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Abstract: Inrecent years, the Cellular Automata (CA) technology has been gaining wider acceptance in various fields - image
processing, language recognition, pattern recognition, VLSI testing, study of fractals and chaos, etc. The user community look
forward for higher versatility and robustness of CA based models employed to study hierarchical systems. In this context,
this paper introduces a new concept of Hierarchical Cellular Automata (FH/CA). Theory of HCA is developed over the Galois

extension field GF (2”{' ), where each HCA cell can store a symbol from the set {0,1,2,---, 2P4"~1}. The potential application
of HCA has been demonostrated for test solution of VLSI circuits specified in hierarchical structural description. The test
solution is designed to meet the test requirements of the circuit by exploiting its structural dependencies.

1 Introduction

In the mid of twentieth century, many people in Artificial
Life have been enamoured of a computing model known as
the Cellular Automata (CA). The CA is sufficiently complex
to develop an entire universe as sophisticated as the one in
which we live. Von Neumann [1] envisioned the modeling
of self-reproducing automata empowered to simulate the
bacterial growth, the growth of patterns on seashells, fluid
dynamics, and the voting patterns of individuals who made
decisions based on their local neighbors.

One of the most important milestones in the history
of development of the simple homogeneous structure of
cellular automata is due to Wolfram [2]. He proposed
one/two dimensional structure of simple cells, each
having only two states with uniform three-neighborhood
dependence. This simplified structure motivated a number
of researchers [3] to explore innovative applications of the
CA machine in various fields - image processing, language
recognition, pattern recognition, testing of VLSI circuits,
study of fractals and chaos, etc [3]. All these computing
models employ GF(2) cellular automata where each cell is
capable of storing either 0 or 1 € GF(2).

While developing CA based models we observed that
the power of GF(2) CA is inadequate to handle complex
physical systems which by nature exhibits abstraction and
hierarchy in a fundamental manner. For example, a set of
proteins controls the growth and activities of every living
organism. A protein is a linear sequence of amino acids in a
polypeptide chain. An amino acid, in turn, is derived from
a codon which is a triplet of nitrogenous bases (Adenine,
Cytosine, Guanine, and Thymine). Thus, the bottom up

hierarchical structure of a protein starts from nitrogenous
bases, followed by a sequence of codons/amino acids that
leads to a protein. On the otherhand, while designing a
VLSI circuit we fall back on top down hierarchy. At the
highest level the VLSI chip is a collection of subsystems,
each subsystem being designed with a network of modules.
Each module in turn is a collection of submodules that
realize the function of module. In general, a system when
viewed at different levels of hierarchy & abstraction offers
better insight into the system behavior. This establishes the
need of a modeling tool to exploit the natural hierarchy of a
system - observed in nature or artificially built.

In the above background scenario, we have introduced
the concept of Hierarchical Cellular Automata (HCA) as a
modeling tool. The theory of HCA machine is developed

over the Galois extension field GF (2qu ), where each HCA
cell can store a symbol from the set {0,1,2,---, 2P9"~1},
From the theoritical view point, the extension field structure

of GF (2qu ) is isomorphic to that of GF(2P9"). However,
for engineering applications the hierarchical field structure
of GF(27" ) can be effectively employed to model the
inherent hierarchy available in a physical system. The
potential application of HCA has been demonostrated for
an engineering application - VLST testing.

The preliminaries on GF(2) cellular automata and the
VLSI test problem are introduced in Section 2. Section
3 introduces the HCA and its characterization. The
characterization is based on the theory of Galois extension
field. For the sake of completeness, a review of the theory
of extension field is also covered in this section. In Section
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4, we present the application of HCA in designing the
hierarchical Test Pattern Generator (HCAT PG), customized
for a VLSI circuit, as an effective solution to the VLSI
testing. The efficiency of the proposed design is established
through exhaustive experimentation.

2 Preliminaries

This section introduces GF (2) CA and the VLSI test
problem that will be addressed in this paper.

