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ABSTRACT  A  numerical  method  based on  adjoint  fbrmulation is preposed to generally evaluate  boundary
condition  effects  on  convection  heat transfer characteristics,  The  main  features ofthe  present approach  can  be
summarized  as fbllows: In the fbrced convection  problems, a  numerical  solution  ofthe  adj  oint  problem gives the heat
transfer characteristics, such  as  the total heat transfer rate  or  the temperature  at a  specific  !ocation, under  arbitrary

therma] boundary conditions.  In the mixed  convection  problems, we  can  construct  a  kind of  sensitivity  function from
the solutions  ofthe  base and  adjoint problems. The sensitivity  function enables  us  to predict the change  ofheat

transfer characteristics for arbitrary  thermal  and  flow boundary perturbations.

Kay}vords: Convection Heat Transfer, Boundary  Condition,IntegralEquation,AdjointPreblem,NumericalAnalysis

1. INTRODUCT]ON

     With recent  progress in numerical  sirnulation  techniques

[1-3], a  large number  ofnumerical  results fbr convective  heat
transfer have been reported  under  various  configurations  [4],
Although conventional  numerical  methods  enable  us to pre-
dict the heat transfer characteristics,  each  result  gives only  a

particular solution  under  the  specific  boundary condition.  In
other  words,  the heat transfer characteristics obtained  under

such  a specific boundary condition  are  no  longer meaningfu1
ifthe boundary condition  is modified.  For example,  even  un-

der uniform  thermal  boundary conditions,  the heat transfer
characteristics  under  a  uniform  heat flux condition  are  differ-
ent  from that under  an isothermal condition  [5-7].
     In this paper, we  firstly propose an  adjoint  numerical

approach  to forced convection  heat transferproblem  to evalu-
ate  the heat transfer characteristics  under  arbitrary  thermal

boundary conditions.  Using the numerical  solution  ofthe  ad-

joint problem, which  can  be derived from the linearity ofthe

energy  equation  of  forced convection  heat transfer, we  can

predict the total heat transfer rate  or  the  temperature  at  a  spe-

cific  location under  arbitrary thermal  boundary conditions,
Secondly, we  extend  the adjoint  method  to mixed  convection

heat transfer problem. In the mixed  convection  problem, its

adjoint  problem cannot  be derived directly, because the cou-

pling of  the  flow and  temperature  fields makes  the  energy

equation  nonlinear. Thus  we  introduce perturbations from the
base boundary conditions,  and  then  derive the  adjoint  opera-

tor fbr the perturbation problem, Using the numerical  solu-

tions of  the base and  the  adjoint  problems, we  can  construct  a

kind of sensitivity  function, The  sensitivity function enables

us  to predict the change  of  heat transfer characteristics  not

only  for arbitrary  thermal  boundary perturbations but also  fbr

arbitrary  flow beundary perturbations.

2. MAI-HEMAT-ICAL FORMULAI-ION

     Consider a  convection  field Q  with  boundary F. Using

the assumption  of  an  incompressible Boussinesq fluid and

adopting  an appropriate  nondimensionalization,  we  can  write

the goyerning equation  ofconvection  heat transfer as

      v･u=o  (I)

(u･v)u=-vp+Au+Grei (2)

             1

     
u･Ve=

 p, 
Ae

 (3)

where  u  is the  nondimensional  velocity  vector,  p  is the
nondimensional  pressurc,j is the unit  vector  parallel to the

gravitational force, 0is the nondimensional  temperature,  and

Gr  and  Pr are  the  Grashofand  Prandtl numbers.  We  suppose

that the boundary r consists  ofDirich]et  and  Neumann  bound-

aries  fbr both thermal  and  flow fields, namely

      F=: I7eUF,  
=F,,Ur.

 (4)
where  F  and  r are  the Dirichlet and  Neumann  boundaries for
      eg

the therrnal field, while  F,, and  F. are those fbr the flow field.
On these boundaries, the boundary conditions  are  given as

      e=e  on  r, (s)

qi1oe --eu･n=
Pr 0n

q- on  F, (6)
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u=il  on  F
           tt (7)

         Ou -

     
cT
 
=-

 on 
-pn

 
=o

 
on

 
F.

 (s)

where  g and  cr denote the nondimensional  heat fiux and  stress

vector,  respectively.

     Under these assumptions,  the  purpose ofthe  present
study  is to predict the heat transfer characteristics,  such  as

tota] heat transfer rate  or  temperature  at a  specific  location,

under  arbitrary  boundary conditions.

