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Abstract: In recent  years, the Cellular Automata  (CA) technology  has been gaining wider  acceptance  in various  fields - image

processing, language recognition,  pattern recognition,  VLSI testing, study  of fractals and  chaos,  etc, The user  community  look
forward for higher versatility  and  robustness  of  (]A based models  employed  to study  hierarchical systems.  In this context,

this paper introduces a new  concept  of Hierarchical Cellular Automata (HCA). Theory of HC4  is developed over  the Galois

extension  field GF(2P4r' ), where  each  H( A cell can  store a symbol  from the set {O, 1 , 2, ･ ･ ･ , 2Pg'- i } , The potential application

of HCA  has been demonostrated for test solutien of VLSI circuits  specified in hierarchical structural description, The test
solution  is designed to meet  the test requirements  of  the  circuit  by exploiting  its stmctural  dependencies,

1 Irmtrodanctfiorm

In the mid  of  twentieth  century, many  people in Anificial
Life have been enarnoured  of  a  computing  model  known  as

the Cellular Automata ({ A). The CA  is suthciently  complex

to develop an  entire  universe  as sophisticated  as the one  in
which  we  live, Vbn Neumann [i] envisioned  the modeling

of  selfireproducing  automata  empowered  to simulate  the
bacterial growth, the growth of  patterns on  seashells, fiuid

dynamics, and  the voting  patterns of  individuals who  made

decisions based on  their local neighbors.

   One  of  the most  important milestones in the history

of  develo'pment of  the simple  homogeneous stmcture  of

cellular automata  is due to Wblfram  [2]. He proposed
oneltwo  dimensional stmcture  of  simple  cells,  each

having only  two  states  with  unifonn  three-neighbothood

dependence. This simplified structure motivated  a nurnber

of researchers  [3] to explore  innovative applications  of  the
CA  machine  in various  fields - image  processing, language

recognition,  pattern recognition,  testing of VLSI  circuits,

study  of  fractals and  chaos,  etc [3]. All these  computing

models  employ  GF(2) cellurar automata  where  each  cell  is
capable  of storing  either  O or 1 E GF(2).
  wnile developing C4  based models  we  observed  that

the power of  GF(2) ( A is inadequate to handle complex
physical systems  which  by nature  exhibits  abstraction  and

hierarchy in a  fundamenta1 manner,  For example,  a  set  of

proteins controls  the growth and  activhies of  every  living
organism.  A  protein is a  linear sequence  of  amino  acids  in a

polypeptide chain.  An  amino  acid,  in turn, is deriyed from
a codon  which  is a uiplet of nitrogenous  bases (Adenine,
Cytosine, Guanine, and  Thymine). Thus, the bottom up

hierarchical structure  ef  a  protein starts  from nitrogenous

bases, followed by a sequence  of codonsfamino  acids  that

leads to a  prvtein, On  the otherhand,  while  designing a

VLSI  circuit  we  fa11 back on  top  down  hierarchy. At the

highest level the VLSI chip  is a collection of subsystems,

each  subsystem  being designed with  a  network  of  modules.

Each module  in turn  is a  collection  of  subrnodules  that
realize  the function of  module.  In general, a  system  when

viewed  at  different leyels of  hierarchy &  abstraction  offers

better insight into the  system  behavior, This establishes  the
need  of  a  modeling  tool to exploit  the natural  hierarchy of a

system  
-
 observed  in nature  or  artificially  built,

   In the above  background scenario, we  have introduced
the concept  of  Hierarchical Cellular Automata (HCA) as a
rnodeling  tool. The  theory  of  HCtl  machine  is developed
oyer  the Galois extension  field GF(2Pof' ), where  each  Hen
cell can  store  a  syrnbo1  from  the set  {O,1,2,･･･, 2Pq'-i}.

Frorn the theoritical view point, the extension  field structure

of  GF(2P4"' ) is isomorphic to that of  GF(2P4n･). However,
for engineering  applications  the hierarchical field structure

of  GF(2Pg"') can  be effectively  employed  to model  the
inherent hierarchy available  in a physical system,  The
potential application  of  HCA  has been demonostrated for

an  engineering  application  - VLSI testing.

