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Abstract

Reversible cellular automata (RCA) such as lattice gas models are used for modeling physical phenom-
ena and they are also used for studying reversible computing processes. Due to power dissipation, it is
said that nano-scaled computing devices should perform their computing pcoresses in reversible man-
ner. Although reversible computing processes can be computation-universal, it is quite difficult to place
preferred initial configurations and advance computing. In this paper, we construct a three-dimensional
self-inspective self-reproducing reversible cellular automaton. It can self-reproduce various shapes in
three-dimensional reversible cellular space without dissipating any garbage and can be also used for

placing preferred shapes in reversible environments.
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1 Introduction

A reversible cellular automaton (RCA) is one of
the reversible computing models. Its global func-
tion is injective and every configuration has at
most one predecessor. Intuitively, it “remembers”
the initial configuration and one can reconstruct
its initial configuration from a configuration of
any time. So reversible property is a strong con-
straint and one cannot generate nor extinct signals
freely. Toffoli showed that there exist computation-
universal RCAs[11] and the BBM cellular automa-
ton (BBMCA), was introduced by Margolus[6]. It
is computation-universal and it has a direct relation
with a physically reversible and conservative com-
puting model (the Billiard Ball Model, BBM)[2].
The BBM has an important aspect that it is possi-
ble to compute any function without dissipation of
balls as garbage, thus, it is possible to construct a
computer that can computes with no energy dissi-
pation in principle[1].

But the fact does not mean any computing pro-
cess can be simulated effectively in reversible[8, 3].
It is very difficult to place a preferred initial configu-
ration and start computing on reversible computing
models. This problem is described as a restriction
of generation and extinction of signals in RCAs, and
synchronizing signals and distributing specific pat-
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terns on RCAs are also quite difficult. For exam-
ple, von Neumann’s (irreversible) self-reproducing
cellular automaton[10] generates and erases many
signals in its self-reproducing processes. This prob-
lem might have some relations with the difficulty
of constructing three-dimensional functional solid
nano-structures, because energy dissipation would
be a big problem on them.

So we constructed a simple self-reproducing RCA
based on a shape-encoding mechanism (SRg)[9] to
exhibit the possibility of such shape formation in
a reversible space. In SRg, self-reproduction can
be performed without garbage in two-dimensional
reversible cellular space.

In this paper, we extend SRg into three-
dimensional reversible cellular space. Even if its cel-
lular space is reversible, it can self-reproduce vari-
ous three-dimensional patterns without garbage dis-
sipation. In order to design an RCA we use a frame-
work of partitioned cellular automaton (PCA). In
the next section, first we define PCA.

2 Definitions

Partitioned cellular automaton (PCA)[7] is re-
garded as the subclass of standard cellular automa-
ton. Each cell is partitioned into the equal number
of parts to the neighborhood size and the informa-
tion stored in each part is sent to only one of the
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neighboring cells (Fig. 1). In PCA, injectivity of
global function is equivalent to injectivity of local
- function, thus a PCA is reversible if its local func-
tion is injective. Using PCA, we can construct a
reversible CA with ease.

A deterministic two-dimensional partitioned cel-
lular automaton (PCA) P is defined by

P= (2% (C,UR,D,L),p,(#,# #,#,#))

where Z is the set of all integers, C,U, R, D, L are
non-empty finite sets of center, up, right, down, left

parts of each cell, ¢ : Cx D x L xU x R —-

CxUxRxDxL is alocal function (Fig.2),
and (#,#,#,#,#) €E Cx U xRx D x L is a
quiescent state which satisfies p(#, #,#, #, #) =

(F. #, 4. #,#). ,

A configuration over C x U x Rx D x L is a
mapping ¢: Z2 — CxUx Rx D x L. Let Conf(C x
U x R x D x L) denote the set of all configurations
over C xU xRxD x L.

Conf(CxUxRxDxL)=
{clc:Z* > CxUxRxDxL}

Global function

®,4:Conf(CxUxRxD xL)
— Conf(CxUxRxD xL)

is defined by

$4(c)(z) = p(CENTER(c(z, ),
DOWN(c(z,y + 1)),

LEFT(c(z + 1,3)),

UP(c(z,y — 1)),

RIGHT(¢(z - 1,9)))

where CENTER (UP, RIGHT, DOWN, LEFT, re-
spectively) is the projection function which picks
out the center (up, right, down, left) element of a
quintuple in C x U x R x D x L. Tt has been proved
that P is reversible iff ¢ is one-to-one[7).

