2×1 terraces. The 2×1 (1×2) surface changed to the 1×2 (2×1) surface by step-down (step-up) current heating. The front edge of the 2×1 terrace was the S_A step parallel to the dimer row, while that of the 1×2 terrace was the S_B step perpendicular to the dimer row.

を約 1200 で数秒間加熱すると,表面の汚染層や酸化 膜が除去され,清浄表面が得られる。この表面を step-up 方向の直流電流で加熱すると広い2×1 面を持つ2×1表 面(Fig.1(a))が,step-down方向の電流で加熱すると 広い1×2 面を持つ1×2 表面(Fig.1(b))が,それぞ れ形成される。信号スポットとして2×1 回折スポット を選んだため,REM 像では明部が2×1 面に,暗部が 1×2 面にそれぞれ対応する。

2×1 表面と1×2 表面とを交流電流で加熱し,表面構 造の温度変化を比較した(観察は室温で行った)。周波 数1~10⁴Hzの交流電流で試料を加熱し,加熱後の表面 構造を比較したところ,周波数の違いにかかわらず同様 の構造が観察された(詳細は省略)。この観察に基づき, 試料を10⁴Hz正弦波電流で加熱した場合の結果を以下 に示した。交流電流の1周期は1×10⁻⁴秒であり,半周 期(5×10⁻⁵秒)ごとに電流方向がstep-up方向とstepdown方向とを交互に入れ替わる。なお,試料表面にSi 原子を供給する際には,電子ビーム蒸発源を使用した。

3. 交流電流加熱による St(001) 表面構造変化

2×1 表面の構造変化を Fig. 2 に示す。交流加熱前の

Fig. 2 REM images of the 2 × 1 surface after AC heating: (a) before heating, (b) 600 for 180 min, (c) 800 for 150 min, (d) 900 for 120 min, (e) 1070 for 5 min, and (f) 1140 for 3 min. The direction of the 2 × 1 dimer is shown in (a). Bright regions correspond to the 2 × 1 terraces and dark regions are the 1 × 2 terraces. After AC heating, the step bands (B) released pairs (P) of steps, then the pairs split into single steps (S).

表面 (Fig. 2 (a)) にはステップバンド (ステップ集合 体;B)が多数存在し,バンド間における2×1面(明 部)幅は写真長手方向(長辺<110>方向,即ち,通電 方向)に平均約5μmである。この表面では,1×2面は 幅が狭く,暗い線状構造(P)として観察されている。 この試料の表面は写真長手方向に対して左が高く右が低 いため,1×2面(暗線)と左右の2×1面(明部)との 境界は, Fig.1(a) に示したように, SA ステップ(暗線 の左側明部と暗線との境界で,2×1面の前面ステップ) と SB ステップ(暗線とその右側明部との境界で,1×2 面の前面ステップ)とに,それぞれ対応する。700 よ りも低温で2×1表面を加熱すると,1×2面が広がるも のの,数時間の加熱では2×1面(明部)は1×2面(暗 部)よりも数倍以上広い。600 で加熱した後の表面を Fig. 2(b) に示す。この表面では, 明部と暗部との境界 (S)がステップに対応し,明部の右端に S_A ステップが, 暗部の右端に S_B ステップが, それぞれ存在する(像の 縮みを補正すると,2×1面の小さな暗点は写真上下方 向に長軸を持つ楕円構造を取り、ダイマー方向との関係 から¹³⁾,表面に形成された1原子層深さの穴構造である ことがわかる)。ところが,700~1100 で加熱する

と、2×1表面はDD表面(2×1面幅≈1×2面幅)に変 化する。ステップバンド(B)は、800 で加熱した後 の表面(Fig.2(c))と900 で加熱した後の表面(Fig. 2(d))とには残るが、1070 で加熱した後の表面(Fig. 2(e))からはほぼ消える(バンドが消えた表面で平均 面幅が約1µmとなることから、この試料の[001]方 位は写真長手方向に約0.5傾いていることがわかる)。 さらに、1100 以上に加熱すると、2×1表面はモザイ ク様構造を持つ表面(凹凸表面と呼ぶ)に変化する。1140 で加熱した後の表面をFig.2(f)に示す。この表面に は、幅の狭い面(2×1面と1×2面)が混在している。