  The  preliminaries on  GF(2)  cellll1ar  automata  and  the

VLSI test problem are  introduced in Secrion 2. Section
3 introduces the HCA  and  its characterization. The

characterization  is based on  the theory  of  Galois extension
field. For the sake  of  completeness,  a review  of  the theory
of  extension  field is also covered  in this section. In Section
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4, we  present the application  of  HCA  in designing the

hierarchicalTbstPatternGenerator(HCATP6),customized

for a VLSI circuit, as an effective solugion  to the VL.SI
testing. The  ernciency  of  the  proposed design is established

throughexhaustiveexperimentation.

2 Preliminaries

This section  introduces GF(2)  Ctl and  the VLSI  test

problem that will be addressed  in this paper,

2.1 GF(2) Cen]anllarAantopmnata
The Cel]ular Automata (en) is the simplest  model  of

decentralized spatially extended  system,  made  up  of a

number  of  individual components  (cells). The  state q of

each  individual unit  (cell) changes  over  time  depending on

the states of its neighbors  [2]. For qE{O,1}, the (A  is

referred to as 6F(2) CA, In 3-neighborhood (left, right and
selD  dependence, the state  g of  the i'h cell  at  time  (t +  1) is

       of+i ..  f(of-,,of,of.i),
where  of denotes the state of the ith cell at time t andfis  the
next  state  function called  the `Rule'

 of  the automata  [2],

           
Ti;

 [i/ .o',ig,., thvhatnstti rwvhain- x"+ x' +i

              -)T･Mabri4oftMll;ntd-LtnslharadpCA

(l}
            b]"deS-tc-Tmaditi"newqlnmd.M-:imel･le"ptfiopCA

  Fig. 2.1: A  4-cell maximal  length group CA  state  transition

Defimition1 lf the next-state  generating togic of (]A
emplays  only  XOR  then  it is called  a  tinear rule,  A  CA  with

all  the  cells  having linear rules  is caUed  a  linear CA,

  An n-cell  linear GF(2) Ctl is characterized  by its
characteristic  mauix  [T]nxn [3], where

       t 1, if the next  state  of  the i'h cell  depends

T[i,j] =  S on  the present state  of  the j`.h cell

       k O, otherwise

The polynomial of  which  T is a  root  is called  the

chanacteristic  polynomiat of  the Q4. The  characterization

of  GF(2) CA behavior, from its T matrix  and  characteristic

polynomial, has been reported  in [3],
Definition 2 ifatl the states in the state  transition gmph  oj'
a CA  lie in some  cycles, it is called  a  group CA; other"Jise

it is a  non-group  CA.  Fbr a  g,vup CA, det[T] f O,

  The  group Ct! is classified as maximal  and  non-maxirnal

length Ctl. In an  n-cell  maximal  length C4 (Ng,2,1) there
is a cycle  of  length 2" -  1 with  all non-zero  states.

2.2 TheVLSI[ffleseProblein

Rapid advances  in semiconductor  technology  haye rnade

possible fabrication of  complex  V[.SI circuits within

feasible cost. However, the problem of testing VLSI  circuits

has become  a  major  cause  of  concern.  In recent  years,
the test solution incorporating BIST  (Built-In Self fest)

methodology  has been gaining increasing popularity with

the test design community,  Linear feedback shift  registers

(LFSRs) [4] are extensively  used  as the BIST  [[lest Pattern
Generators (TPGs), A  wide  variations  of  such  structures

have also been proposed [5, 6]. In last one  decade, the
simple  and  regular  stmcture  ofCellular  Automata (CA) has
been getting acceptance  as  an  altematiye  to LFSR  [7, 3].