2.1 Forced  Convection HeatTransferunder
   Arbitrary Thermal Boundary Conditions

     In forced convection  problem, i.e., Gr  
=O

 in Eq. (2), the

thermal  fie]d is goyerned by a linear equation  with  space-de-

pendent coefficient  u, Thus, defining a  linear difTerential op-

erator  A, we  rewrite  Eq. (3) as
      AO  i[O  (9)
where

               I
      A=u･V-  A
              Pr

Then the weak  so]ution  ofEq.  (9) can  be expressed  as

     L(Ao)o"dn-o
where  e' is a  test function defined in 9.
gence theorem  to Eq. (1 1),
equatlon:

     Jl,e(A'e')dg)-jl.(q'e-e'q)dr
where

Oo)

(11)

          Applying the diyer-
we  obtain  the fo11owing integral

(12)

       . Ioe

     
q=pr  on (i3)

and  A' is the adjoint  operator  forA. Because the differential
operator  A is not  selfLadjoint,  the adjoint operator  is given as

       , 1
      A =u･V+                  A  (14)
               Pr

From  Eq, (l2), ifwe can  eliminate  the left-hand side  integral,
we  can  obtain  seyera]  boundary integral relationships,

     For this reason,  we  firstly adopt  an  adjoint  problem,
such  that

      A'e' -o  (15)
and  set  the boundary conditions  for the adjoint  problem as

       + *

      e 
=1  on  F,, q =O  on  r, (1 6)

Then we  have the fbllowing boundary integral relationship:

      qE l,qdF 
=

 l, q'odF-C,,  e'q dl' (m

Equation  (l7) indicates that if we  numerically  calculate  the

ad.ioint  equation  (15) under  the boundary conditions  (16) in-
stead  of  solving  the  origina]  equation  (9) under  particular
boundary conditions,  we  can  predict the total heat transfer
rate  under  arbitrary  thermal  boundary conditions.  Thus, the

adjoint  heat flux q" and  the adjoint temperature  e', both of
which  can  be obtained  from the numerical  selution  ofthe  ad-

joint problem, can  be regarded  as  influence functions ofthe
boundary temperature  and  the boundary heat flux on  the total

heat transfer.

In asimilar  fashion, ifwe

  A'e' -  fi(g)

under

choose  the acljoint  problem as

       - *

      e =O  on  F,, q =O  on  F,

we  get the fo11owing relationship:

e(g) =

 Jl.,, q'edF  
-
 L,, o'q dr7

(18)

(19)

(20)

where  4is a  specific  location in the fieid. Equation (20) implies
that ifwe solve Eq. (18), which  can  be calculated  numerically

by setting  a point heat source  at 4 we  can  predict the therma]

boundary condition  effects  on  a  specific  location tempera-

ture. Moreover, ifwe replace  the point heat source  on  the [eft-

hand side  ofEq.  (18) with  heat source  distribution with  a finite
area,  we  can  evaluate  the mean  temperature within  the area

under  arbitrary  thermal  boundary conditions.

2.2ConvectionHeatTransferunderArbitrary
Therma]  and  FIow  Boundary  Perturbations

     For natural  or  mixed  convection  heat transfer, unfortu-

nately,  its adjoint operator  cannot  be derived directly, because

the coupljng  ofthe  flow and  temperature  fields causes  nonlin-

ear heat transfer characteristics, Thus, we  introduce perturba-
tions from the base boundary conditions,  and  then derive the
acljointeperatorfortheperturbationproblem.

     Let us  suppose  that the temperature,  heat flux, veloc-

ity and  stress  on  their given boundaries change  from the base

distributions, such  that

     0=b+b'  on  F,, q=q-+qny on  r,.

     u==it+il  on  F., o=ff+a  on  F. (2i)
where  - denotes the perturbation. Then we  assume  that the

velocity,  pressure and  temperature  will  also  change  slight]y

from their base distributions to

    u=a+rr,  p=p-+p",  e=o+e  in g  (22)
Substituting Eqs. (22) into Eqs. (1) to (3) and  neglecting  the

second  order  ofthe  perturbations, we  obtain the first-order

perturbation equations,  which  can  be expressed  in a  matrix

form as

whereAe=o

a-[p,il,b]"

A=o

v

v  fi.v+(vit)T=A

o vb

o-aru-･v-
 .J1

  APr

(23)

(24)

(25)

Since the governing equations  ofthe  perturbations are linear

as  shown  in Eq. (25), we  define a test function vector  as

     a*=[p-zu"e]]
and  consider  the fbllowing weak  solution  ofEq.  (23):

L[i']JAUdg)-o

(26)

