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3D dynamic crack propagation analysis with PDS-FEM

M.L.L. Wijerathne'*, Hide Sakaguchi', Kenji Oguni?, Muneo Hori’

This paper briefly explains a recently developed numerical technique called PDS-FEM and its dynamic extension. PDS-
FEM is a simple and efficient numerical technique for modeling propagation crack in brittle materials. The discretization scheme
used in this new numerical technique is called particle discretization scheme (PDS). PDS uses characteristic functions of Voronoi
and Delaunay tessellations to discretize function and its derivatives, respectively. The uses of non-overlapping shape functions
facilitate simple and numerically efficient failure treatment. We considered the dynamic extension of PDS-FEM and simulated
several real life experiments, to illustrate the potential of simulating dynamic crack propagation of problems requiring fine domain

discretizations.
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3D dynamic crack propagation analysis with PDS-FEM

1. Introduction

Some crack propagation problems require large
scale simulations due to its nature; large domain of analysis,
necessity of fine domain discretization due to the nature of
the problem, necessity of Monte-Carlo simulations due to
stochastic nature of the problem, etc.. A numerical method
with efficient failure treatment is necessary for such large
scale simulations. The existing continuum approaches,
like cohesive traction methods, node splitting methods and
element/nodal enrichment methods, involves numerically
intensive failure treatments. A recently introduced numerical
method called PDS-FEM (Hori ez al (2005) and Wijerathne
et al (2009)) provides simple and numerically efficient failure
treatment, without adding new nodes or changing the mesh
configuration. The failure treatment of PDS-FEM is light
enough to apply to crack propagation problems requiring
large scale simulations.

In this paper, we briefly explain the formulation
of PDS-FEM and its dynamic extension. Simulation of
dynamic crack propagation is of great practical importance
in many fields of studies and challenging. To illustrate the
potentials of the dynamic extension of PDS-FEM, we present
a simulation of stone breaking in shock wave lithotripsy
(SWL). In layman’s term, SWL is how the doctors break
kidney stones using external ultrasonic pulse. This method
has been used nearly 30 years, but how the kidney stones
break due to ultrasonic pulse induced water shock waves is
still not well understood. We successfully simulated some
of the crack patterns observed in SWL experiments. This
problem is complicated since the initiation and propagation
of the cracks are completely due to interfering stress waves
in the solid and it involves very high strain rates (of the
order 10* per second), shock waves, solid fluid interaction,
etc.. According to the leading international researchers on
SWL, this is the first time to reproduce such crack patterns.
This pioneering result is a clear indication of the potentials
of dynamic PDS-FEM in solving real life problems. In
addition, we applied dynamic PDS-FEM to simulate failure
of concrete wall under tsunami wave impact, etc..

We use the Cartesian coordinates and index
notation, i.e., x; stands for the i" coordinate. The summation

convention is employed, and f,; stands for the derivative

af(x)/axi.
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2. PDS-FEM for modeling tensile failure in
brittle solids

PDS-FEM is based on a non-conventional
discretization scheme called particle discretization scheme
(PDS), which uses a set of non-overlapping characteristic
functions of two conjugate geometries Voronoi and Delaunay
tessellations to discretize functions and its derivatives.
Solving growing crack problems with PDS-FEM is straight
forward and numerically efficient since the discontinuities
in the discretized displacement field can be utilized to model
displacement discontinuity across the crack surfaces, without
introducing new nodes to accommodate the extending crack
surface. One may doubt the accuracy of the solution of PDS-
FEM since it uses discontinuous characteristic functions to
model a smooth displacement field. It is straight forward to
show that the stiffness matrix of PDS-FEM coincides with
that of FEM with linear elements. Hence, the accuracy of
nodal displacements of PDS-FEM is the same as that of FEM
with linear element. In the rest of this document, only a brief
description of PDS and PDS-FEM are given for the sake of
completion and we refer to Hori ez al. (2005) and Wijerathne
et al (2009) for details.

