443

小型溶融塩炉の動特性に関する研究 (報1:数値解析プログラムの作成) A study on dynamic characteristics of a small molten-salt reactor

権田晋一・豊橋技科大 大学院	三田地紘史・豊橋技科大	山本高久・豊橋技科大
Shinichi Gonda, Toyohashi Univ. of Tech.	Koshi Mitachi, Toyohashi Univ. of Tech.	Takahisa Yamamoto, Toyohashi Univ. of Tech.

島津洋一郎・北大 Yoichiro Shimazu, Hokkaido Univ. 鈴木伸之・北大 大学院 Nobuyuki Suzuki, Hokkaido Univ.

Key Words: Molten-salt reactor, Dynamic characteristics of reactor; Precursor, Neutron flux; Numerical analysis

論文要旨

溶融塩炉の動特性を精度良く把握するための基礎として、核反応、流動、熱移動が相互に 干渉し合う体系を解析する計算プログラムを作成し、溶融塩炉の概略特性を推定した。

1. 緒言 溶融塩炉では核燃料自体が炉内を流動するので、 中性子発生源が炉内を移動する。このため燃料塩の流動が中 性子束分布に影響を及ぼす可能性があるが、中性子束分布が 変われば、熱発生率分布も変わり、炉内の温度分布も変わる 可能性がある。一方、軽水炉では燃料ピン温度が半径方向に も軸方向にも大きく変わるので、これが核反応率に大きく影 響する事が知られている。溶融塩炉の場合にも、燃料塩およ び黒鉛減速材の温度分布の変化が核反応率分布を変え、中性 子束分布したがって動特性にも影響を及ぼすと予想される。

このような事から本研究では、溶融塩炉の動特性を精度良く把握するための基礎として、核反応、流動および熱移動が 相互に干渉し合う体系を計算するための解析プログラムを 作成する事とした。

2. 解析の方法 解析の基礎式は、高速中性子束 ψ および 熱中性子束 ϕ に対する2群拡散方程式⁽¹⁾、1群-6群の遅発中 性子の先行核密度 Ci (i=1-6) に対する収支式、燃料塩温度 T_F および黒鉛温度 T_G に対するエネルギー式であり、それぞれ 以下のように表される。

$$\frac{1}{v_1}\frac{\partial\psi}{\partial t} = D_1\nabla^2\psi - (\Sigma_{a1} + \Sigma_{12})\psi + (1 - \overline{\beta})\frac{\nu}{k_{eff}}(\Sigma_{f1}\psi + \Sigma_{f2}\phi)$$
(1)

$$\frac{1}{v_2}\frac{\partial\phi}{\partial t} = D_2 \nabla^2 \phi - \Sigma_{a2} \phi + \Sigma_{12} \psi$$
⁽²⁾

$$\frac{\partial C_i}{\partial t} + u \frac{\partial C_i}{\partial r} + w \frac{\partial C_i}{\partial z} = \beta_i \frac{v}{k_{off}} (\Sigma_{f1} \psi + \Sigma_{f2} \phi) - \lambda_i C_i$$
(3)

$$k_{eff} = \frac{\iiint (v\Sigma_{f1}\psi + v\Sigma_{f2}\phi)dV}{\iiint (\Sigma_{.1}\psi + \Sigma_{.2}\phi)dV - \iint (D,\nabla\psi + D_{2}\nabla\phi)dS}$$
(4)

$$\rho_F c_F \left(\frac{\partial T_F}{\partial t} + u \frac{\partial T_F}{\partial r} + w \frac{\partial T_F}{\partial z} \right) = \lambda_F \nabla^2 T_F + q_F + q_{GF}$$
(5)

$$\rho_{G}c_{G}\frac{\partial I_{G}}{\partial t} = \lambda_{G}\nabla^{2}T_{G} + q_{G} - q_{GF}$$

$$t \in \mathcal{L},$$
(6)

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2}$$
(7)

これ等の式にコントロールボリューム法を適用して離散 化する。拡散項には中心差分法を、対流項にはハイブリット 法、また、時間項には純陰解法を用いた。数値解析では、中 性子束、中性子実効増倍係数 k_{eff} 先行核密度,温度などが 一定になるまで SOR 法により繰り返し計算を行い、収束解 を求めた。 なお,発生中性子数 ν ,先行核の収率 β_i ,崩壊定数 λ_i の 値は核計算コード SRAC⁽²⁾より取り込み用いた。核分裂断面 積 Σ_{fl} , Σ_{f2} ,吸収断面積 Σ_{al} , Σ_{a2} ,拡散係数 D_l , D_2 などは 温度に依存して変化する。これ等の値は、予め SRAC により 温度で化範囲内の数点の値を求めておき、炉内各領域の平均 温度に応じて、これら数点を基点として直線補間して求めた。 炉内の燃料塩の速度分布は、予め別プログラム⁽³⁾で求めてお き、入力データとして与えた。