(27)
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Applying divergence theorem  to Eq. (27), we  arriye  at  the next
integralequation:

     t, [ip']J A' di 'dg)  -  t(q" 
-e
 - b' qN +  cr* ･ uN - u"  ･ a) dr'

                                           (28)
where  A' is the acljoint  operator  matrix  cerresponding  to A,
and  A'possesses the form as

A=o

v

v .-.v+(fiv)T+A

o Grl"

oov

      1
it･V+  A
     Pr

(29)

     Equations (28) and  (29) derived above  correspond  to

Eqs. (12) and  (14) in the forced convection  problem. Thus, our
basic idea presented  in the previous section  can  easily  be
extended  to mixed  convection  problems for arbitrary  therma]

and  flow boundary perturbations.
     According to Eq. (28), ifwe choose  the adjoint  prob-
]em as

under

 -.wtA
 ip =O

0'=1  on  F,, 4=O  on  r,,

(30)

      fus reF
     u=O  on  F.,o=O  on  r. (31)
then  we  can  predict the change  oftotal  heat transfer rate  on

the Dirichlet boundary. The result  is

    e i  L,,qNdF
       

-

 S, 4DdF - L Je'qnydr +  f,f,i' 
･
 cr dF - Su: 

'
 
･
 adr

                                           (32)
Equation (32) means  that the change  oftotal  heat transfer rate
can  be obtained  under  arbitrary thermal and  flow perturba-
tions by solving  numerical}y  the adjoint problem under  the                                        -.- h.
boundarv conditions  (31). Thus, the distributions of  q , e' ,

5S and  u-', a]1 ofwhich  will  be obtained  from a  numerical

solution  ofthe  adjoint  problem, can  be regarded  as  sensitivity

functions ofthe  perturbations oftemperature,  heat flux, ve-

[ocity and  stress  for the total heat transfer change.

     In addit{on,  if we  set  the adjoint  problem as

      A"i'=[o,o,fi(4)]i' (33)

underHo"

 ..o  on  F,, qN'=O  on  F,,

3. NUMERICALEXAMPLES

     To demonstrate the present approach  to the convec-

tion heat transfer problems, we  present numerica]  examples

for forced convection  heat transfer and  for mixed  convection

heat transfer. It should  be noted  that the numerical  examples

presented below have no  practical meaning,  but wil]  give the
illustration ofthe  present method.

3.1 Application to Forced  Convection  HeatTransfer

     As an  application  ofthe  present method  to forced con-

vection  problems, we  computed  the adjoint equations  defined

in Eqs. (15) and  (18) in a  square  cavity.  the flow ofwhich  is we1I
known as a Lid-driven cavity flow as  shown  in Fig. ] , In the
computations,  a  standard  flow and  temperature  calcu]ation

code  based on  the  finite difference method  [1] was  employed,

in which  the direction ofthe  velocity vector  was  reyersed  to

compute  Eqs. (15) and  (18) instead ef  Eq. (9),
     As the first example,  let us  consider  the total heat trans-

fer rate  from the  bottom surface  under  its arbitrary  tempera-

ture distributions. Ib  obtain  the influence function ofthe  bot-

tom-surface  temperature  on  the total heat transfer rate.  we

ca]culated the adjoint problem, namely

           .1.

      u-ve  =-                  AO  (36)
               Pr

undere'=1

 on  Fh, e'=O  on  F.,

     4=:O on  -uF.
Then  we  can  get the fo11owing relationship  from Eq. (17):

      e =' S., qdF  
=

 I,., q'e  ctF

     The  influence function, ,
bottom surface,  is indicated in Fig. 2, in w
fiux distribution under  an  isotherma] condition  is also

(3D

(38)

                       i.e, the acljoint  heat flux on  the

                               hich the usual  heat
                                          indi-

cated by a dashed line. From  Fig. 2, the adjoint  heat flux on  the

bottom surface  increases from right  to [eft, while  the usua]

heat flux decreases in that direction. This suggests  that rais-

u  =,- loo, e=o

     ti=O on  F., cr'=O on  r. (34)
then we  can  predict the temperature  change  at a specific loca-
tion 4, such  that

    
'e'(4)

 
-

 J;. ij''-edi' 
-
 L,, D'qfudF +S.t, 

'

 
･
 fidF 

-
 j;. if ･ ttdi7

                                           (35)
under  arbitrary  thermal  and  fiow boundary perturbations.
     It is interesting to note  that if we  set  a  point pressure
source  or  a  point velocity  source  instead of the point heat

source  in Eq, (33), we  can  predict the  change  ofpressure  or

velocity  at a specific  location 4 under  arbitrary thermal and

fioN-' pcrturbations,

(O,1)

Ft

{o,o)

F,, -
                         (1,1)

Fh

Fr

(t,o)

Fig, 1 Configuration offbrced  convection  heat

     transfer in a square  cavity
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ing the surface  temperature  from right  to lefi, we  get a  1arger
heat transfer capability  even  if the bottom surface  has the
sameaveragetemperature.