1×2 表面の構造変化を **Fig. 3** に示す (Fig. 2 と同様, B はステップバンド, P は 1 対のステップ, S はステッ プである)。800 以下では,加熱により 2×1 面(明部) が少し広がるが, 1×2 表面は 1×2 表面のままである。 800 で加熱した後の表面を Fig. 3 (b) に示す。ところ が,850 ~1100 で加熱すると, 1×2 表面は DD 表 面に変わる。850 で加熱した後の表面と900 で加熱 した後の表面とを, Fig. 3 (c) と Fig. 3 (d) とにそれぞ れ示す。1100 以上に加熱すると, 2×1 表面(Fig. X f)) と同様, 1×2 表面も凹凸表面に変化する。

Fig. 3 REM images of the 1 × 2 surface after AC heating: (a) before heating, (b) 800 for 180 min, (c) 850 for 240 min, and (d) 900 for 60 min. The direction of the 1 × 2 dimer is shown in (a). After AC heating, the step bands (B) released pairs (P) of steps, then the pairs split into single steps (S).

この観察結果に基づきダイアグラムを作成し,表面構造とその律速因子とについて検討した。

3.1 ダイアグラム

この Si(001) 試料 (面幅 1~5 µm) では, 交流加熱に より表面構造が2度変化することがわかった。最初の変 化は DD 表面の形成である。ところが, 700 ~ 850 で加熱すると,2×1表面はDD表面に変化したが1×2 表面は1×2表面のままであり,両者に違いが認められ た。この違いの原因を調べ DD 表面の形成温度を決定す る目的で,1200 で数秒間加熱して作成した清浄表面 (高温熱処理表面と呼ぶ)を交流電流で加熱した結果 (Fig. 4)を, 2×1表面(Fig. 2)および1×2表面(Fig. 3)の観察結果と比較した。高温熱処理表面(Fig.4(a)) は狭い2×1面(明部)と狭い1×2面(暗部)とから成 リ,2×1表面の性質と1×2表面の性質とを合せ持つと 考える。この表面を 800 で加熱すると(Fig. 4(b)(c)), 加熱時間が長いほど1×2面(暗部)の占有率が増すこ とがわかった。1×2面占有率の増加は,2×1面(明部) が1×2面(暗部)に変わる割合が高いことを意味し、1×2 表面が DD 表面よりも安定であることを示唆する。この 結果は2×1表面の結果と矛盾するが,2×1表面の結果 (Fig.2(c))を再検討したところ,幅数µm以下の2×1 面(狭い1×2面と組を成す)の多くが,加熱後に1×2

面(狭い2×1面と組を成す)に変わることがわかった。 このことは,800 で長時間加熱すれば2×1表面が 1×2表面に変わることを示唆する(高温熱処理表面も 同様)。その上,1×2表面は1×2表面のままであるこ とから,800 では1×2表面が安定であると結論した。 一方,900 で加熱すると,2×1表面(Fig.2(d))お よび1×2表面(Fig.3(d))と同様,高温熱処理表面(Fig. 4(d))もDD表面に変わった。この結果は,900 で はDD表面が安定であることを支持する。表面構造の温 度変化が1×2表面のそれと良く一致することから,1×2 表面の結果に従い,約850 でDD表面が形成される と結論した。

ところで,S(001)表面における2度目の変化は凹凸 表面の形成である。この変化は約1100 で起こり,加 熱前の表面構造に依存しない(直流加熱¹⁵⁾でも,2×1 表面と1×2表面とから,約1100 以上で凹凸表面が 形成された)。1100 では1原子層(約6.8×10¹⁴原子/ cm²)が約15秒²⁰⁾で蒸発すること,この表面(Fig.2(f)) が高温熱処理表面(Fig.4(a))と似ていることから, 凹凸表面は原子蒸発作用により形成されると結論した。

上記の結果に基づき,このS(001) 試料の,加熱温 度と表面構造との関係をFig.5 に纏めた(直流加熱にお ける両者の関係¹⁵⁾も一緒に示した)。交流加熱では,850

Fig. 4 REM images of the flash-heated surface after AC heating: (a) before heating, (b) 800 for 60 min, (c) 800 for 120 min, and (d) 900 for 60 min.