結果と考察

3-1 SRAC95 との比較 本解析プログラムおよび SRAC95 を用いて、Fuji-12 の炉心性能値⁽⁴⁾を求めて見た。炉 内の温度はいずれも均一に 900K としている。表1に比較す るように、本プログラムの結果は、中性子束を2群とし、炉 内はr方向に 13 分割、z方向に 24 分割している。予備的な 粗い計算であるが、詳細な SRAC に近い結果が得られている。 中性子束分布では、熱群は SRAC に完全に一致するが、高速 群に多少のズレが見られた。格子分割数などで改善の余地が あるものの、本解析プログラムは妥当な結果を与えると考え られるので、以下に Fuji-12 の炉心特性に及ぼす各因子の影 響を調べてみる。

	Group No.	Grid No.	k _{eff}	$\alpha_{T}[1/T]$
SRAC	30	34×70	1.0231	-1.9×10^{-5}
Present study	2	13×24	1.0196	-1.8×10^{-5}

3-2 流れの影響 図1に中性子束分布に及ぼす流れの 影響を示す。流れの効果のみを見るため、計算では炉内を均 ーに900Kとし、また、炉内の燃料塩の流速はFuji-12の全出 力運転時の流速分布とした。この場合、燃料塩流量は 0.5532m³/sであり、炉中心軸の周囲では、約20cm/sの上方に

日本機械学会東海支部「豊橋地区講演会」講演論文集('02.8.24) No.014-02

向いた流れとなる。一点鎖線が流れの無い場合,実線が流れ のある場合で,炉中心軸に沿う中性子束分布である。中性子 束は下流側に少し歪んだ分布となった。

同じ条件に対して、図2、図3に遅発中性子の先行核密度 の分布を示す。燃料塩の流動により先行核は下流方向に流さ れ、流速の遅くなる上部プレナム付近に滞留する。この結果、 先行核密度の分布に大きな変化を引き起こす。 また、流動 の影響は6群先行核よりも、寿命の短い1群先行核の方に強 く現れる。この事は、1点近似炉(炉心内で中性子束および 温度が常に相似形に分布)を仮定した、島津・鈴木の解析結 果⁽⁵⁾にも示されている。

3-3 温度変化の影響 温度変化の及ぼす影響を見るために、炉内の流れを止め、燃料塩温度 T_Fおよび黒鉛温度 T_G を全出力運転時の温度分布(図中の T_Fと T_G)に固定して、 中性子束を求めてみた。図4に示すように、中性子束は高温 領域で減少し、低温領域で増加する。高温領域では、核分裂 反応が減少するが、一方、臨界計算では炉全体として熱発生 量が一定に保たれるので、核分裂反応領域が低温側に移行す る。図5に1群先行核密度の分布を示す。中性子束の移動、

Fig.5 Effect of reactor temperature on 1st-group precursor

従って先行核発生項の移動により,先行核密度分布も低温側 にわずかに移行する。

3-4 全出力運転時の状況 核反応,流動および熱移動を 相互に干渉させて,Fuji-12 の全出力運転の条件で計算してみ た。得られた中性子束分布および先行核密度分布を図6-図 8に示す。Fuji-12 炉心では中性子束は炉内温度分布に強く影 響され,一方,先行核密度は燃料塩の流動に影響される。

4. 結言 核反応,流動および熱移動の相互干渉を考慮で きる解析プログラムを作成した。その上で,小型溶融塩炉の 炉心特性の大略の変化傾向を求めてみた。本研究の結論は以 下のとおりである。

- 本解析プログラムは、核計算コード SRAC95 と同程度の 精度の結果を与えると予想される。
- (2) 燃料塩の流動により,遅発中性子の先行核は下流方向に 移動し,先行核密度の分布は大きく変形する。その結果, 中性子束は下流方向に膨らんだ分布となる。
- (3) 臨界状態の溶融塩炉では、高温領域の中性子束は減少し、 低温領域の中性子束は増加する。ただし、先行核密度の 分布は温度よりも流動の影響を強く受ける。

参考文献

- 1.J.R.ラマーシュ著,末武雅晴訳:原子核工学入門,幸書房 (1982)。
- 2. 奥村啓介, 金子邦男, 土橋敬一郎: JAERI-Data/Code 96-015 (1996)。
- 3. 三田地, 他3名: 熱工学シンポジウム前刷集 B5 (1993)。
- 4. 三田地, 他3名: 日本原子力学会誌, Vol.41, No.9, p.936 (1999)。
- 5. 鈴木, 島津: 原子力学会北海道支部講演会前刷集 (2000)。

日本機械学会東海支部「豊橋地区講演会」講演論文集('02.8.24) No.014-02

- 128 ---