     As  the  second  example  in the  same  lid-driven cavity,
let us  evaluate  the temperature  at  the center  ofcavity  under

arbitrary  surface  heat flux distributions on  side  and  bottom
walls.  This corresponds  to the case described in Eq. (1 8). Thus,
we  computecl  the adjoint problem

         ,1,

                  +ti(4)  (3g)     u･ve          =--Ae

             Pr

where  4 is the center  ofthe  cavity.  According to Eq. (19), the

boundary conditions  for this problem become

     o'=o  on  r.,

      
.

 (40)     q 
=O

 on  F, uF.  U-

Then  we  can  predict the temperature at 4 as

     e(e) 
-

 
-L,

 e'q dF 
-
 L, e'q di' - J?. e'q dF

(41)
     From  the numerical  solution  ofthe  adjoint  problem, the

adjoint  temperature disnibutions on  the side and  bottom walls
are  indicated in Fig. 3, Figure 3 shows  that the heating effects

on  the temperature  at  the center  ofcavity  is the largest at the
upper  portion ofthe  right-side  wall.  This suggests  that ifwe
install a  heater on  the wall,  the upper  portion ofthe  right-side

wali  is the best position to warrn  the  center  of  the  cavity.

3,2 Application to Mixed Convection Heat Transfer

     As an application  to mixed  conyection  heat transfer,

let us  consider  a  square  cavity  with  several  inlets and  an  out-

let as  shown  in Fig. 4. Thepurpose  of  this example  is to pre-
dict the change  oftemperature  at a  specific  location 4 where

is the center  ofthe  cavity in this exampLe,  when  the inlet tem-

perature and  inlet flow are  varied  from base conditions  ( e 
=
 1,

fi = (1OO,O)'). After a computation  ofthe  base probtem, we

numerically  solved  the adjoint  problem, which  can  explicitly

be written  as

       -i

     v･u  =o

     (n･v+(fiv)')u-" 
=
 
-vls'

 
-
 Au" 

-
 

Mev
 

Ne'

                                       (42)

     cr･vP'--IilT,ANe'-cru-il'･j+6(g)
and  the boundary conditions  adopted  are

     
'e4'.o

 on  r,ur,uF,uF,,uF,uF.,

     t.-
     q=O  on  F,ur.,

     il'=tO on  F,ur2uF,uF,,uFburivF.,

     cr=O  on  F. C43)
Then we  get the fo11owing boundary integral relationship  from

Eq.(35):

     D(g) 
-

 I,, (ofD + a' ･ u-')di

         'L,(eN'D+li'･uN)`if

         +L,(qN'b+U'･urw)di'  (44)

Equation (44) implies that ifwe get acljoint  heat fiuxes qN' and

adjoint  stress  cr' at the inlets, we  can  predict the temperature

change  at C for arbitrary  temperature  and  flow perturbations
at the inlets. In this example,  the base and  the adjoint prob-
lems were  computed  by a standard  finite difference method[  1]

as  well  as  that in the previous example.

e, =

e,=

e,=

e=: o, u=o

"11=o"11trL

e+  +L
--  I
e+e!,u2=ti+agrF,

-e+e,,
 u, ="-+uN,  -r

                  1

rtt

Pr =  O.71

X4･j

Gr=5x1o`

-

r ,,t,,,,,,i･fi,･･

 v

Fr."11it
 -outr

Fig.4

yv

tx,u
e=  o, u=o

Configurationofmixedconvectionheat

transfer in a square  cavity

(et:1, ti=(1oo,o)')
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Fig. 5Influences ofthermal  and  flow perturbations at inlets on  temperature  at the center  ofcavity

     Figure 5 shows  the adjoint  heat flux and  the  adjoint

stress distributions obtained  on  the left side  ofthe  cavlty.

According to Fig. 5 (a), the adjoint  heat fiux distributions at

lower two inlets are positive. This indicates that if the tem-
perature at lower two  inlets increase, the temperature  at the

center  of  cavity  also  increases. On the other  hand, the in-

crease  of  temperature  at inlet 3 causes  the temperature  de-
crease  at the  center  ofcavity,  because the adjoint  heat flux at

this inlet is negative.  From  Fig. 5 (b), we  can  raise  the tempera-
ture at the center  ofcavity  by simp]y  increasing the horizontal
velocity  components  at all inlets. Moreover, Fig. 5 (c) sug-
gests that the vertical  velocity  components  at  the upper  two

inlets should  be decreased to increase the temperature at the
center  of  cavity,  while  that at inlet 1 should  be increased.