2.1 GF(2) Cellular Automata

The Cellular Automata (CA) is the simplest model of
decentralized spatially extended system, made up of a
number of individual components (cells). The state g of
each individual unit (cell) changes over time depending on
the states of its neighbors [2]. For ge€{0,1}, the CA is
referred to as GF(2) CA. In 3-neighborhood (left, right and
self) dependence, the state g of the i** cell at time (¢t + 1) is
gt = fdi_1,9d0),

where ¢’ denotes the state of the i cell at time  and fis the
next state function called the ‘Rule’ of the automata [2].
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b) The State -Transition Diagram of o Maximal-length Group CA
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Fig. 2.1: A 4-cell maximal length group CA state transition

Definition 1 If the next-state generating logic of CA
employs only X OR then it is called a linear rule. A CA with
all the cells having linear rules is called a linear CA.
An n-cell linear GF(2) CA is characterized by its
characteristic matrix [T),xn [3], where
1, if the next state of the i cell depends
T[i,j]= on the present state of the j** cell
0, otherwise
The polynomial of which T is a root is called the
characteristic polynomial of the CA. The characterization
of GF(2) CA behavior, from its T matrix and characteristic
polynomial, has been reported in [3].
Definition 2 If all the states in the state transition graph of
a CA lie in some cycles, it is called a group CA; otherwise
it is a non-group CA. For a group CA, det[T] #£ 0.
The group CA is classified as maximal and non-maximal
length CA. In an n-cell maximal length CA (Fig.2.1) there
is a cycle of length 2" — 1 with all non-zero states.

2.2 The VLSI Test Problem

Rapid advances in semiconductor technology have made
possible fabrication of complex VLSI circuits within
feasible cost. However, the problem of testing VLSI circuits
has become a major cause of concern. In recent years,
the test solution incorporating BIST (Built-In Self Test)

methodology has been gaining increasing popularity with
the test design community. Linear feedback shift registers
(LFSRs) [4] are extensively used as the BIST Test Pattern
Generators (TPGs). A wide variations of such structures
have also been proposed [5, 6]. In last one decade, the
simple and regular structure of Cellular Automata (CA) has
been getting acceptance as an alternative to LFSR [7, 3].

BIST schemes are aimed to meet the basic requirements
of high fault coverage with minimal test application time
and low overhead. However, desired level of fault coverage
for any arbitrary random logic is difficult to achieve with
the conventional BIST structures built around CA/LFSR.
These are typically designed without due consideration for
the structure of the given CUT (Circuit Under Test).

The current VLSI chips associated with SOC (system on
chip) application are becoming increasingly complex day
by day. While designing test solution, such circuits should
be viewed as a hierarchical (verilog/VHDL) structure. An
efficient BIST scheme for these circuits should exploit its
hierarchical structure. The Hierarchical Cellular Automata
(HCA) can be employed as an effective tool to model the
desired BIST structure for this class of circuits.

3 Hierarchical Cellular Automata
The class of CA dealt with in [3] is defined over Galois

“field GF(2) and can handle the elements from the set

{0,1}. By contrast, each cell in a HCA, defined over Galois

extension field GF (21’ ), can store a symbol € {0,1,2,3,
(2P~ 1)},

3.1 Preliminaries of Extension Field

For any positive integer p, it is possible to extend the Galois
field GF (m) to a field with m” elements, where m is a prime
number. This field is known as an extension field of GF (m)
and denoted as GF(mP) [8].

There exists an element « in the extension field GF (2P)
that generates all the non-zero elements (o, 02, ..., &2’ ~1) of
the field. The o is referred to as the generator. It is the root
of an irreducible polynomial A(x), known as the generator
polynomial A(x) of extension field. The coefficients of
A(x) € GF(2). If A(x) is a primitive polynomial, all the
2P elements of the extension field are distinct.

Definition 3 Primitive Element: The element of € GF(2P)
is called the primitive element of GF (2P) if it is a root of
any primitive polynomials in degree p.

Representations of GF(2P) field elements: The
element &0 € GF(2P) can be represented as a vector or by
a p x p matrix M having its elements 0, 1€ GF(2). The
characteristic polynomial of M is the generator polynomial
A(x). The matrix representation of an element o/ (j =
2,3,---,(2P — 1)) is given by M/. A column vector of M/
can be used as its vector representation [9]. The decimal
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counterpart of it denotes the element of GF(2P). Fig.3.1
illustrates the GF(22) elements.

Operations in extension field: The startable and
plus_table guide the multiplication and addition operations
respectively on GF(2P) elements. These tables correspond
to the generator polynomial A(x). The star and plus tables
for x? + x + 1 are shown in Table 3.1. The first row and
column represent the GF(2?) elements in decimal notation.