Particle discretization scheme (PDS) uses a set of
non-overlapping characteristic functions of two conjugate
geometries (Fig. 1) to discretize functions and its derivatives.
Using the set of characteristic functions ¢*(x) of hypo-

Voronoi diagrams {®“(x)}, PDS discretize a function
fdefined over a domain as f, = 2 f“¢“, where the range of

a is 1 to the number of hypo-Voronoi blocks. For a given

set of mother points {x"}, hypo-Voronoi diagrams are

mother points

— — - Voronoi tessellation
—— Delaunay tessellation

Figure 1: Conjugate geometries used in PDS
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obtained by moving the common meeting point of
neighboring three Voronoi diagrams to the center of
gravity of the triangle formed by the three mother points

of theVoronoi diagrams. Minimizing the discretization

error J'(f('x)—f"¢"(x))2dv, the coefficients /* can be
B

1
(I)(I

as f* = J'f(x)ds. When it comes to the evaluation

@

of derivatives of the discretized function f,, the use
characteristic functions results in unbounded derivatives
eventually leading to problems of variational formulations.

To circumvent these problems, an average value for

A

S :T is calculated using the Delaunay tessellation,
X,

y# , associated with Voronoi diagrams. Here, the range

of index f is from 1 to the number of Delaunay triangles.

When the derivatives, f;,, are discretized as g; = Zg,.ﬁ‘l"”,
. 1 o
the coefficients g’ can be found as g, = WZ J(p,,. ds by

o ph
minimizing the error of discretization. This discretization

of conjugate variables, functions and their derivatives, with
the characteristic functions of conjugate geometries is called
PDS.

2.1. PDS-FEM: spatial discretization

Implementation of PDS in FEM framework to solve
the boundary value problem of solid is called PDS-FEM.
We consider the implementation of PDS-FEM to solve
the boundary value problem of linear elastic continuum,

assuming infinitesimal deformations. As customary, the

boundary value problem is posed as

{(CU‘H(X)uk.](x))’;+b] () =pX)ii;(x) in B )

1,(x) =u,(x) ondB.

Here, ¢y, is heterogeneous linear elasticity tensor, p is the
density, b, and u; are the body forces and displacements
prescribed in the body B and on the boundary 0B,
respectively. PDS-FEM uses the following functional of
displacements, strain (¢;) and stress (o;) to transform the
above strong form the governing equations to an equivalent

variational problem.
1 1.
I(ue,0)=| i =0y (8, —u, ) +bu, = piii, ds - (2)
B

It is straight forward to show that the first variations of / lead
to the strong form given by Eq. 1.

Applying the PDS, the linear elastic domain B
is discretized with Voronoi and Delaunay tessellation.

Displacement field #; and body forces b, are discretized with

B (0} as w(0)=Yu'¢*(x) and. b(x)=50¢"(x).

The variables associated with derivatives o,
discretized in terms of {y”} as 0,(x)=Y, 6,/V/(x) , £,(x) = 3.
e/yP(x) and ¢;(x)=Y. ;v (x). Substituting these into / and

setting 0/0;/=0 and 0//0c,/'=0, the discretization coefficients

g, and ¢, are

&/ and o,/ are determined as o,/ = c;,/¢,/ and &/ = Y b/ uf,
where
b= [0S s )
i \PB >j e

b

Although ¢.% is unbounded along d®“*, it is straight

forward to evaluate 5! = ﬁem(xf —x;) with the aid of

Q
(b)

Figure 2: Evaluation of 5/ and approximate treatment of a crack growing along Voronoi block boundary PG
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Gauss theorem (see Fig. 2a). Expressions for b and b/’
can be obtained by suitably replacing thesuperscripts.
Substituting these results to the discretized / and setting

Olou = 0, we obtain a linear set of equations for {u"}, as

Zk:"/u;’/ b 0% =m®ii?, 4

where the element stiffness matrix

kg = WPl bl ©))

Eq. 4 is the governing matrix equation of FEM
implemented with PDS, i.e., PDS-FEM. It is straight forward
to show that the element stiffness matrix of PDS-FEM is
exactly equal to that of FEM with linear triangular elements.
Therefore, PDS-FEM has the same accuracy of FEM at nodal

points.