Fig. 5 A Si(001) surface with 1 5 μ m terrace width. AC heating produced the 1 × 2 surface at temperatures below 850 , the DD surface between 850 and 1100 , and the rugged surface above 1100 . On the other hand, DC heating produced the 2 × 1/1 × 2 surface at temperatures below 1070 , the DD surface between 1070 and 1100 , and the rugged surface above 1100 .

よりも低温で1×2表面が,850 ~1100 でDD表 面が,1100 よりも高温で凹凸表面が,それぞれ形成 されることを明らかにした。直流加熱では1070 ~1100

で DD 表面が形成されることから,交流加熱が DD 表面作製に有利であることがわかった。

3.2 1×2 表面形成(~850)の律速因子

2×1 表面を交流電流で加熱すると, step-up 方向と step-down 方向とに, 1×2 面がほぼ同速度で成長した (Fig.2)。加熱前の1×2面幅をwo,t時間加熱後の値を wとすると、1×2面の成長量(Δw)は(w-w₀)/2と なる。ところで,直流加熱(900 以下)の結果から, 1×2 面が2×1 面よりも速く成長(両面共,加熱時間に 比例して成長
)することがわかっている。
交流加熱で は、電流方向が step-up 方向と step-down 方向とに交互 に入れ替わるため,交流加熱の1×2面成長速度は,直 流加熱の1×2面成長速度(step-down 方向の電流に対す る値)と2×1面成長速度(step-up方向の電流に対する 値)との差の半分となり,交流加熱でも1×2面が時間 (周期)に比例して成長すると予想した。ところが,Δw と t との関係(Fig. 6)を調べると, この予想に反し, 1×2 面が加熱時間の1/2乗に比例して成長することがわかっ た(ここでは省略するが, Δw とt との関係から Si 原子 の拡散係数 D を求め, 拡散係数と温度とのアレニウス プロットから, Si(001) 表面における Si 原子拡散の活

Fig. 6 Growth of the 1×2 terrace after AC heating. The horizontal axis is heating time *t* [s], and the vertical axis is the width $\Delta w = (w - w_0)/2$ [cm], where w_0 and *w* are the widths of the 1×2 terrace before and after heating. Below 850 , the 1×2 terraces grew with a 1/2 power-law of time dependence.

性化エネルギーを決定した)*。1/2 乗則に従う成長は, 熱拡散作用が成長を律速することを示唆する(850 よ りも低温では,熱拡散作用 >> 蒸発作用が成立すると考 える)。

ここで, S_A ステップ放出原子が 1 × 2 面上を電場(ダ イマー列)方向に移動する²¹場合について,交流加熱に おける 1 × 2 表面の形成過程を検討した。*x* 軸を stepdown 方向に選び, S_A ステップ位置を原点に取ると(Fig. 1), 直流加熱における Si 原子の流束 J_±(*x t*) は式(1) となる¹⁰⁻¹²。

 $J_{\pm}(x \ t \) = -D[n(x \ t \)/x] \pm DFn(x \ t \)/kT$ (1)

式 (1) に お い て , *J*-(*x t*) は step-down 方 向 (+)の 流束 , *J*-(*x t*) は step-up 方向(-)の流束 , *n*(*x t*) は 表面原子密度 ,D はダイマー列方向の拡散係数(熱作用), F は原子に働く力 (電場作用)である。step-down 方向 (+)に D を選び , step-down 方向(+)に対して F(+)= +F , step-up 方向(-)に対して F(-)= - F とすれば , 交流加熱における Si 原子の流束 *J*-(*x t*) は式 (2) とな る。

$$J_{-}(x \ t) = [J_{+}(x \ t) + J_{-}(x \ t)]/2 = -D[n(x \ t)/x]$$
(2)

