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1.  Introduction

　　　
scale simulations due to its nature; large domain of analysis, 

the problem, necessity of Monte-Carlo simulations due to 

with efficient failure treatment is necessary for such large 

like cohesive traction methods, node splitting methods and 

element/nodal enrichment methods, involves numerically 

et al

et al

treatment, without adding new nodes or changing the mesh 

large scale simulations. 

　　　

dynamic crack propagation is of great practical importance 

in many fields of studies and challenging. To illustrate the 

a simulation of stone breaking in shock wave lithotripsy 

has been used nearly 30 years, but how the kidney stones 

break due to ultrasonic pulse induced water shock waves is 

problem is complicated since the initiation and propagation 

of the cracks are completely due to interfering stress waves 

in the solid and it involves very high strain rates (of the 

order 104

This pioneering result is a clear indication of the potentials 

of concrete wall under tsunami wave impact, etc.. 

　　　
notation, i.e., xi stands for the ith coordinate. The summation 

convention is employed, and f,i stands for the derivative  

.

2.  PDS-FEM for modeling tensile failure in 

brittle solids

　　　
discretization scheme called particle discretization scheme 

tessellations to discretize functions and its derivatives. 

forward and numerically efficient since the discontinuities 

displacement discontinuity across the crack surfaces, without 

FEM since it uses discontinuous characteristic functions to 

that of FEM with linear elements. Hence, the accuracy of 

with linear element. In the rest of this document, only a brief 

completion and we refer to Hori et al

et al (2009) for details. 

　　　
non-overlapping characteristic functions of two conjugate 

geometries (Fig. 1) to discretize functions and its derivatives. 

 of hypo-

Voronoi diagrams 

f , where the range of 

set of mother points {x }, hypo-Voronoi diagrams are 
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obtained by moving the common meeting point of 

neighboring three Voronoi diagrams to the center of 

gravity of the triangle formed by the three mother points 

of theVoronoi diagrams. Minimizing the discretization

error , the coefficients f  can be 

as evaluation 

of derivatives of the discretized function fd, the use  

characteristic functions results in unbounded derivatives 

eventually leading to problems of variational formulations. 

To circumvent these problems, an average value for 

 , associated with Voronoi diagrams. Here, the range 

f,i,, are discretized as ,

gi  can be found as  by 

minimizing the error of discretization. This discretization

of conjugate variables, functions and their derivatives, with 

the characteristic functions of conjugate geometries is called 

2.1.  PDS-FEM: spatial discretization

　　　

the boundary value problem of linear elastic continuum, 

boundary value problem is posed as 

Here, cijkl is heterogeneous linear elasticity tensor,  is the 

density, bi and  are the body forces and displacements 

prescribed in the body B  and on the boundary ,

displacements, strain ( ij) and stress ( ij) to transform the 

variational problem.

I lead 

　　　

ui and body forces bi  are discretized with

 a s   a n d .  .

The variables associated with derivatives ij, ij and cijkl are 

discretized in terms of  as ij ij ij

ij cijkl cijkl I and 

setting ij =0 and ij

ij ij ij  = cijkl kl  and ij bi uj ,

where

　　　  is unbounded along  it is straight

forward to evaluate with the aid of 

M.L.L. Wijerathne et al.,

bj

(a) (b)
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bi  and bi

can be obtained by suitably replacing thesuperscripts. 

Substituting these results to the discretized I and setting 

i u }, as 

　　　

points.

2.2.  Approximate Failure Treatment of PDS-FEM

　　　
of modeling cracks in real materials, in which cracks bends 

propagating cracks. Even though homogeneous material 

properties are assumed, forcing cracks to propagate along 

the hypo-Voronoi boundaries makes the numerical model to 

be heterogeneous with respect to material strength; hypo-

have a finite strength. Therefore, this treatment implicitly 

corresponds to the presence of local heterogeneity, like in 

real materials. 

　　　
in elastic tensor cijkl

broken under tension, it is modeled by setting cijkl = 0 in 

+ -, of the broken 

Voronoi block boundary , while cijkl is unchanged in the 

rest of the domain (see Fig. 2b). This changes the element 

of kij  is due to the fact that bi

contribution from the derivative of the Voronoi characteristic 

+ -.

　　　Here, we briefly summarize the changes in bi  due 

in bi  are ,    and   

to bi

bi  can be obtained by suitably replacing the superscripts. 

　　　The computational overhead associated with this 

FEM approaches like accommodating a new crack surface 

by introducing new nodes or enriching the test functions with 

Heaviside function. 

　　　

2.3.  Time integration

　　　
integration method like Newmark-beta, Verlet methods, 

symplectic, energy momentum preserving algorithms used 

in particle physics. These are higher order accurate, suitable 

for long time integrations, and can deal with steep potentials 

which would be useful in dealing with sudden changes in the 

system like dynamic crack propagation. 