P is called a rotation-symmetric (or isotropic)
PCA iff (i) and (ii) hold.

() U=R=D=1L.

(ii) V{(c,u,r,d, 1), (c,u,r",dl')e C x U
if glc,d,liu,r) = (d,,r,d,0)
gle,r,d, Lu) = (d,U,v 7, d).

A deterministic three-dimensional partitioned cellu-
lar automaton (PCA) P; is also defined by

then

Py = (Z37(07U)RvD)L7F)B))<P37
(#. 4. #.4 #, #,#)

Local function ¢3 and global function are also
defined in the same way as in the two-dimensional
case.

Figure 1: Cellular space of PCA.
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Figure 2: Representations of a rule.

Figure 3: Domain and rage of local function in
three-dimensional PCA.

3 Self-reproduction in a two-

dimensional RPCA

3.1 Definition of SRy

In this section, we construct non-trivial self-
reproducing structures can be constructible in a
reversible cellular space. The idea of our model
is based on Langton’s sheathed Loop[5], and
to achieve more flexibility we introduced a self-
inspection method.

In the cellular space of SRg[9], encoding the shape
of an object into a “gene” represented by a com-
mand sequence, copying the gene, and interpreting
the gene to create an object, are all performed re-
versibly. By using these operations, various objects
called Worms and Loops can reproduce themselves
in a very simple manner.

The RPCA “SRg” is defined by

SRS = (Zy (Cy U) RaD’L)agv(#a#>#’ #7#))a
C=U=R=D=L={#++,—, AB,CD)}.

Hence, each of five parts of a cell has 8 states. The
states A, B, C and D mainly act as signals that
are used to compose “commands”. The states *, +,
and — are used to control these signals. The local
function g contains 765 rules. It is a one-to-one
mapping and rotation-symmetric.
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t=0 t=1
11+ [Yofrol = 2Y1|+[F1yo Command
F F F irst St?cond Operation
z5 ) signal | "signal
={+lysks|+-ly2 +4ys|+fc3 A A Advance the head forward
_ A B Advance the head leftward
A C Advance the head rightward
2iol4- Wik B A Branch the wire in three ways
+ B B Branch the wire in two ways
T3 (making leftward branch)
+Yafe)+[Y3 B C Branch the wire in two ways
(making rightward branch)

Figure 4: Signal transmission on a part of a simple Table 1: Six commands composed of A, B, and C.
wire (z;,y: € {A,B,C}).

t=0
+e[FBANA
3.2 Signal transmission on a Wire L.
A wire is a configuration to transmit signals A, bB, t=1
and C. Fig. 4 shows an example of a part of a simple —*[-*B[+A
(i.e., non-branching) wire. F
A command is a signal sequence composed of two
signals. There are six commands consisting of sig- t=2
nals A, B and C as shown in Table 1. These com- i
mands are used for extending or branching a wire. Kalra]
t=3
3.3 A Worm “AfrA
+
A Worm is a simple wire with open ends that are = i
called a head and a tail. It crawls in the reversible +efra
cellular space as shown in Fig. 5. Commands in Ealianle
Table 1 are decoded and executed at the head of
a Worm. That is, the command AA extends the t=95
head straight, while the command AB (or AC, re- A
spectively) extends it leftward (rightward). On the Xaltaalt-
other hand, at the tail cell, the shape of the Worm t—6
is “encoded” into an advance command. That is, 1o
if the tail of the Worm is straight (or left-turning, 4
right-turning, respectively) in its form, the com- AAFBAFA—
mand AA (AB, AC) is generated. The tail then t=7
retracts by one cell. .
. C
Tl asrases
3.4 Self-reproduction of a Worm t—g
By giving a branch command, any Worm can self- :
reproduce indefinitely provided that it neither cy- CAH+AA+BAL+

cles nor touches itself in the branching process.
Figure 5: Behavior of a Worm.