  BIST  schemes  are aimed  to meet  the basic requirements
of  high fault coverage  with  minimal  test application  time
and  low overhead.  However,  desired level of  fault coverage

for any  arbitrary random  logic is diMcult to achieve  with

the conventional  BIST  stmctures  built around  ( AILFSR,

These are typically designed without  due consideration  for
the structure of  the given CUT  (Circuit Under [[bst),

  The current VLSI chips  associated  with  SOC  (system on

chip)  application  are becoming increasingly complex  day
by day. While designing test solution, such  circuits should

be viewed  as a hierarchical (verilogtVHDL) stmcture.  An
eracient  BIST  scheme  for these  circuits should  exploit its
hierarchical stmcture.  The  Hierarchical Cellular Automata

(HCA) can  be employed  as an  effective tool to model  the
desired BIST  structure for this class  of  circuits,

3 waierarchficaECe]]mlarAutomata

The  class of  CA dealt with  in [3] is defined oyer  Galois
field GF(2)  and  can  handle the elements  from thc set
{O,1}, By contrast, each  cell in a HCA,  defined over  Galois

extension  field GF(2P4r'), can  store a symbol  E {O,1,2,3,
,
 
,
 
.,(2Pgr-

 
.

 1)},

3.fi PreliirmirmarfiesofExtemsfionFielld

For any  positive integer p, it is possible to extend  the Galois
field GF(m) to a  field with  mP  elements,  where  m  is a  prime
number,  This field is known as an  extension  field of  6F(m)
and  denoted as  GF(mP)  [8],
  There exists an  element  a  in the extension  field GF(2P)
that generates al1 the non-zero  elements  (a, ct2,..., a2P-i)  of

the field, The ct is referred  to as  the generator. It is the root
of an  irreducible polynomial A(x), known as  the generator
polynomial A(x) of  extension  field. The  coeracients  of

A(x) E  GF(2). IfA(x) is a  primitiye polynomial, all the

2P elernents  of  the extension  field are  distinct.

Definition 3 Primitive Element: The element  at E GF(2P)
is caJled  the primitive element  of GF(2P) if it is a  root  qf
anyprimitive  polynomials in degree p.

  Representations of  GF(2P)  field egements:  The
element  ct E  GF(2P) can  be represented  as  a  vector  or  by
a  p × p mauiK  M  having its elements  O, IE GF(2). The
characteristic polynomial of  M  is the generator polynomial
A(x), The matrix  mpresentation of  an  element  ctJ (j =

2,3,･･･,(2P 
-

 1)) is given by MJ, A  column  vector  of  MJ
can  be used  as  its vectar  representation  [9]. The decimal
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counterpart  of  it denotes the element  of  GF(2P). Ng,3.1

illustrates the GF(22)  elements.

  Operatioms  in extension  fie]d: The  startable  and

plustable guide the multiplication  and  addition  operations

respectively  on  GF(2P)  elements,  These tables correspond

to the generator polynomial A(x). The  star  and  plus tables

for x2  +x+  1 are  shown  in 7hbte 3,1, The  first row  and

column  represent  the GF(22) elements  in decimal notation.

   Oenenntor Palynembl  thF  i2 +  i +  1 6eAtmtor  aE  gF{1  5elntms = 10, a  a;  di

        .-  [: a ai- [? :] a]-  kI o- [: ot
               Matris rcpstscntaticrns  of fitld elcments

       a!po}=:  al={Ll}!1  a3!tel}!L  o=leol=o

            VectaranddecimAb rcpresentaLions of ficki cl"nents

         Fig. 3.1: The field elements  of  GF(22)

    Thble 3.1: The  star.table and plus-table for x2  +x+  1
*O123

i
ooooO12302310312

O '
 

"

 i-1 an:H  ; evT.,+ipm  
-[III]

+O123

i
O1231032230I3210

  Extension of  extensiopm  fie]d: The extension  field
GF(2Pq) over  GF(2), where  p  &  q positive integers, can  be

represented  as GF(2Pg)  - that is, the extension  of extension
field GF(2P) with  same  number  of  2Pg elements  from the set