流束の式(式(2))と連続の式(式(3))とから,交流 加熱における Si 原子の拡散方程式は式(4)となる。

- $n(x \neq t)/t + J_{-}(x \neq t)/x = 0$ (3)
- $n(x t)/t = D[2n(x t)/x^2]$ (4)

式(4)は1×2面が1/2乗則に従って成長することを示 唆し, Fig.6の結果を支持する。

以上のことから,交流加熱(~850)では,各周期 で電場作用が打ち消され,熱拡散作用により1×2面が 成長すると結論した。即ち,熱拡散作用が1×2表面形 成の律速因子であることを明らかにした。

3.3 DD 表面形成 (850 ~1100)の律速因子

歪みを加えて S(001) 試料を加熱すると, 表面構造 が変化することが知られている2~4)。ところで,加熱試 料には熱歪み(試料と周辺部との膨張率の違いが原因) がかかるため, DD 表面形成の原因として熱歪みが考え られる。交流加熱の実験結果(Fig.5)を熱歪みで説明 するためには,熱歪みの値が800 で約0.1%(張力) から 850 で 0% へと変化する必要がある2~4)。その上, 熱歪みの値が温度に比例すると仮定すれば、その値は 850 で0%から900 で-0.1%(圧縮力)へと変化 すると予想する。即ち,熱歪みが原因であれば,実験結 果は1×2表面(800 以下)がDD表面を経て2×1表 面(900 以上)に遷移することを示唆する。しかし, SI(001)表面を交流電流で1100 以上まで加熱したが, この2×1表面への変化は観察されなかった。また,熱 歪みが DD 表面を形成するのであれば, 直流加熱におい ても 850 で DD 表面が形成されると予想する (熱作 用と電場作用とは独立に働くため,同じ温度では同じ熱 歪みが働く)。しかし, S(001) 表面を直流電流で850

に加熱しても,この予想に反し,DD表面は形成され なかった¹⁵)。以上のことから,DD表面は熱歪み以外の 原因により形成されると結論した。

ところで,直流加熱(1070 ~1100)では,850 よりも高温ではあるものの,原子蒸発により DD 表面が 形成された¹⁵⁾。この結果を踏まえて,交流加熱の場合に,

蒸発作用が DD 表面形成の原因である可能性について検 討した。原子蒸発の影響を調べるため,高温(850 以 上)に加熱した Si(001) 表面に外部から Si 原子を供給 する場合としない場合とについて,両者の表面構造を比 較した。Si原子は電子ビーム蒸発源から供給し,Si原 子の供給率は約6×10¹¹原子/cm²s(約960 の原子蒸 発率に相当)⁽²⁾である。900 以下では,この供給率は 蒸発率(900 で約7×10¹⁰原子/cm²s)の10倍以上と なることから、多数の原子が表面に残留すると予想する。 900 の場合について,原子供給(6×10¹¹ 原子/cm²s) の有無による表面構造の違いを Fig.7 に示した。原子を 供給しない場合 (Fig.7(a)) は1×2 表面が DD 表面に 変わったが,原子を供給する(Fig.7(b))⁷⁾と1×2表 面は1×2表面のままであった(供給原子は結晶原子よ りも蒸発し易いにもかかわらず, Fig.7(b)の結果は多 数の原子が表面に留まることを示す)。前者の場合は原 子蒸発により DD 表面が形成されたが,後者の場合は, 原子供給が原子蒸発の効果を打ち消し,1×2表面が形 成されたと結論した(この結果は蒸発作用を抑制すれば 1×2表面が形成されることを意味し,交流加熱では熱 作用が表面構造の変化を律速することを示唆する)。

原子蒸発と原子供給とを考慮すると,交流加熱(850 以上)における拡散方程式は式(5)となる。

 $n(x \ t)/t = D[2n(x \ t)/x^2] + R - n(x \ t)/\tau$ (5)

