431

水平な加熱平板から空気への自然対流熱伝達の促進

Heat Transfer Enhancement of Natural Convection from Upward-Facing Horizontal, Heated Plate to Air

正

ご

正

二

は

三

に

三

角

利之

(

鹿児島高専)

学

斉藤

久和

(

豊橋技科大・院)

こ

二

第

、

<br/

Kenzo KITAMURA, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi Hisakazu SAITO, Toyohashi University of Technology Toshiyuki MISUMI, Kagoshima National College of Technology

Key Words: Heat Transfer, Heat Transfer Enhancement, Natural Convection, Extended Heat Transfer Surface, Grid Fins

1. 緒言

自然対流を利用した冷却法は、可動部が無いため騒音や 振動が発生せず、信頼性が高いなどの長所を有している。 しかし、強制対流による冷却に比べ除熱能力が低いことか ら、主として低発熱源の除熱、冷却に利用が限定されてい る。この自然対流の冷却能力が適当な手段により向上でき れば、今まで強制対流冷却に頼らざるを得なかった様々な 発熱機器の除熱、冷却が自然対流により行えるようになり、 機器の信頼性や設置環境の向上に繋がるものと期待される。 このことから、我々の研究室ではここ数年来、自然対流の 伝熱促進法、とくに外部動力の投入を必要としない受動的 伝熱促進法の開発を試みて来た。その結果、例えば図1に 示すように、水平な基板伝熱面上に適当な大きさの格子を 接着してやると、伝熱面により加熱された高温流体が格子 により排除され、入替わって低温周囲流体が基板付近に流 入する一連の流れが生じ、この流れによって基板からの伝 熱が顕著に促進されることを見いだした(1)。さらに、この 格子を高熱伝導率の素材で作成し、格子がフィンとしても 機能するようにすれば、より高い伝熱促進効果が期待でき る。そこで、この格子フィン付き伝熱面を試作し、伝熱性 能試験を行ったところ、試作伝熱面は同一フィン表面積、 高さの従来型プレートフィン付き伝熱面よりも良好な伝熱 性能を示すことを明らかにした(2)。

しかし、著者らの先の実験^(1,2)は、常温の水を試験流体と したもので、多くの実用伝熱機器では水よりむしろ空気を 冷却材として利用するのが一般的である。そこで、著者ら は先に空気を試験流体とした場合について、伝熱性能試験 を行った。その結果、格子を伝熱面上に設置することによ り、水と同様、空気に対しても顕著な伝熱促進効果が得ら れることを確認した⁽³⁾。しかし、実験に用いた格子のサイ ズや高さが限られていたため、最も高い伝熱促進効果が得 られる格子の寸法、高さについては不明であった。そこで、 本研究では格子のサイズ、高さを前報よりも更に広い範囲 で変化させた場合について伝熱実験を行うことにより、こ れらの最適値を探ることにした。また、併せて伝熱面基板 を垂直にした場合についても実験を行い、水平伝熱面の場 合の結果と比較、検討した。

2. 実験装置および測定

本研究で用いた実験装置の概略を図1に示す。伝熱面の 構成は前報⁽³⁾のそれとほぼ同様であり、等熱流束および準 等温条件で加熱した2種類の伝熱面を製作・使用した。前 者は可視化実験に、また後者は伝熱性能試験に用いた。い ずれの伝熱面も寸法は360x360mm²である。可視化実験 用の等熱流束伝熱面は厚さ20mmの硬質発泡スチロール 板表面にステンレス箔ヒータを貼り付け、通電加熱したも

ので、このヒータ表面に感温液晶シートを接着した。一方、 伝熱実験用の準等温加熱伝熱面は、上述の箔ヒータ表面上 に厚さ 3mm の銅板を貼り付けたものである。この銅板裏 面 22 箇所の地点に熱電対を接着し、壁温測定を行ったと ころ、壁面および周囲流体の温度差 Δ T (=Tw-T_w) = 30K の場合で、壁温のばらつきは±1.5K以内であり、伝熱面は ほぼ等温とみなせる。また、表面からの放射熱損失を極力 低減するために、実験を行う毎に伝熱面をバフ研磨した。 また、別途放射伝熱の影響を調べるために、格子をつや消 し黒塗料で塗装した場合についても実験を行った。基板伝 熱面上に設置する格子には低熱伝導率の厚紙と、高熱伝導 率の銅板の2種類を用いた。紙製格子については、格子ピ ッチpを40,60,90および120mmの4種類、高さHを5,10 および 20mm の3種類変化させた。また銅製格子について は、p=40mm で H=10mm、および p=60mm で H=10, 20mm の3種類を作成し、基板面にはんだ付けした。これ ら格子付伝熱面の両側面には側板を設け、側方からの流れ の流入を防いだ。以上の試験伝熱面を床面積 0.9x0.9m²、 高さ 0.9m の測定室の床面中央に水平に設置した。

Fig.1. Test plate with grids and experimental apparatus

3.実験結果および考察

3.1 伝熱面表面温度分布の可視化 まず、格子によって基 板伝熱面からの伝熱が促進される様子を、感温液晶を用い た伝熱面表面温度の可視化により調べてみた。その代表的 な結果を図2に示す。図は等熱流束条件で加熱した平滑伝 熱面および伝熱面上に *p*=90mm、*H*=10mmの紙製格子を 接着した場合の可視化結果を比較したものである。まず、 図2(a)の平滑伝熱面の場合であるが、伝熱面の端部から少 し離れた位置に斑点状の模様が生じているのが分かる。こ の模様の部分は低温で、伝熱面端部から流入した周囲流体 が伝熱面からはく離する際に生じる。いま伝熱面は等熱流