3.5 Self-reproduction of a Loop

A Loop is a simple closed wire, thus has neither a
. A A+HAA
head nor a tail as shown in Fig. 6. ol
If a Loop contains only advance or branch com- X ﬁ daa
mands, they simply rotate in the Loop and self- 1:: X
reproduction does not occur. In order to make a AA+AA+A

Loop self-reproduce, commands in Table 2 are used.

By putting a command DB at an appropriate po-
sition, every Loop having only AA commands in all
the other cells can self-reproduce in this way. When

Figure 6: An example of a Loop.
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Command
First | Second Operation
signal | signal
D B Create an arm
D C Encode the shape of a Loop

Table 2: Commands DB and DC.

DB reaches the bottom right corner, it starts mak-
ing an “arm” and this corner become a transmit-
ter of commands. First, all AA commands in the
mother Loop are transmitted through the arm and
generated DC commands encode whole shape of the
mother Loop into command sequences simultane-
ously and these commands are transmitted after all
static AA commands are transmitted. Finally DC
commands reaches the bottom right corner and the
arm is split from the mother Loop.

3.6 Controlling the position of

daughter Loops in SRg

One of our main motivations is to place preferred
initial patterns to a reversible cellular space. As
mentioned above, a closed Loop has only AA com-
mands. If AB or AC commands are placed in the
Loop, generated position of the daughter Loop can
be changed. But DB (create an arm command) ad-
vances the bottom side of a loop and the length of
the Loop does not equal to the running length of
the whole commands. Thus the embedded position
of turning commands in the daughter Loop differ
from the mother Loop. Although such a shifting
of reading-frames of its command sequence is inter-
esting phenomenon, it is difficult to control. So we
modify SRg for solving this timing problem.

Fig.7 is the process of modified version of SRg.
DB signal is not advance bottom side and the re-
producing process starts from the bottom right cor-
ner as soon as the Worm reaches at this position.
But created daughter Loop should be rotated in 90
degrees and Loops make collision after 4 genera-
tions because of this rotation. This collision can be
avoidable by inserting direction commands into the
mother Loop and this modification acts important
roll in extending SRg to three-dimensional one in
the next section.

4 Self-reproduction in a three-
dimensional RPCA

4.1 Three-dimensional self-

reproducing RPCA (SRy)

In this section, we extend SRg into a three-
dimensional RPCA.

[ TRy T Y
>»
>
I S :
ode s | »alerale >

aa.facdac

Adlea
o Y

eilrrefrmifrrifra
»
»
4

caseasdoand

rolerolrrefrrifen
>
»
2
>

e

caalisafeanlonalonalicalcafoanlcallanl.

Jaad|aas

>

orr
»
IS

oder | »alerne s

olprelrrdoriirr
>
»
>

> | 2oleralen
»>

Figure 7: Self-reproducing process of a Loop of
modified SRg.

A two-dimensional 5-neighbor PCA can be em-
bedded directly into a three-dimensional 7-neighbor
PCA. But due to the rotation-symmetric condition
of SRg, the Worm cannot know directions of right,
left, up and down. In three-dimensional rotation-
symmetric CA, up to 24 rotated rules are regarded
as the same rule. So we introduce another glue
state ‘=" for SRg and combine two Worms whose
command sequences are complementaly placed as
presented in table 3. To construct ‘true’ three-
dimensional structures, a Worm in SRg can twist its
head in +90 degrees (Fig.8). This can be possible
by employing ribbon of width 3 shaped Worms. As
far as using SRs command sequences in rotation-
symmetric spaces, the length of the path should
be kept equal and the width 2 ladder approach
in the previous section is impossible. So we add
a center wire and thus the three-dimensional self-

reproducing RPCA “SRy” is defined by

SRQ = (z3a(C’U7R7-D7L7 F) B))gv
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left turn right turn
EH%QH 71 %
upward turn downward turn

Figure 8: Four kind of turns in SRy.

(#. 4. #. #, #. #,#),
C=U=R=D=L=F=B-=
{#7 *, +7 Ty T A, B, C, D}

Local rules are available via WWW.
http://kelp.iec.hiroshima-u.ac.jp/
projects/rca/sr3d/

Although SRg has 6886 rules, if rotated rules are
regarded as equivalent, it become only 338 rules[4].
Fig.9 is a simple Worm in SRy.

Figure 9: A simple Worm in SRy.