ここで,Rは原子供給率, $n(x_t)/\tau$ は原子蒸発率, τ は 原子滞在時間である(R,n, τ は正数)。原子を供給し ない場合(R=0, $n/\tau>0$)は, $n(x_{c_t})/t=0$ を満足 する解 x_c (臨界点)が存在する(Fig.8)。臨界点($x=x_c$) で, $D(2n/x^2)=n/\tau$ が成立し,蒸発作用(τ に依存) と熱作用(Dに依存)とが釣合う。この結果,領域x <

Fig. 7 A Si(001) surface during AC heating at 900 . (a) Without atom deposition, the 1 × 2 surface changed to the DD surface. (b) With atom deposition (about 2.4 ML), the 1 × 2 surface did not change to the DD surface.

Fig. 8 Formation of the DD surface by AC heating. At the critical position x_c , the growth of the 1×2 terraces stops due to the balance between evaporation effect and thermal effect. At $x < x_c$, thermal effect is larger than evaporation effect, so the 1×2 terraces grow due to thermal effect. At $x > x_c$, however, evaporation effect is larger, and thus the kinetics of the atoms is dominated by evaporation effect. The 1×2 terraces are produced instead. The driving force changes from thermal effect to evaporation effect at x_c .

 x_c では, D($^2n/x^2$)> n/τ となり, 熱作用が蒸発作用 よりも強く働く。Si 原子は表面に留まり熱作用が原子 の運動を律速するため,1×2面が1/2乗則に従って成 長する。ところが,領域 $x > x_c$ では, $n/\tau > D(2n/x^2)$ となり,蒸発作用が熱作用よりも強く働く。Si原子が 蒸発し1×2面の成長が停止するため,この領域($x > x_{e}$) は2×1面となる。この結果,蒸発作用が熱作用を抑制 する場合に, DD 表面が形成されることがわかった。-方,原子供給によりR> n/τ となれば,全表面でD($^2n/$ x²)+R>n/τ が成立する (R が 6×10¹¹ 原子/cm²s の場 合,温度900 ではR>n/τが成立する)。この結果は, 熱作用が原子の運動を律速し,全表面で1×2面が成長 することを示唆する。即ち,原子供給が蒸発作用を打ち 消し(R>n/τ), 全表面で熱作用が働く場合に, 1×2表 面が形成されることがわかった。式(5)に基づく検討 結果は観察結果(Fig.7)を説明し,原子蒸発作用によ り DD 表面が形成されることを支持する。

以上のことから,交流加熱(850~1100)では,

蒸発作用が熱拡散作用を抑制し,原子蒸発によりDD表 面が形成されると結論した(蒸発作用は高温ほど強くな り,1100 以上では,蒸発作用>>熱拡散作用が成立す ると考える)。即ち,原子蒸発作用がDD表面形成の律 速因子であることを明らかにした。それに加え,交流加 熱では,850 以上でも熱拡散作用が(蒸発前の)表面 原子の運動を律速することを示した。

3.4 原子蒸発温度

St(001)表面において,同じ原子(結晶原子)である にもかかわらず,交流加熱の原子蒸発温度(約850) と直流加熱の値(1000 以上)⁵⁾との間に大きな違いが 認められた。この違いの原因を調べるため,1×2表面 における原子の運動について検討した。

温度が900 で原子供給率(R)が6×10¹¹原子/cm²s の場合,3.3 で示したように,全表面で n/ t>0 が成 立し,1×2表面が保持される。この条件では,表面に 多数の原子が存在し蒸発作用が抑制されるため,1×2 表面における原子の運動を調べることができる。ところ が,この条件において,交流加熱下の原子成長過程(蒸 発の逆過程)と直流加熱下のそれとを比較したところ, 両者の間に顕著な違いが認められた。詳細は省略するが, 加熱温度と原子供給率とが同じであるにもかかわらず、 交流加熱(前者)では島成長(原子が島外周に捕獲)") が,直流加熱(後者)では沿面成長(原子が基板ステッ プに捕獲りが,それぞれ観察された。成長様式の違い は,1×2表面形成過程(3.2)と同様,交流加熱では時 間の1/2 乗に従う原子移動を,直流加熱では時間に比例 する移動を,それぞれ示唆する(供給原子と結晶原子と に対して,同じ関係が成立することがわかった)。この 冪指数の違いは,原子の拡散(移動)距離とその所要時 間とに大きく影響するため,原子蒸発の影響が広い面ほ ど顕著に現われることを意味する。