Generator Polynomial f(x)= x2 +x+1 Generator & € GF(2 ) elements = (0, «? ca
[} ) 01 s 1o [t ]
=lyol =111 %% o =140
Matrix representations of field elements

a={10}=2 al={11}=3 ad={01}=1 0=(00}=0

Vector and decimal representations of field elements

Fig. 3.1: The field elements of GF(22)
Table 3.1: The star_table and plus_table for x2 + x+ 1

*10123 +[0123
0{0000 010123
110123 111032
210231 212301
310312 313210

Extension of extemsiom field: The extension field
GF(2P%) over GF(2), where p & q positive integers, can be
represented as GF(27") - that is, the extension of extension
field GF (2P) with same number of 279 elements from the set
{0,1,2,---,(279 — 1)} and isomorphic field operators plus
& star. Similarly, the extension field GF(2P4") over GF (2)

can be viewed as the extension field GF (2pqr ); P, qs T, .. are
the positive integers. For example, GF (2%) can be viewed
as the extension of extension field GF(22) or GF(23) - that
is, as GF(22") or GF(2%").

In GF(27") the co-efficients of the generator polynomial
B(x) € GF(2P). The generator § can be represented by a
q % g matrix with its elements € GF(27) field having o as its
generator. The o in turn, as noted earlier, can be represented
by a p x p binary matrix; in effect the elements of extension
field GF(2P") are hierarchically partitioned.

Note: From the point of extension field theory the
GF(2P9) and GF(2"%) are isomorphic. However, for the
current engineering application dealing with hierarchical
circuit structure, the hierarchical partitioning of field
elements has distinct advantages.

3.2 Hierarchical CA Structure

Fig.3.2.1 shows the general structure of an n-cell
hierarchical GF (27 g ) CA. The interconnection among the
cells are weighted in the sense that to arrive at the next state
gi(t + 1) of the #* cell, the present states of (i — 1), i
and (i + 1)** are multiplied respectively with w;_;, w; and
wit1 and then added. w;’s € {0,1,2,3, - - -, (2P9"-1)} are the
elements of extension field GF (2qu )

In GF(2) CA, p=g=r...=1, a cell consists of one memory

' 2 o

Fig. 3.2.2: Structure of a GF (2”( ) Hierarchical CA cell

element (FF) and w;s can be either 0 (not connected) or 1
(connected). Fig.3.2.2 depicts the structure of a CA cell in

three level of hierarchy - GF (2”4’). Each cell of the HCA
consists of r number of subcells. A subcell in turn contains
g number of next lower level subcells, each having p FFs.
As in GF(2) CA an n-cell hierarchical CA is

characterized by an n X n characteristic matrix T, where
wij, if the next state of the ih cell depe-

nds on the present state of the j* ]

cell by a weightage w;; € GF (2qu )
0, otherwise.
The next state (pattern) X,,.y of a HCA can be derived as
Xnexr = T X Xcyrrent, Where Xpor and Xeyrrens are n-symbol
strings. An example GF(22) CA with single level hierarchy

follows for the sake of illustration.
generated patterns

Tij=

GF2 3 GE(2)
120 0110 00

02 0
330 1111 00
T=E0 3 121 0110 01
2 3., 300 1100 00
020 0010 00

seed S=(1 3 2}

Fig. 3.2.3: The patterns generated by a 3-cell GF(22) CA
Example 1 Let us consider the example 3-cell GF(22) CA
of Fig.3.2.3. The [T]3x3 matrix defines the interconnection
among the CA cells. The patterns generated by the HCA
with seed S = {1 3 2} are also shown in the figure.

3.3 Design of Hierarchical CA

The design of a hierarchical CA boils down to construction
of T matrix of the CA. . It involves two steps: (i)
formation of the dependency matrix (D) of the HCA that
identifies dependencies of one CA cell on its neighbors,
and (ii) specification of the weight values (w;’s) of the
dependencies. The dependency matrix of the 3-cell
GF(22) HCA of Fig.3.2.3is given by, ,,:(? 8 ?),where

[ 1 1
D;; € GF(2) V i,j. The characteristic matrix T, as shown
in Fig.3.2.3, can be generated from D by specifying the
weights of the dependencies - that is, by replacing 1’s of
D with the non-zero weight values.
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34 Chamcteﬁzaﬁon of HCA

Depending on the design, a HCA can show cyclic or non-
cyclic behavior as in GF(2) CA.

Theorem 1 The hierarchical CA with characteristic matrix
T is a group CA iff det[T) # 0. A HCA with det[T] =0is a
non-group CA.

The proof is analogous to that reported in [3] for GF(2) CA.
Theorem 2 A HCA, having same non-zero weight in each
row (column) of its T matrix, is a group CA iff det[D] # 0,
where D is the dependency matrix.