2.2. Approximate Failure Treatment of PDS-FEM

PDS-FEM seeks for a numerically efficient treatment
of modeling cracks in real materials, in which cracks bends
and kink instead of following smooth paths. It uses existing
discontinuities in the discretized displacement field to model
propagating cracks. Even though homogeneous material
properties are assumed, forcing cracks to propagate along
the hypo-Voronoi boundaries makes the numerical model to
be heterogeneous with respect to material strength; hypo-
Voronoi blocks have infinite strength while their boundaries
have a finite strength. Therefore, this treatment implicitly
corresponds to the presence of local heterogeneity, like in
real materials.

The approximate treatment is formulated as changes
in elastic tensor ¢;;;. When a Voronoi block boundary is
broken under tension, it is modeled by setting c;;, = 0 in
an infinitesimally thin neighborhood, GP*P", of the broken
Voronoi block boundary , while c;;, is unchanged in the
rest of the domain (see Fig. 2b). This changes the element
stiffness matrix Eq. (5) of the broken element. This change
of k,* is due to the fact that b/, given by Eq. (3), drops the
contribution from the derivative of the Voronoi characteristic
function that appears in GP'P".

Here, we briefly summarize the changes in 5/* due
to the crack growing in a Delaunay triangle (see Fig. 2b).

When GP is regarded as the new crack surfaces, the change
in b/ are AbP' =52 (2x’—x'—x'), ABP*=-Ab!' and
4 6 7 7 7

AbP*=0. All it needs to model a crack along GP is
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recomputing the element stiffness matrix with these changes
to b/* and updating the global stiffness matrix. For the cases
when GQ or GR are the new crack surfaces, the changes of
b/* can be obtained by suitably replacing the superscripts.

The computational overhead associated with this
approximate failure treatment is as small as recomputing
an element stiffness matrix and applying the changes to the
global matrix. Obviously, this approximate treatment of
PDS-FEM is numerically efficient compared to common
FEM approaches like accommodating a new crack surface
by introducing new nodes or enriching the test functions with
Heaviside function.

For the sake of simplicity, only the 2D case has been
explained in this short paper. Extension of PDS-FEM to
3D is straight forward with hypo-Voronoi diagram and the
associated Delaunay tessellation in 3D and extending the

range of subscripts from (1, 2) to (1, 2, 3), in Eq. 4 and 5.

2.3. Time integration

For the time integration of Eq. (4), any standard time
integration method like Newmark-beta, Verlet methods,
AVI, etc. can be applied. In addition, there is a rich set of
symplectic, energy momentum preserving algorithms used
in particle physics. These are higher order accurate, suitable
for long time integrations, and can deal with steep potentials
which would be useful in dealing with sudden changes in the
system like dynamic crack propagation.

Due to the non-overlapping shape functions used
in discretization process, the domain discretized with PDS
can be can be interpreted as modeling a continuum with a
collection of particles. The interactions of these particles are
defined by the stiffness matrix. We exploited this particle
representation of the discretized model of PDS-FEM and
implemented a time integration algorithm from particle
physics called Candy’s method (Candy et al (2009)). It’s
forth order accurate symplectic and energy momentum
preserving.

Denoting the mass and velocity of hypo-Voronoi

block ®* with m“ and #, the kinetic energy and the

. . N co
potential energy can be written as T(u)=52m“u:’u,“

1 S
and V(u)= 52/{,‘,’“ u/u . Hamiltonian for this collection of

particles can be written as H = pui,—L, where L=T-V
is the Lagrangian and the generalized momentum are

pr =0L/di, =m“u” . Now the Hamiltonian for our set of
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particles can be written as
1 . / /
H= EZ m il + k) ulu (6)
a

For our separable Hamiltonian, Candy’s method is

given by

ph=p" T+ (g A

q“ =p T +dPpFHA k=14,
where F(q)=-9V(q)/dq, P(p)=07(p)/dp , At is the time
increment and £ is an iteration counter. The constants g, and
b, for Candy’s method are a,=a,=(2+2'"*+2'7%)/6, a,=a=
(1-2"3-271%y/6, b, = 0, b, = b, = 1/(2-2"%) and b; = 1/(2-2%?).
When started with known conditions p' = p(7,.,), 4' = q(z,.
;) at time 7, , state at time 7, is given by p* and ¢, after four

iterations.