交流加熱では原子が広い面を横断するのに長い時間を 必要とするため,直流加熱と比較して,低い温度から原 子蒸発が顕在化することを示した。蒸発温度の違いは, 原子がステップに到達するまでに要する時間(表面滞在 時間)の違いに起因すると結論した。

4.おわりに

走査型 REM を使って,交流加熱における S(001)表 面構造の温度変化を調べ,(1)850 よりも低温では, 熱拡散作用(>>蒸発作用)により1×2表面が,(2)850 ~1100 では,原子蒸発作用が熱拡散作用を抑制す

るため DD 表面が , (3) 1100 以上では , 原子蒸発作 用(≫ 熱拡散作用)により凹凸表面が , それぞれ形成 されること等を明らかにした。 試料加熱方式や原子供給条件等を適切に設定すること により,S(001)表面構造を広範囲にわたり制御できる ことを示した。ここで示した方法は,量子効果素子を構 築する際の型板表面の作製等に応用できると考える。

謝辞 辞

本研究を御指導頂きました、東京大学・市川昌和教授, 日立中研・柿林博司主管研究員に感謝いたします。

文 献

- 荻野俊郎,本間芳和,日比野浩樹,小林慶裕,住友 弘二,K. Prabhakaran,尾身博雄:表面科学 19,557 (1998).
- O.L. Alerhand, D. Vanderbilt, R.D. Meade and J.D. Joannopoulos: Phys. Rev. Lett. 61, 1973 (1988).
- F.K. Men, W.E. Packard and M.B. Webb: Phys. Rev. Lett. 61, 2469 (1988).
- H. Tamura, Y. Tanishiro, H. Minoda and K. Yagi: Surf. Sci. 382, 310 (1997).
- 5) A.V. Latyshev, A.B. Krasil'nikov, A.L. Aseev and S.I. Stenin: JETP Lett. **48**, 526 (1988).
- 6) A.V. Latyshev, L.V. Litvin and A.L. Aseev: Appl. Surf.

Sci. 130 132, 139 (1998).

- H. Kahata and K. Yagi: Jpn. J. Appl. Phys. 28, L 858 (1989).
- 8) M. Ichikawa and T. Doi: Vacuum 41, 933 (1990).
- T. Doi, M. Ichikawa, S. Hosoki and K. Ninomiya: Phys. Rev. B 53, 16609 (1996).
- 10) S. Stoyanov: Jpn. J. Appl. Phys. 30, 1 (1991).
- A. Natori, H. Fujimura and H. Yasunaga: Jpn. J. Appl. Phys. 31, 1164 (1992).
- 12) T. Kawamura and M. Wilby: Jpn. J. Appl. Phys. 31, L 362 (1992).
- 13) D.J. Chadi: Phys. Rev. Lett. 59, 1691 (1987).
- 14) N. Inoue, Y. Tanishiro and K. Yagi: Jpn. J. Appl. Phys. 26, L 293 (1987).
- 15) T. Doi, M. Ichikawa and S. Hosoki: Phys. Rev. B 55, 1864 (1997).
- 16) R.M. Tromp and M.C. Reuter: Phys. Rev. B 47, 7598 (1993).
- T. Doi, M. Ichikawa, S. Hosoki and H. Kakibayashi: Appl. Phys. Lett. 74, 3675 (1999).
- 18) T. Doi, M. Ichikawa and S. Hosoki: Surf. Sci. 499, 161 (2002).
- 19) M. Ichikawa: Mater. Sci. Rep. 4, 147 (1989).
- 20) R.E. Honig: RCA Rev. 23, 567 (1962).
- 21) Y.-W. Mo and M.G. Lagally: Surf. Sci. 248, 313 (1991).