Proof: Consider an n-cell GF (2”{ } HCA with
dependency matrix D. Assume, its T matrix is such that
all the non-zero elements in each column are the same and
in column i it is w; (w; € GF(2Pq N. Ifvi,va, -+, v, are
the column vectors of T, then -
det[T] = det{w v, wava, -+, WuVy)
= wiwy - wy det[vi,v2, -+, Vp] = Wnyi det[D] where

Wagl = WIWp---

Theorem 1, the HCA is a group CA.

Cycle structure: For the HCA of Fig.3.2.3 having equal
non-zero weights 3, 2, and 3 respectively in column 1, 2,
and 3 of its T matrix, the det[D] = 1. It is a group CA.
In general, the cycle structure of a group CA is defined as
[ (k1), ua(kz2),---] - that is, it has y; number of cycles of
length k;, Vi. The cycle structure of the CA of Fig.3.2.3 is
[1(1),1(3),4(15)] - it has 1 cycle of length 1, one of length
3, and 4 cycles of length 15.

‘Property 1: A HCA designed with primitive weight
while satisfying Theorem 2 generates larger length cycles.

This has been illustrated in Table 3.4. The first column
shows the number of cells (n) and the extension field
parameter (p) of different GF(2P) CA. The HCA (with
one level of hierarchy) for a particular n & p are designed
for a large number of trials with primitive & non-primitive
weight sets. Cycle lengths produced by the HCA for both
the cases are noted in Column 2 and 3. For a given pair of
n and p, an entry [ in Column 2 [Column 3] reports that out
of 100 randomly generated group HCA at least 25 of such
HCA produce cycles of length > [.

Table 3.4: Cycle structure: primitive vs non-primitive weights

HCA | cyl len () with prob. of occurrence 25%
(n, p) | primitive weight non-prim. weight
58 331672625 65535

4,8 131070 43690

6,6 524286 58254

5,6 17039295 298935

3,6 262143 262143

8,4 131070 8190

7,4 1052415 65535

3,4 4095 255

Theorem 3 A GF (2”"’") HCA designed with same non-
zero weight does not produce maximal length cycle for

Wa € GF(2" ) and wyy, # 0. Therefore,
the value of det(T) # 0, iff det|D] # 0. Hence, as per

{pgr.)>1.

Proof: Without loss of generality let us assume that, T,
be the characteristic matrix of a GF(27) HCA designed with
same non-zero weight w.and p > 1.

Case I: det[T,;] = 0: The HCA is a non group CA
(Theorem 1) and thus can’t generate maximal length cycle.

Case II: det[T,4) # 0: The HCA is a group CA (Theorem
1). If it is a maximal length CA, then

(Teq)zn"‘l =1 . ' 1)

By elementary row and column operations it can be
written as T,; = wD, where D is the dependency matrix of
the HCA having non-zero elements as 1.

Since, det[T,q] # 0, det[wD] # 0

that is, w det[D] # 0 = det[D] # 0.

Therefore, (D)*'~! = I, where D is a matrix in GF(2).
From equation I, [wD}**~! = Iie.,w?" ! x (D**~1) =1
As w?*~1D) = 1 (w e GF(2P) & ‘I’ is the identity element
in GF(2P)) and (D)?'~! =1, then

[wD]* = 1, where k=Icm(2P — 1,2" — 1). It implies, [T.q]* =
1. But, as k < (2" — 1), T4 can’t generate maximal length
cycle of length (277 —1).

Theorem 4 If an n-cell HCA with characteristic matrix T
has cycle structure [1(1),p1(m) ], where pym = (2"P9™ — 1),
and p,q,r, ... are the extension field parameters, then the
HCA designed with [T|* has cycles [1(1), pu(k)], where
pk =m.

Proof: From the cycle structure of T it is obvious that for
any non-zero state x, [T]™ x = x, that is [T]™ = I. Now, if
jik = m, then [T}# = [T#* = I, which means [T*#] may have
cycle of length k or factors of k. Let us assume that [7#] has
cycle of length k), where k is a factor of k and kjk; = k.
Then for some state x;, [T#]¥1x; = xy, that is
[THM kaxy = [TH) ey = [T Veex) = x
But, [T}"x =x, Vx. Therefore, k; =1
Hence, [T]* has the cycle structure as [1(1), u; u(k)] since T
has the cycle structure [1(1), pi(m)].