日本機械学会東海支部「豊橋地区講演会」講演論文集('02.8.24) No.014-02

東条件で加熱されているので、この低温模様部分では熱伝 達率が局所的に高くなっていることを示している。一方、 これ以外の伝熱面表面は高温となっている。つぎに格子を 伝熱面上に設置した図 2(b)では、それぞれの格子内に低温 (高熱伝達率)の斑点模様が生じていることが分かる。こ の可視化結果から、伝熱面上に適切な大きさの格子を設置 することにより、基板まわりの伝熱が顕著に促進されるこ とが明らかである。

しかし、上の可視化で 3.2 格子付伝熱面の平均熱伝達率 は定量的にどの程度伝熱が促進されているか不明である。 そこで本研究では、熱電対を用いて基板伝熱面の熱伝達率 を定量的に測定することにした。この熱伝達率を等熱流束 伝熱面について測定するのは極めて困難である。そこで、 等熱流束伝熱面の替わりに等温加熱伝熱面を用いて伝熱面 全体の平均熱伝達率 h を測定することにした。なお、この 平均熱伝達率 hは、以下のように定義した。

上式の q conv は対流熱流束であり、次式により求めた。

 $q_{conv} = q_{total} - q_{cond} - q_{rad} \cdots \cdots \cdots \cdots \cdots (2)$ ここで q total 、 qcond 、 qrad はそれぞれ、 ヒータで発生した ジュール発熱量を基板表面積で除した表面熱流束、熱伝導 により伝熱面裏面へ漏洩する熱流束および伝熱面表面から の放射熱流束を示す。なお、基板伝熱面上に銅製格子を接 着した場合には、格子が拡大伝熱面(フィン)として機能 するが、本研究では、この格子を有効伝熱面積に算入せず に、基板表面積から上の q total を求めた。従って後述する 銅製格子付伝熱面の平均熱伝達率は、いわゆる見かけの平 均熱伝達率を表していることを注意しておく。

さて、まず紙製格子付き伝熱面の平均熱伝達率を測定し た結果の一例を図3に示す。この図は、ピッチ p =90 mm 一定で、高さ Hの異なる格子を伝熱面に接着した場合の結 果を示したもので、横軸には伝熱面と周囲流体との温度差 $\Delta T (T_w - T_\infty)$ をとっている。いずれの温度差 ΔT におい ても格子付伝熱面の熱伝達率は平滑伝熱面より高くなり、 とくに格子高さ H =10mm では約 30%程度高い熱伝達率 が得られている。このようにまばらな間隔で紙製の格子を 伝熱面に接着するだけで顕著な伝熱促進効果が得られる結 果は注目に値する。

つぎに紙製格子の代わりに p=60mm、H=20mm の銅製 格子を基板伝熱面にはんだ付けした場合について、見かけ の熱伝達率を測定した結果を図4に示す。図には比較のた め、この銅製格子の表面につや消し黒塗料を塗布した場合 および同一寸法の紙製格子を接着した場合の熱伝達率も併 記した。この図から、つや消し黒塗料を塗布した銅製格子 付伝熱面の熱伝達率が最も高く、次いで磨いた銅製格子付 伝熱面、紙製格子付伝熱面の順に低下していくことが分か edge edge center edge center

(b) plate with paper grid (a) smooth plate Fig.2. Visualized surface temperatures of the test plates $(q_w = 303 \text{W/m}^2, T_\infty = 16.8 \text{°C})$

る。とくに黒色塗料を塗布した格子付伝熱面の平滑面に対 する伝熱促進率は最大約3倍であり、磨いた銅製格子付伝 熱面の伝熱促進率最大約2.3倍よりもかなり大きくなった。 これは、つや消し黒塗布面(放射率 ε =0.95)、と磨いた銅板 面(ε=0.03)からの放射伝熱量の差に基づくもので、とく に空気の場合には、自然対流による対流伝熱量を促進する だけでなく、放射伝熱を出来る限り増大させる工夫が重要 であることを示している。

なお、本研究では銅製格子付伝熱面を水平上向きだけで なく垂直に設置した場合についても伝熱性能試験を行って いる。その結果によれば、本実験範囲内で p=90mm、H=20 mm の銅製格子付伝熱面で最も高い熱伝達率が得られ、平 滑面に対する伝熱促進率は最大約 1.7 倍となった。この事 実は、本研究で提案する格子付伝熱面が水平、垂直のいず れの場合にも伝熱促進が可能なことを示しており興味深い。

4. 結言

本研究では水平上向き加熱平板から空気への自然対流熱 伝達を促進する方法として、伝熱面基板上に格子を接着す る方法を提案し、最適な格子サイズ、および格子によりど の程度高い伝熱促進率が得られるかを実験により調べた。 その結果、本実験範囲内において、p=40mm、H=10mm の紙製格子、p=60mm、H=20mmの銅製格子をそれぞれ 基板伝熱面上に接着した場合に、最も高い伝熱促進効果が 得られ、平滑面に対する伝熱促進率はそれぞれ 1.3 倍、2.3 倍となった。また、格子の放射率を高くすることにより、 更に高い伝熱促進率が得られることを明らかにした。本実 験結果は、コンパクトで高性能な自然対流伝熱面の開発に 資するものと考えている。

文献 (1) 北村・ほか2名、機論 60-569、B(1994),270 (2) 北村・ ほか2名、機論、61-582、B(1995)、659.(3)北村・ほか2名、 機械学会 2000 年度年次大会講演論文集、Vol. IV (2000)、515.

Fig. 3. Heat transfer performance of non-conducting grids

日本機械学会東海支部「豊橋地区講演会」講演論文集('02.8.24) No.014-02