{O,1,2, 
･･･,(2Pg

 
-

 1)} and  isomorphic field operators  plus
&  star,  Similarly, the extension  field GF(2Pg"') over  GF(2)

can  be viewed  as the extension  field GF(2Pq'"' ); p, q, r, .. are
the positive integers. For example,  GF(26) can  be viewed
as  the extension  of  extension  field GF(22) or  GF(23) - that

is, as GF(223) er  GF(232),

  In 6F(2P4  ) the co-ethcients  of  the generator polynomial
B(x) E  GF(2P), The generator 3 can  be represented  by a
q x  q matrix  with  its elements  E  GF  (2P) field having ct as  its

generator. The ct in turn, as noted  earlier, can  be represented

by a p × p binary matrix; in effect the elements  of extension

field GF(2Pg)  are  hierarchically partitioned.

  Nbte: From the point of  extension  field theory the
GF(2Pg) and  GF(2Pg) are isomorphic. However, for the
current  engineering  application  dealing with  hierarchical

circuit  stmcture,  the hierarchical partitioning of  field
elements  has distinct advantages.

3.2 Hierarekofica]()AStanllcture

fig.3.2.I shows  the general stmcture  of an  n-cell

hierarchical GF(2Pq"' ) (14. The interconnection among  the
cells  are  weighted  in the sense  that to arrive  at  the next  state

qi(t +  1) of  the i`h cell,  the present states  of (i- 1)'h, i'h
and  (i +  1)'h are  multiplied  respectively  with  wi.i,  wi  and

wi+i  and  then added.  wi's  E {O,1,2,3,･･･, (2Pq'･--1)} are the

elements  of extension  field GF(2pqr' ),
  In GF(2)  CA, p=q=r,.,=1, a  cell  consists  of  one  memory

          Pqr.. Nn,.  par..                           par,..

                    w

                     i

              W W

               Ft i-1

Fig. 3.2.1: Genera] structure  of  an  Hierarchical ( A
          1 1 "

14tag,.1
rv

   Fig. 3.2.2: Structure of  a GF(2Pg'  ) Hierarchical CA  celj

element  (FF) and  wis  can  be either  O (not connected)  or  l

(connected). fig.3.2.2 depicts the  stmcture  of  a  Ctl cell  in

three leyel of hierarchy - GF(2Pof), Each cell of  the HCA
consists  ef  r  number  of  subcells, A  subcell  in tum  contains

g number  of  next  lower level subcells,  each  having p FFs.

  As in GF(2) en an n-cell hierarchical en  is
characterized  by an  n  × n  characteristic  manix  T, where

    t wiJ', ifthenextstate.oftheithcelldepe.

zj-l  :gfio,;t:e.glg,s::,t;t:Ii2f6h.e,!",h..,
    N O, otherwise.

The next  state (pattern) Xhent of  a HC4  can  be derived as
Xhen =  T  × X}urrent, where  Xhen and  X}urrent are  n-symbol

strings.  An  example  GF(22)  CA  with  single  level hierarchy

fo11ows for the sake  of  illustration,
                       generated patterns

T-Bi  X,,,
  seed  S={1  1 2}

GFa  
2)120330121300020E}>

 GF(2}Ol
 10  OO

11  11  OO
OI  10  Ol
11OO  OO

OO  10  OO

   Fig. 3.2.3: The patterns generated by a 3-cell GF(22} CA

Example 1 Let us  consider  the example  3-cell GF(22)  (]A

qfFig.3,2.3. 71he [T]3.3 matrix  dofnes the intertonnection
among  the Ctl cells, The patteins generated by the HCtl
with  seed  S =  {1 3 2} are  atso  shown  in thefigure.