Lemma 1: If B is a primitive element in the extension
field then B2,B*, B8, --- are also primitive

Proof: Without loss of generality let us assume that
B is a primitive element in GF(2”"), p and g being the
extension field parameters.  is primitive - that is, the
B,B2,83,---, B~ all are unique and the cycle structure
of Bis [1(1) 1(m)], where m = (2P — 1). From Theorem 4
it follows that §# has the cycle structure [1(1), u(k)], where
pk = m, as p = 1. Since, m is odd, then 2’ will be prime
tomfori=1,2,3, .. ,(pq-1). Hence, B? has the cycle
structure as [1(1), 1(m)] - that is, B is primitive.

3.5 Randomness Property of HCA

The randomness property of the HCA based pattern
generator, formed for different values of p, g, and n, are
studied based on the metric proposed in DiehardC [10].
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A comparative study on randomness quality of maximal
length GF (2) CA, GF(2P) CA and GF (2P%) CA is presented
in Table 3.5.

Table 3.5: Randomness Test

Randomness Pattern size N = 32
Test GF(2) GF(2%) GF(224 )
Overlap Sum pass | pass | pass
Run pass | pass | pass
3Dsphere fail | pass | pass
Parking lot | fail fail pass
B’day spacing fail | pass | pass
Count 1’s fail | pass | pass

B rank(6x8) fail | pass | pass
B rank(31x31) fail fail pass
B rank(32x32) fail fail pass
Count 1's(byte) fail | fail | pass

Bit stream fail | pass | pass
Craps pass | pass | pass
Minimum Dist fail | pass | pass
Overlap 5-permut | pass | fail | pass
OPSO fail | fail | pass
0QSO fail | fail | pass
DNA pass | pass | pass
Squeeze fail | pass | pass

The 18 different tests are shown in Column 1 of the table.
Each test produces a set of ‘p’ values. For a pattern set with

good randomness quality, the values of p’s will be uniformly

distributed between 0.001 and 0.999. The entry pass, in a
column, means that the ‘p’ value is evenly distributed on
[0,1] for at least 75% cases of total number of seeds tried for
a pattern generator. The results of Table 3.5 report that the
randomness quality of the patterns generated by the HCA is
better than that of GF(2) CA.

4 Design of Customized HCAT PG

The proposed scheme extracts the clustering of
primary inputs (PIs) and the structural dependencies
among the different hierarchical modules of the CUT.
Consider the example circuit of Fig.4 with 36 primary
inputs (PIs). To design a conventional pseudo-random T PG
for this circuit we can use a 36-bit length LFSR/GF(2) CA.
In practice, for all types of CUT with 36 Pls, the same
pseudo-random pattern generator or its variations are used
as the TPG. It can be seen that the PIs of Fig.4 get grouped
into four 9-bit buses (A4, B, C, and E). It is logical to
assume that all the 36 PIs of the CUT are not independent
so far as their functionality is concerned. The 9 PIs of
type A input to module M, are functionally similar and
can be considered to form a cluster of PIs rather than
9 independent PI lines - each carrying a single bit. The
similar consideration is valid for B, C and E. The guiding
motivation is - instead of feeding the PIs of a cluster of
9-bit bus from 9 cells of a 36-cell GF(2) CA, we propose to
feed the cluster from a cell of the 4-cell GF(2°) CA.

9, MUX! PA
1
o Mux2
3 MUX3|
.
9
3
9, M2 -
9 1
M2
9
3 M2 | w2

ppoo

M4
2 3 2.7
0 6 a a0
T B=|oeta’
0BBB 0 alab

[
008’ |

Fig. 4: High-level model for a CUT & the HCATPG

Next, on further analysis of the module M, it can be
observed that the 9-members of cluster A [E] are divided
in three groups (sub-clusters), each group containing 3 PIs
and fed into three different sub-modules (MUX,, MUX,,
and MUX3). Similar cases can be observed for other blocks
(M,, Ms,...). It is very much logical to assume that within
a cluster, the intra sub-cluster PIs are functionally more
closer in comparison to the inter sub-cluster PIs. The
functional dependencies of the PIs in a sub-cluster are to
be reflected in designing the TPG cells. This problem can
be solved if the GF (29) CA cell is viewed hierarchically as
aGF (233) CA cell. Without any loss of generality, we shall
restrict to two level of hierarchy for designing HCAT PG.
The major design steps to arrive at the desired
customized HCAT PG are as follows:
(1) Selection of p, g, and n for GF(27") HCATPG.
(2) Identifying the dependency matrix D.
(3) Designing the characteristic matrix 7.