　　　

can be can be interpreted as modeling a continuum with a 

collection of particles. The interactions of these particles are 

implemented a time integration algorithm from particle 

physics called Candy’s method (Candy et al (2009)). It’s 

forth order accurate symplectic and energy momentum 

preserving.

　　　

 with m  and , the kinetic energy and the 

potential energy can be written as 

and . Hamiltonian for this collection of

particles can be written as , where L = T - V

is the Lagrangian and the generalized momentum are

. Now the Hamiltonian for our set of
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particles can be written as 

　　　For our separable Hamiltonian, Candy’s method is 

given by 

where ,  , t is the time 

increment and k is an iteration counter. The constants  ak  and  

bk  for  Candy’s method are  a1=a4 =(2+21/3+2-1/3)/6, a2=a3=

(1-21/3-2-1/3)/6, b1 = 0, b2 = b4
1/3) and b3

2/3). 

1 = p(tn-1)
1 tn-

1)) at time tn-1 , state at time tn is given by p4 4, after four 

iterations. 

2.3.1.  Failure criterion for Dynamic extension

　　　The  dynamic  f r ac tu re  phenomenon  i s  no t 

dynamic loading, the crack propagation strongly depends on 

simulating dynamic brittle fracture, we adopted the Tuler-

Butcher (Nyoungue et al., 1995) failure criterion, which can 

1 0 1

0 tf is time for the fracture and 

Kf is the stress impulse for failure. In the absence of correct 

tf 0 and Kf for the material of interest, we 

0 Kf ad tf

crack patterns. 

3.  Shock wave lithotripsy as an example of 3D 

dynamic PDS-FEM

　　　In this section, we present the successful regeneration 

kidney stones by focusing an ultrasonic pressure pulse onto 

the stones. By repetitively applying an ultrasonic pulse, the 

stone is broken into small enough pieces so that they can 

the main treatment for kidney stones, presently (Robin et 

al., 2005; Zhou et al., 2002). Irrespective its long history, 

the mechanism of stone fragmentation has not been well 

are not much different from the early 80’s design (Xi et 

al., 2001; Robin et al., 2005; Oleg et al., 2007; Zhou et al., 

2002). Ray tracing and high speed photoelasticity have 

been used to locate the possible high stress regions (Xi et 

al., 2001). However, these methods cannot be used to study 

the crack evolution under dynamic stress fields in kidney 

are significantly important on its future developments. To 

fragmentation has been reported, to date.

　　　

M.L.L. Wijerathne et al.,

samples (source Xi et al., 2001)

(a) (b)
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suggest referring the original paper for details. In their 

induced in water due to the ultrasonic pulse is shown in Fig. 

3a. The induced pressure pulse in water consists of initial 

short and high intense compressive phase and a long and low 

intense tensile phase. 

　　　One of the interesting results reported in Xi et al. 

(2001) is the T-shaped fragmentation of a cylindrical sample 

as shown in Fig. 3b. Figure 4 shows the geometric details 

of the numerical model used for simulating this cylinder 

of radius 7mm and length 12.7mm is immersed. The water 

domain surrounding the cylindrical sample is modeled by 

table 1. The spatial variation of the water pressure pulse has 

been observed not to change appreciably in the vicinity of 

the sample. Therefore, a plane pressure wave pulse is used 

as the input to the simulation by applying the pressure pulse 

4. In order to correctly capture the stress waves generated by 

discretized to nearly 6 million tetrahedral elements. 

　　　Figure 5 shows some snap shots of water pressure 

and yy components in the solid. Figure 5a shows the 

compressive phase of the incoming pressure pulse. Once the 

to moves ahead of water pressure pulse (see Fig. 5b), since 

the Vp

creates shock waves in water (which are not clear in these 

that of water. The induced shear waves in solid moves almost 

circular shape of the reflecting surface, leading to increase 

in amplitude of the focusing tensile pressure pulse. This 

generates, large tensile region as shown in Fig. 5d and 5e. 

This high stress region sparks the initial crack. 

　　　
samples of various sizes have been observed to break into 

pressure pulses, the cylindrical sample of the numerical 

simulation broke into three parts with T-shaped crack 

profiles (see Figure 6). Figure 6 shows the crack profile of 

the numerical simulation at several sections. In Figure 6, 

the number at the bottom right of each sub-Figure indicates 

the distance from the center of the cylinder (+ and - stands 

rectangular prism reported in (Xi et al., 2001). 

　　　Compared with most  of  the dynamic crack 

M.L.L. Wijerathne et al.,
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the solid body does not undergo any global large enough 

there are no macroscopic initial cracks. The fragmentation is 

completely due to interference of high intense stress waves 

which are responsible for both the initiation and propagation 

of cracks. The successful reproduction of the crack patterns 

problems.

4.  Concluding remarks

　　　

is a great tool for crack propagation simulations of large 

phenomena like concrete wall failure under tsunami wave 

impact, shear crack propagation on pre-known surfaces, etc.. 
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