3.3 DesfigpmofHfierarchficallen
The  design of  a  hierarchical ( A  boils down  to constmction

of  T  matrix  of  the  CA, It involves two  steps:  (i)
formation of  the depehdency matrix  (D) of  the HCA  that
identifies clependencies of one  en  cell on  its neighbors,
and  (ii) specification-  of  the weight  values  (wi's) of  the

dependencies. The  dependency  mauix  ef  the 3-cell

GF(22) HCA  ofFlg.3.2,3is  given by, D-(  :, i r ). where
Dij E GF(2)  V  i,j. The  characteristic  matrix  T, as  shown

in Flg.3.2.3, can  be generated from D  by specifying  the
weights  of  the dependencies- that is, by replacing  1's of
D  with  the non-zero  weight  values.
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3.4 CharacterizationofH( ttl

Depending  on  the  design, a  HCItl can  show  cyclic  or  non-

cyclic behavior as in GF(2) CA.
Theorem 1 77ie hierarchical CA  with  characten'stic  matrix

T  is a  group CA  tffdet[T] 7E O, A  HCA  with  det[T] =  O is a

non-group  en.
The proof is analogous  to that reported  in [3] for GF(2) CA,
Theorem 2 A HCA, having same  non-zero  weight  in each
row  (cotumn) ofits T  matrix,  is a  group (]A U)'det[D] f O,

where  D  is the dependency matrix.

  Proof  Consider an  n-cell  GF(2P(')  tiCA with

dependency matrix  D, Assume, its T matrix  is such  that

:･:i 
,th.r.

 1"Iz,2:･g 
eJl

 ?:,pg .i".e,zc,Ilfwa",7,e,tpg .st, ,e. 
a.'g

the column  veetors  of  T, then  -

det[T] =det[",IVI,W2V2i  ''', "tnVn]
=wlw2'''wn  det[vl,v2, ,,., vn]  =wn+1  det[D]. where

wn+i  =  wi  w2  ･ ･ ･ wn  E  GF(2Pof'' )' and  w.+i  7e O, Therefore,,
the value  of  det(T) l O, iff det[DJ S O. Hence, as  per
77ieorem I, the  HCA  is a  group CXI.

  CycZe structure:  For the HCA  of  fig.3.2.3 having equal

non-zero  weights  3, 2, and  3 respectively  in column  1, 2,
and  3 of its T mauix,  the det[D] =  1. It is a group CA.
In general, the cycle  structure  of  a  grQup CLtl is defined as

[pti(ki), pt2(k2),･･･]- that is, it has pa･ number  of  cycles  of

length ki, Vi. The cycle  structure of the ( A of fig,3,2.3 is

[1(1),1(3),4(15)] - it has 1 cycle  of  length 1, one  of  length

3, and  4 cycles  ef length 
'15.

  
'Pmperty

 1: A  HCA  designed with  primitive weight

while  satisfying  Theorem  2 generates 1arger length cycles.

  This has been illustrated in 7bble 3.4, The  first column

shows  the number  of  cells (n) qnd the extension  field
parameter (p) of  different GF(2P) CA, The HCtl  (with
one  level of  hierarchy) for a particular n  &  p are  designed

for a 1arge number  of trials with  primitive &  non-primitive

weight  sets. Cycle lengths produced by the H( A for both
the cases  are  noted  in Cotumn  2 and  3. FoT a  given pair of

n  and  p, an  entry  l in Cotumn 2 [Cotumn 3] reports  that out

of  1OO randomly  generated group HCtl  at least 25 of  such

HCA  produce cycles  of  length ) l,

 Tbble 3.4: Cycle structure:  primitive vs  non-primitive  weights

HCAcyllen(l)withprob.ofeccurrence259e

(n,p)primitiveweightnon-prim.weight
5,8331672625 65S35
4,8 131070 43690

6,6 524286 58254
5,6 17039295 298935

3,6 262143 262143
8,4･131070 8190
7,4 1052415 65535
3,4 409S 255

Theorem3  A GF(2Pof'') HCA  designed with  same  non-

zetv  weight  does not  produce maximal  length cycle  for

(pgn,) >  1,

  Ptvof' Without loss ofgenerality  let us assume  that, Le
be the characteristic  matrix  of a  GF(2P) HCA  designed with

same  n6n-zero  weight  w  and  p >  1.

  Case I: det[ng] =  O: The  HCA  is a non  group CA
(77ieonem 1) and  thus  can't  generate maxirnal  length cycle.