2.3.1. Failure criterion for Dynamic extension
The dynamic fracture phenomenon is not

instantaneous and it requires certain time. When subjected to
dynamic loading, the crack propagation strongly depends on
both the stress wave amplitude and the exposure time. For
simulating dynamic brittle fracture, we adopted the Tuler-
Butcher (Nyoungue et al., 1995) failure criterion, which can
be expressed as

i

J.(O'l —o)ldi>K,.

0
Here, 6, > 6, > 0 where o, is the maximum principal stress,
o, is a specific threshold stress, #,is time for the fracture and
K, is the stress impulse for failure. In the absence of correct

values of B, 7, 6, and K, for the material of interest, we

Pressure /( MPa)

S Time I fs)

(@)

assumed B = 2 and o,=14 MPa while some values for K, ad ¢,
are assumed such that they generate experimentally observed

crack patterns.

3. Shock wave lithotripsy as an example of 3D
dynamic PDS-FEM

In this section, we present the successful regeneration
of crack patterns observed in a shock wave lithotripsy (SWL)
related experiment, as an illustrative example of dynamic
PDS-FEM. Shock wave lithotripsy is the fragmentation of
kidney stones by focusing an ultrasonic pressure pulse onto
the stones. By repetitively applying an ultrasonic pulse, the
stone is broken into small enough pieces so that they can
be passed naturally. First introduced in early 80’s, SWL is
the main treatment for kidney stones, presently (Robin et
al., 2005; Zhou et al., 2002). Irrespective its long history,
the mechanism of stone fragmentation has not been well
understood and fundamentally the modern SWL instruments
are not much different from the early 80’s design (Xi et
al., 2001; Robin et al., 2005; Oleg et al., 2007; Zhou et al.,
2002). Ray tracing and high speed photoelasticity have
been used to locate the possible high stress regions (Xi et
al., 2001). However, these methods cannot be used to study
the crack evolution under dynamic stress fields in kidney
stones. Numerical studies of SWL stone fragmentation
are significantly important on its future developments. To
authors’ knowledge no successful simulation of SWL stone
fragmentation has been reported, to date.

We successfully applied the dynamic extension of

(b)

Figure 3: A typical pressure pulse induced in water due to the ultrasonic pulse in SWL (source Zhou et al., 2002) and T-shaped cracked plaster of Paris

samples (source Xi et al., 2001)
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S0mm S0mm

v

—>
h

50mm

A

Figure 4: ConFiguration of the numerical model

(d) (©

Table 1: Material properties used in SWL simulation

Plaster of Paris Water
Young’s modulus /(GPa) 8.875
Poisson’s ratio 0.228
Bulk modulus /(GPa) 2.2
P wave velocity /(nvs) 2478 1483
S wave velocity /(1vs) 1471 0

Figure 5: Time evolution of pressure in water and c,, in the solid sample. Red stands for tension and blue for compression
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PDS-FEM to simulate an interesting set of fragmentation
experiments reported in Xi et al. (2001). Here, we briefly
explain the experiments reported in Xi et al. (2001) and
suggest referring the original paper for details. In their
experiments, different shaped samples made of plaster of
Paris are immersed in a water tank and an ultrasonic pressure
pulse is focused onto the sample. A typical pressure pulse
induced in water due to the ultrasonic pulse is shown in Fig.
3a. The induced pressure pulse in water consists of initial
short and high intense compressive phase and a long and low
intense tensile phase.