     In order  to confirm  the  predictions discussed above,
we  carried out  direct numerical  sirnulations ofmixed  convec-

tion fields with  small  thermal  and  flow perturbations at  the

inlets. Figure  6 shows  the results  obtained  under  typical in]et

conditions;  these are  chosen  from the predictions in Fig. 5 for
the  case  oftemperature  increase (a) and  for the case  oftem-

perature decrease (b), such  that

(a)

(b)

{
{

e, =:  Ll,qb=+loo

o, =
 e.gop1=-10o

e,=1.o, e,=o.g

, ql=-lee,  q,=-100

where  op is the  inlet flow angle  measured  from th

line. As  shown  in Fig. 6,
cavity  can  be well  controlled  by slightly  chang

conditions  suggested  by the present method

the temperatures  obtained  by the direct simulations  are com-

pared with  those predicted from the present method,  which

appear  in parenthesis. The agreement  is fair]y good.

     It should  be noted  again  that the adjoint  variables  ob-

tained in mixed  convection  problems are  sensitivit[es  fbr ther-

mal  and  flow perturbations. Although the sensitivity  provides
no  idea for the limitation ofthe  perturbation, it will  provide
usefuI  information fbr therma[  design, especially  when  com-

bined with  gradient-based optimization  strategies.

e, =1.o,  e, =1.1

, q!=+loe,  op] m-+loo

                 e  horizontal

the temperatures  at the center  of

                 ing the inlet
               , In the figure,

O.9 1.l

lu =  100.

e=  o.g 

      
e-1.o

      
e-  1.1 

e(b-O.847(O.858)

e!! 1,

e=  Lo

(a) Ibmperature increase conditions

e(e-O.737

o.o e.2

e=:  1.1

      
e=  1.o 

      
O=O.9  

Base conditions  (no perturbation)

tt.t
O.4 O.6 O.8 1,O
      0

o(e-o.6og(o.6o3)

(b)[[bmperaturedecreaseconditions

Fig. 6 Therrnal and  flow inlet conditions  to increase and  decrease temperature at e
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4. CONCLUSIONS NOMENCLATURE

     In this paper, we  propose a numerical  approach  based
on  adjoint  formulation ofconvection  heat transfer to predict
the heat transfer characteristics. The  main  features of  the

present approach  can  be summarized  as  fbl[ows:

     (1)Bynumericallysolvingtheadjointproblemforforced
convection  heat transfer, the total heat transfer  rate  or  the

temperature  at a specific location can  be obtained  under  arbi-

trary therrnal boundary conditions.  The computation  time for
the adjoint problem is equal  to that required  in a  numerical

simulation  of  forced convection  heat transfer under  a specific

thermal  boundary condition.

     (2) For mixed  conveetion  heat transfer problem, by in-
troducing  perturbations from the base boundary conditions,

the ad.ioint  system  can  be deriyed for the perturbation prob-
]em. Thus, by numerically  solying  the base and  the  adjoint

systems,  the change  oftotal heat transfer rate  or  the change

oftemperature  at a  specific  location can  be predicted not  only

fbr arbitrary  thermal  boundary perturbations but also  for arbi-

trary flow boundary perturbations.

AAGr'JnPrpequxy64,Fqean4differentiaioperatordefinedinEq.(1O)

differentialoperatormanixdefinedinEq.(25)
Grashofnumber

unit vector  parallel to the gravitational force

unit  norma]  vector  to the boundary
Prandt]nurnber
nondimensional  pressure
total heat transfer rate
nondimensional  heat flux
nondimensionat  velocity  vector

horizontalcoordinate
verticalcoordinate

Dirac's delta function
vector  defined in Eq. (24)
boundary

angle  measured  from horizontal line

nondimensionaltemperature

nondimensional  stress  vector

convectiondomain

space  vector  at a specific location
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Subscnpts1,2,3btoruquoa
inlet number  defined in Fig. 4
bottomwall

leftwaHoutlet
 defined in Fig. 4

rightwall

upperwal]

boundary specified  via  heat fiux
boundary specified  via  velocity

boundary specified  via  temperature

boundary specified  via  stress

SuperscriptsT*transpose

adjoint  operator  or  acljoint  variable

given or  base value

perturbation from base value
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