4.1 Selection of p, q and n

This step executes partitioning of primary inputs to form
input clusters & sub-clusters based on their functional
information and then identifies the cardinalities of the
clusters & sub-clusters. The most frequent cardinality of
the clusters (c1,¢2,: -, cx) is chosen as the value of (p x g),
whereas the most frequent cardinality of sub-clusters within
a cluster is taken as the value of the parameter p. The value
of n (number of T PG cells) is fixed as per the expression

n=[(le1l/pg)1 + [(lc2l/pg)1 +--- + [(lcx|/ pg) 1+

[(|restPIs|/pq)]
For testing the circuit of Fig.4, the HCATPG is a 4-cell

GF(2%) CA. The cells are marked as 0, 1, 2, and 3.
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4.2 Identification of Dependency matrix

If two PI clusters enter into the same circuit module,
the structural dependencies is said to exist between them
and these are referred to as dependent clusters. It is
observed that the dependent clusters closely interact among
themselves to detect the faults of the circuit module.
Therefore, the CA cells feeding the dependent clusters
must have dependencies among themselves. For Fig.4, the
resulting D matrix is

0
1
D, = .

-0 O

1 1
1 0
0 1
0 0 1 1

where PI clusters A, E, B, and C are respectively fed from
the Cells 0, 1, 2, and 3.

4.3 Design of Characteristic Matrix 7

The non-zero value ‘1’ of the D matrix is next replaced with
a weight value (B/) from the set W={B, B?, B¢, ---}, to
design the T matrix of the HCA. The basic algorithmic steps
to arrive at the characteristic matrix T of the HCAT PG are
noted in [9]. In the design, to customize the HCAT PG, the
weights of T are tuned depending on the test requirement of
the CUT. The tuning is performed in two steps: the major
and minor tuning.

Major tuning: This step involves the fixing of the
weight value (B/) for a HCATPG cell. For example, to
design the T matrix of the HCATPG for the CUT of
Fig.4, the 1’s of the D, are replaced by the weights from
the set {B,B%B% - }. The T, noted in Fig.4 results in
maximum fault coverage for the CUT and the weight values
B2, B, B2, and P are fixed for the HCATPG cell 0, 1, 2, and
3 respectively. '

Minor tuming: The Bfnam-x is a g X g matrix having
its elements from the set {0,0,02,---, ol?~1} €
GF(2P). The minor tuning of TPG is done by structural
modifications of the weights fixed through major tuning -
that is, B/ is fine tuned by changing the relative positions
of s within the B/ to improve the fault efficiency of the
design. The final structure of the weight B for the example
design is shown in Fig.4.

4.4 Experimental Results

The basic requirement for the proposed customized on-chip
test pattern generator is the availability of the hierarchical
structural description of the CUT. The circuits specified
in Column 1 of Table 4.4 are designed from ISCAS & ITC
benchmark circuits to get the hierarchical structural net lists.
Table 4.4 depicts the summary of the fault coverage shown
by GF(2) CA and GF(27") HCA based designs in columns
4 and 5 respectively. A CUT is tested for three seeds (taken
randomly) for both the designs. The fault coverage figures
for a CUT are achieved on applying a fixed number of
test vectors mentioned under the column heading Test Vec.
Detail experimental setup is noted in [9]. It is observed that

the HCAT PG resulted in higher fault coverage than that
could be achieved with GF(2) CA based T PG.

Table 4.4: Test results of customized HCAT PG

Circuit # Test Fault coverage (%)

name | PI/PO | Vec. | HCA GF(2)
cl - 36/7 400 | 99.18 98.57
c2 32/32 80 | 99.56 99.48
c3 41/32 | 450 | 98.95 98.29
c4 33/25 | 3000 | 99.12 98.76
c5 67/48 | 600 | 99.34 99.34
c6 82/64 | 700 | 98.95 98.81
c7 72/14 | 400 | 99.08 98.47
sl 24/4 | 2500 | 99.28 98.75
s2 23/24 | 1400 | 97.76 97.20

¢ represents combinational, s represents sequential

5 Conclusion

The paper presents an innovative concept of hierarchical
cellular automata. The theory of extension field is utilized
in designing the hierarchical CA (HCA). The HCA can
be employed to model inherent hierarchy within a physical
system. The eficiency of the HCA machine is tested in an
engineering application - VLSI testing.
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