One of the interesting results reported in Xi et al.
(2001) is the T-shaped fragmentation of a cylindrical sample
as shown in Fig. 3b. Figure 4 shows the geometric details
of the numerical model used for simulating this cylinder
fragmentation. A rectangular domain of 50 x 50 x 50mm is
considered to be filled with water and a cylindrical sample
of radius 7mm and length 12.7mm is immersed. The water
domain surrounding the cylindrical sample is modeled by
setting p = 0, where A and p are the Lame’s constants. The
material properties of water and plaster of Paris are given in
table 1. The spatial variation of the water pressure pulse has
been observed not to change appreciably in the vicinity of
the sample. Therefore, a plane pressure wave pulse is used
as the input to the simulation by applying the pressure pulse
profile shown in Fig. 3a on the blue color plane shown in Fig.
4. In order to correctly capture the stress waves generated by
short compression phase of nearly 1us period, the model is
discretized to nearly 6 million tetrahedral elements.

Figure 5 shows some snap shots of water pressure
and o,, components in the solid. Figure 5a shows the
compressive phase of the incoming pressure pulse. Once the

pressure pulse hit the solid, the induced P-wave font starts

to moves ahead of water pressure pulse (see Fig. 5b), since
the V, of plaster of Paris is larger than that of water. This
creates shock waves in water (which are not clear in these
small Figures). As observed in the high speed photoealstic
experiments, the P-wave front become broader compared to
that of water. The induced shear waves in solid moves almost
at the same sped of water pressure waves. When the solid
P-wave reflects from the distal surface, it undergoes a phase
change and becomes tensile. Also, it starts to focus due to the
circular shape of the reflecting surface, leading to increase
in amplitude of the focusing tensile pressure pulse. This
focusing and interference with the 4us lagging tensile phase
generates, large tensile region as shown in Fig. 5d and Se.
This high stress region sparks the initial crack.

When exposed to multiple pressure pulses, cylindrical
samples of various sizes have been observed to break into
three parts with T-shaped crack profiles. The experimentally
observed T-shaped crack profiles are shown in Fig. 3b. Just
as observed in the experiment, when exposed to multiple
pressure pulses, the cylindrical sample of the numerical
simulation broke into three parts with T-shaped crack
profiles (see Figure 6). Figure 6 shows the crack profile of
the numerical simulation at several sections. In Figure 6,
the number at the bottom right of each sub-Figure indicates
the distance from the center of the cylinder (+ and - stands
for the left and right). As can be clearly seen, PDS-FEM
successfully reproduces the crack patterns observed in SWL
experiments. Also, the distance to the vertical crack from
the distal surface is nearly equal to that observed in the
experiment. Similarly, we reproduced the crack patterns for
rectangular prism reported in (Xi et al., 2001).

Compared with most of the dynamic crack

propagation phenomena triggered by static loading this SWL

Figure 6: Numerically simulated crack patterns. The number stands for the distance from the center.
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experiment is complicated. Unlike in many other examples,
the solid body does not undergo any global large enough
deformation to generate sufficient stress level for failure and
there are no macroscopic initial cracks. The fragmentation is
completely due to interference of high intense stress waves
which are responsible for both the initiation and propagation
of cracks. The successful reproduction of the crack patterns
of these SWL experiments is a clear indication of the
potential of PDS-FEM to simulate complicated 3D dynamic

problems.

4. Concluding remarks

This paper presents a brief introduction to PDS-
FEM and its dynamic extension. Because of its simple
and numerically efficient failure treatments, PDS-FEM
is a great tool for crack propagation simulations of large
scale problems. With a parallel code, we simulated several
experimentally observed crack patterns observed. The
successful reproduction of crack patterns of SWL experiment,
briefly explained in this paper, is a clear indication of the
potentials of PDS-FEM. We are expecting further develop
and apply PDS-FEM to understand various fracture involved
phenomena like concrete wall failure under tsunami wave

impact, shear crack propagation on pre-known surfaces, etc..
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