Table 3: ‘A’-Commands for width 3 shaped worm.

Commund
wire | wine 3
Fon | Seecnd | Pis | Seoond Operstions
LSignu | Signal | Signat | Signal
A A A A | Advance the bead faward
A B A C | Advincethebead teward
A C A B Advamne e brad rightonrd
A B A B Start rotating (leftward)
A C A [y Stan routing (rightward)

When both wires of a three-dimensional Worm
have the same sequence ‘AB AA AC’ (or ‘AC AA
AB’), its head is twisted leftward (rightward). Us-
ing twisting commands, complex three-dimensional
Worms and Loops such as Fig.10 are constructible.
Although the existence of twisting commands in
SRy, its self-reproducing mechanism is completely
the same as that of SRg.

4.2 Controlling the position of
daughter Loops in SRqg

When extending SRg to SRy, we use the modi-
fied version of SRg discussed in section 3.6. So
Loop positioning commands can also be inserted

Figure 10: Complex Worm and Loop in SRg.

freely in SRy. And this- modification has an impor-
tant meaning in the three-dimensional case because
it makes possible to generate different topological
shapes. Fig.11 is a chain formed from a single Loop.
This shape-construction technique can be possible
by the positioning a daughter Loop with a specific
command sequences in the mother Loop.

Figure 11: A chain formed from a single Loop in
SRo.

5 Reflective behavior of loops
in SRg

In this section, we describe that SRy has an ability
to change shapes of daughter Loops even if its space
is reversible.

Fig.12 shows an example of the generation of the
different shape of daughter Loop. Although the
mother Loop is square, its daughter Loop is rectan-
gle. The length n of this square is 24 and it has the

Figure 12: Changing the shape of a daughter Loop
in SRy. (t=0,28,100,110)

following positioning command sequence instead of
A A24
AASABAASAA®ABAAABAAS
AASACAASAAPACAAACAAS
Once a duplication process starts, the shape is en-
coded as shape signals and they are transmitted
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along the arm after all positioning signal are trans-
mitted. Thus the following command sequence
(length 2n — 2 = 486) is generated when it is com-
pletely expanded into a Worm.

(AASABAASAASABAAABAA®)AASABAASABAASABAAY
(AAPACAA®AAPACAAACAA®) AASACAASACAASACAAS

N

positioning signals shape signals

In normal self-reproducing process of SRy, daugh-
ter Loops are constructed after all positioning com-
mands are used for advancing the constructing arm.
But in this case, the daughter Loop is closed soon
after its arm are split from the mother Loop. Thus
the positioning signals and the shape signals are ex-
changed.

The next example is more complex one. The di-
agram of its shape is depicted in Fig.13(a) and it
has the following command sequence.

(AAAB AA ACAA AC AA ABAAY AAS AB AA AC AB AA AB AA ACAA ACAB AA ABAAT AB AA)

(AAABAA ACAA AC AA AB AA% ARS AC AA AB AC AA ACAA ABAA AB ACAA ACAAT ABAA)
-

~
positioning signals

AA AC AA AB AA AB AA AC AAZAB AAT AB AAZ AB AA AC AA AC AA AB AAZ AB AAY

AAAB AA AC AA AC AA AB AAZAC AT AC AAZ AC AA AB AA AB AA AC AAZAC AAT

v

shape signals

Each side of this square has specific patterns and
they are changed after self-reproduction. Fig.13(b)
is generated from Fig.13(a) when start symbol D is
provided at the timing of the command sequence
shown above. Underlined part is used to form its
shape. This shape/positioning command sequence
can generate four different Loops in turn.

@) D D ®

Figure 13: The diagram of changing the shape of a
daughter Loop (Period 4) in SRy.

6 Conclusion

In this paper, we extend our two-dimensional
self-reproducing reversible PCA SRg into a three-
dimensional reversible PCA and show its various
behaviors. The features of this three-dimensional
reversible “turtle graphics” are derived from its self-
inspective mechanism. Data as shapes and pro-
grams as command sequences are represented in the
same manner.

The self-reproducing processes are hard to de-
scribe on a paper. They can be seen as QuickTime
Movies at the following addresses via WWW.

SRg: http://kelp.iec.hiroshima-u.ac.jp/
projects/rca/sr3d/
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