  Case II: det[7>g] l O: The H( A is a greup en (77teo,em
I), If it is a  maximal  length CA, then

                 (T}g)2nP-1 =I  . (1)

  By  elementary  row  and  column  operations  it can  be

written  as  Lg =  wD,  where  D  is the dependency matrix  of

the HCtl  having non-zero  elements  as  1.

Since, det[71,] f O, det[wD] f O

that is, w  det[D] f O =>  det [D] l O.
TTieTefore, (D)2"ri ==  l, where  D  is a  rnatrix  in GF(2),

From equation  1, [wD]2"P-l = Ii.e., ""P-i ×  (D2"P-1) =  I.
As  w(2'tr)  =  1 ( w  E GF(2P)  &  

`1'

 is the identity element

in GF(2P)) and  (D)2"-i =  I, then

[wD]k =  I, where  k=lcm(2P - 1,2" -  1), It implies, [ng]k =

I, But, as  k < (2"P - 1), 7}4 can't generate maximal  length

cycle  of  length (2"P -  1),

Theorem 4 lfan n-cetl  HCtl  with  characteristic  matrtr  T

has cycle sttucture (1(l),pti(m)], where  ptim=  (2"Pqn･ 
-

 1),
andp,q,4  .., are  the  extensionfieldparameters,  then  the

HCA  designed with  [T]" has cyctes  tl(1), pipt(k)1, where

ltk =  m,

  Prvof  Fl-om the cycle  structure of T  it is obvious  that for
any  non-zero  state x, [T]M x =  x, that is [T]M =  I, Now, if
itk =  m,  then [T]Pk =  [TP]k =  I, which  means  [T"] may  have
cycle  of length k or factors ofk,  Let us  assume  that [T"] has

cycle  of  length ki, where  ki is a factor of  k and  ki k2 =  k.
Then  for some  state  xi,  [TP]kixi =  xi,  that is

[T"]k/k2xl .  [TILk]lfS2xl .  [TM]1/k2xl =xl

But, [T]Mx =  x, Vx, Therefore, k2 =  1
Hence, [T]" has the cycle  stmcture  as  [1(1), "ip(k)] since T
has the cycle  structure  [1(1), pti(m)],

  Lemma  1: If B is a primitive element  in the extension
field then B2,54, S8, ･･･ are also primitive
  Ptvojl' Without loss of  generality let us  assume  that
B is a primitive element  in GF(2Pq),.p and  q being the
extension  field parameters, 3 is prirnitiye 

-
 that is, the

6, 62, B3,･･･, B(2"q-i} al] are unique  and  the cyclg  stmcture

of  S is [1(1), 1(m)], where  m  =  (2Pg - 1), From  7heorem  4

it follows that S# has the cycle  stmcture  [1(1), tt(k)l, where

ILk =  m.  as  pti =  1. Since, m  is odd,  then  2  ̀ will  be prime
to m  fori=  1, 2, 3, .... ,(pq-1),  Hence, B2i has the cycle
stmcture  as  [1(1), 1(m)] - that is, B2J is primitive.
35  RarmdormanessPropertyofHCt4
The randomness  property of  the Hen  based pattern

generator, forrned for different values  of  p, q, and  n,  are

studied  based on  the  metric  proposed in DiehantC [10],
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A  comparative  study  on  randomness  quality of  maximal

length GF(2)  CA, GF(2P) CA  and  GF(2P") (]A is presented
in 7labte 3.5.

             Tbble 3.5: Randomness Tbst
RandomnessPatternsizeN=32

Test Gf(1]GFp4)GFe2)

OverlapSumpasspasspass
Run Passpasspass

3Dspherc fai1passpass
ParkingIotfai1fai1Pass

B'dayspacingfaitpasspass
Count1's fai1passPass

Brank(6x8)fai1Passpass
Brank(31x31)failfailpass
Brank(32x32)fai1fai1pass
Count1's(byte)failfai1pass
Bitstream fai1Passpass

Craps Passpasspass
MinimumDistfai]passpass

Overlap5-permutpassfai1pass
opso failfai1pass
OQSO fai1failPass
DNA passpassPass
Squeeze fai1passpass

  The 1 8 different tests are  shown  in Column 1 of  the table.
Each  test produces a  set  of  

`p'

 values,  Fbr a  pattern set  with

goodrandomnessquality,thevaluesofp'swillbeunifonnly
disuibuted between O.OOI and  O.999, The entry  pass, in a
column.  means  that the `p'

 value  is evenly  disnibuted on

[O. 1] for at least 75%  cases  of  total number  ofseeds  tried for
a  pattern generato: The results  of  7bble 3.5 report  that the

randomness  quality of the patterns generated by the HCA  is
better than that of  GF(2)  CA,

4 DesigmofCanstollrrnfizedH(]t4TPG

The proposed scheme  extracts  the clustering of

prima,y inputs (PIs) and  the structural dependencies
among  the different hiera,zrhical moclules  of  the CUT.
Consider the example  circuit of  FVg.4 with  36 primary
inputs (PIs). [lb design a conventional  pseudo-randem TPG
for this circuit we  can  use a 36-bit length LFSRIGF(2) en,
In practice, for all types  of  CUT  with  36 Pls, the same

pseudo-random pattern generator or its variations are used
as  the TPG.  It can  be seen  that the Pls of  FVg.4 get grouped
into four 9-bit buses (A, B, C, and  E). It is logical to
assume  that all the 36 PIs of the CUT  are not independent
so  fhr as  their functionality is concerned.  The  9 PIs of

type A input to module  Mi are functionally simi1ar and

can  be considered  to form  a cluster  of  PIs rather  than

9 independent Pl  lines - each  carrying  a  single  bit, The

similar consideration  is valid for B, C and  E. The guiding
motivation  is - instead of  feeding the Pls of  a  cluster  of

9-bit bus from 9 cells  of  a  36-cell GF(2) C4, we  propose to
feed the cluster frorn a  cell  of  the 4-cell GF(29) CA.

eel)o

thu:

ft/Lr

oel:]ncATPe

   n-ts
iiilg] e-k:.ii:.a a-e ÷:

Fig. 4: High-leve] rnodel  for a  CUT  &  the HCATPG

Next, on  further analysis  of  the module  Mi, it can  be

observed  that the 9-members of ctuster  A  [E] are  divided

in three groups (sub-ctusters), each  group containing  3 PIs
and  fed into three different sub-modules  (MUXi, MUXi,
and  MUX3), Similar cases  can  be observed  for other blocks
(M2, M3,,,.), It is very  rnuch  logical to assume  that within

a  ctuster,  the  intra sub-cluster  PIs are  functionally more

closer in comparison  to the inter sub-cluster  PIs. The
functional dependencies of  the  PIs in a  sub-cluster  are  to

be reflected in designing the TPG  cells, This problem can
be solved  if the GF(29)  en  cell  is viewed  hierarchically as

a GF(23') en cell. Without any  loss of generality, we  shal1

restrict  to two  level of  hierarchy for designing HCATPG,

  The major  design steps to arTive at the desired
customized  H(  4TPG  are  as  foIIows:

(1) Selectien of  p, q, and  n  for GF(2Pq) HCATPG.
(2) Identifying the dependency matrix  D.
(3) Designing the characteristic matrix  T,

4. fl Selle¢ tiorm of  p, q and  n

This step executes  partitioning of primary inputs to form
input clusters  &  sub-clusters  based on  their functional
information and  then identifies the  cardinalities of  the

clusters  &  sub-ciusters,  The  most  frequent cardinality  of

the clusters  (cl , c2,  ･ ･ ･, ck)  is chosen  as the value  of (p ×  q),
whereas  the most  frequent cardinality  ofsub-clusters  within

a  cluster  is taken  as  the yalue  of  the  pararneter p. The  value

of  n (number of  TPG  cells) is fixed as per the expression
n=r(lctllpq)1+r(lc2:lpq)1+･･･+r(lckllpq)1+

    r(1restPIsllpq)1
Fbr testing the circuit of  Fig.4, the HCATPG  is a 4-cell
GF(233) CA. The cells are marked  as O, 1, 2, and  3.
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4.2 IdemificationofDepemdencymatrix
If two  PI clusters  enter  into the same  circuit  module,

the structural dependencies is said to exist between them
and  these are  referred  to as dependent clusters.  It is

observed  that the dependent clusters  closely interact among

themselves to  detect the faults of  the circuit module.

Therefore, the'CA  cells feeding the dependent clusters

must  have dependencies among  themselyes.  For Fig,4, the

resulting D  matrix  is

              ..=:[9g･?i']
where  Pl clusters A, E, B, and  C  are respectively  fed from

the Cells O, 1, 2, and  3,

4.3 DesigmofChara ¢ teristilcMatrixT

The non-zero  value  
`

 1 ' of  the D  matrix  is next  replaced  with

a  weight  value  (Bj) from  the set  W={B,  52, B4, ･･･}, to
designtheTmauixoftheHCA.Thebasicalgorithmicsteps

to arrive  at the  characteristic  rnatrix T  of  the  HC4TPG  are

noted  in [9]. In the design, to customize  the HCATPG,  the

weights  of  T  are  tuned  depending on  the test requirement  ef

the CUT.  The tuning is perfbrmed in two  steps: the m(v'or

andminortuning,

  Major tuning: This step  involves the fixing of  the
weight  value  (6J') for a  HenTPG  cell. For example,  to

design the T matrix  of  the HCATPG  for the CUT  of

ng.4, the 1's of the D, are replaced  by the weights  frem

the set  {B,B2,B4,･･- }. The  7} noted  in Hg.4  results  in
maximum  fault coyerage  for the CUT  and  the  weight  values

B2, S, S32, and  S are fixed for the HCATPG  cell O, 1, 2, and
3 respectively.

  Minor  tuning: The  Bha,i. is a  q ×  q mauix  having

its elements  from the set  {O,or,a2,･･･, ct(2P+i}} E
GF(2P), The  minor  tuning of TPG  is done by stmctural
modifications  of the weights  fixed through major  tuning -

that is, Sj is fine tuned  by  changing  the relative  positions
of  ais within  the  Bj to improve the fault ethciency  of  the

design, The final stmcture  of  the weight  B for the example
design is shown  in Fig.4.

4.4 ExperfimentallResults
The  basic requirement  for the proposed customized  on-chip

test pattern generator i's the availability of  the hierarchical

structural description of  the CUT, The circuits specified

in Column l of  7labte 4.4 are  designed from ISenS  &  ITC

benchmarkcircuitstogetthehierarchicalstructuralnellists,
7lable 4,4 depicts the summary  of the fault coverage  shown

by GF(2)  CA  and  GF(2Pq)  HCA  based designs in columns

4 and  5 respective]y.  A  CUT  is tested for three seeds  (taken
randomly)  for both the designs. The  fault coverage  figures

for a  CUT  are  achieved  on  applying  a  fixed number  of

test vectors mentioned  under  the column  heading 7lest L{ic.
Detail experimental  setup  is noted  in [9], lt is observed  that

the HCATPG  resulted  in higherfautt coverage  than

could  be achieved  with  GF(2)  CA  based TPG,

      Tlab]e 4,4: fest results  ef  customized  HCATPG

s

Circuit#TestFaultcoverage(%)
namepveoVec.HCA GF(2)
cl36/740099.18 98.57
c232/328099.56 99.48

c34113245098.95 98.29
c4331253ooO99,l2 98.76
c56714860099.34 99.34
c682/6470098,9S 98.81
c77or1440099.08 98.47
sl24/425oo99.28 98.75
s223/24140097,76 97,20

crepresentscombinational,srepresentssequential

Concllusion

that

The paper presents an  innovative concept  of hierarchical

cellular automata,  The  theory of  extensionfietd  is utilized

in designing the hierarchical ( A (HC4). The HC4  can

be employed  to model  inherent hierarchy within  a  physical
system.  The eficiency  of  the H( A machine  is tested in an
engineering  application  - VLSI testing,
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