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ABSTRACT

A numerical method based on adjoint formulation is proposed to generally evaluate boundary

condition effects on convection heat transfer characteristics. The main features of the present approach can be
summarized as follows: In the forced convection problems, a numerical solution of the adjoint problem gives the heat
transfer characteristics, such as the total heat transfer rate or the temperature at a specific location, under arbitrary
thermal boundary conditions. In the mixed convection problems, we can construct a kind of sensitivity function from
the solutions of the base and adjoint problems. The sensitivity function enables us to predict the change of heat

transfer characteristics for arbitrary thermal and flow boundary perturbations.
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1. INTRODUCTION

With recent progress in numerical simulation techniques
[1-3], a large number of numerical results for convective heat
transfer have been reported under various configurations [4].
Although conventional numerical methods enable us to pre-
dict the heat transfer characteristics, each result gives only a
particular solution under the specific boundary condition. In
other words, the heat transfer characteristics obtained under
such a specific boundary condition are no longer meaningful
if the boundary condition is modified. For example, even un-
der uniform thermal boundary conditions, the heat transfer
characteristics under a uniform heat flux condition are differ-
ent from that under an isothermal condition [5-7].

In this paper, we firstly propose an adjoint numerical
approach to forced convection heat transfer problem to evalu-
ate the heat transfer characteristics under arbitrary thermal
boundary conditions. Using the numerical solution of the ad-
Jjoint problem, which can be derived from the linearity of the
energy equation of forced convection heat transfer, we can
predict the total heat transfer rate or the temperature at a spe-
cific location under arbitrary thermal boundary conditions.
Secondly, we extend the adjoint method to mixed convection
heat transfer problem. In the mixed convection problem, its
adjoint problem cannot be derived directly, because the cou-
pling of the flow and temperature fields makes the energy
equation nonlinear. Thus we introduce perturbations from the
base boundary conditions, and then derive the adjoint opera-
tor for the perturbation problem. Using the numerical solu-
tions of the base and the adjoint problems, we can construct a
kind of sensitivity function. The sensitivity function enables
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us to predict the change of heat transfer characteristics not
only for arbitrary thermal boundary perturbations but also for
arbitrary flow boundary perturbations.

2. MATHEMATICAL FORMULATION

Consider a convection field Q with boundary I'. Using
the assumption of an incompressible Boussinesq fluid and
adopting an appropriate nondimensionalization, we can write
the governing equation of convection heat transfer as

Vu=0 Q)]

(u-V)u=-Vp+Au+Gréj [0))
1

u-vé=—A~0 3
Pr ®

where u is the nondimensional velocity vector, p is the
nondimensional pressure, j is the unit vector parallel to the
gravitational force, & is the nondimensional temperature, and
Gr and Pr are the Grashof and Prandtl numbers. We suppose
that the boundary I consists of Dirichlet and Neumann bound-
aries for both thermal and flow fields, namely

=T,ul, =I,ul, @)
where I, and F are the Dirichlet and Neumann boundaries for

the thermal ﬁeld while I', and I"_ are those for the flow field.
On these boundaries, the boundary conditions are given as

6=6 on T, )
1 06 _
qzﬁg—au-n:q on I, ©)
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u=u on T, @)
ou _
=—-pn=0c on [
on pP - ®)

where g and o denote the nondimensional heat flux and stress
vector, respectively.

Under these assumptions, the purpose of the present
study is to predict the heat transfer characteristics, such as
total heat transfer rate or temperature at a specific location,
under arbitrary boundary conditions.

2.1 Forced Convection Heat Transfer under
Arbitrary Thermal Boundary Conditions

In forced convection problem, i.e., Gr =0 in Eq. (2), the
thermal field is governed by a linear equation with space-de-
pendent coefficient u. Thus, defining a linear differential op-
erator 4, we rewrite Eq. (3) as

AB=0 )]
where

i
A=u-V-—A
- (10)
Then the weak solution of Eq. (9) can be expressed as
[(40)97a=0 (1)

where 6 is a test function defined in Q. Applying the diver-
gence theorem to Eq. (11), we obtain the following integral
equation:

[o(a6)da= [ (g0-6g)ar 12)
where
| 06
9= o 13)

and 4" is the adjoint operator for A. Because the differential
operator A4 is not self-adjoint, the adjoint operator is given as

. 1
A =uV+—A
Pr 19

From Eq. (12), if we can eliminate the left-hand side integral,
we can obtain several boundary integral relationships.

For this reason, we firstly adopt an adjoint problem,
such that

40 =0 15
and set the boundary conditions for the adjoint problem as

=1 on I,, ¢=0 on T, (16)

q

Then we have the following boundary integral relationship:

0=| qdr =] q'odr-| o'gdr (7

Equation (17) indicates that if we numerically calculate the
adjoint equation (15) under the boundary conditions (16) in-
stead of solving the original equation (9) under particular
boundary conditions, we can predict the total heat transfer
rate under arbitrary thermal boundary conditions. Thus, the
adjoint heat flux ¢" and the adjoint temperature 8°, both of
which can be obtained from the numerical solution of the ad-
joint problem, can be regarded as influence functions of the
boundary temperature and the boundary heat flux on the total
heat transfer.
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In a similar fashion, if we choose the adjoint problem as

A6 = é(f) (18)
under

=0 on T,, ¢=0 on T, (19)
we get the following relationship:

0(&) = J.r,, q'0dr - J.]_q 6 qdr (20)

where & is a specific location in the field. Equation (20) implies
that if we solve Eq. (18), which can be calculated numerically
by setting a point heat source at & we can predict the thermal
boundary condition effects on a specific location tempera-
ture. Moreover, if we replace the point heat source on the left-
hand side of Eq. (18) with heat source distribution with a finite
area, we can evaluate the mean temperature within the area
under arbitrary thermal boundary conditions.

2.2 Convection Heat Transfer under Arbitrary
Thermal and Flow Boundary Perturbations

For natural or mixed convection heat transfer, unfortu-
nately, its adjoint operator cannot be derived directly, because
the coupling of the flow and temperature fields causes nonlin-
ear heat transfer characteristics. Thus, we introduce perturba-
tions from the base boundary conditions, and then derive the
adjoint operator for the perturbation problem.

Let us suppose that the temperature, heat flux, veloc-
ity and stress on their given boundaries change from the base
distributions, such that

6=60+6 on Iy, g=q+q on T,

u=u+u on I, o=0c+0 on [, 2D
where ~ denotes the perturbation. Then we assume that the
velocity, pressure and temperature will also change slightly

from their base distributions to

u=u+i, p=p+p, 0=60+6 in Q 2)
Substituting Eqgs. (22) into Egs. (1) to (3) and neglecting the
second order of the perturbations, we obtain the first-order

perturbation equations, which can be expressed in a matrix
form as

Ag=0 3)
where
~ ~17
¢:[13,i1,9] (4)
0 \% 0
A=\V @-V+(Vii) -A  -Grj
_ 1 @3)
0 Vo TvV-—A
Pr

Since the governing equations of the perturbations are linear
as shown in Eq. (25), we define a test function vector as

Y * —~* ek I r
¢ =[p.a.0] 6)
and consider the following weak solution of Eq. (23):
~e1l o~
jn[gs] AgdQ=0 @7
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Applying divergence theorem to Eq. (27), we arrive at the next
integral equation:
~17 * 77 % —~ T -t ~ % ~ ~F —~
L[¢] A dQZ_[r(q 0-0qg+0 -u-u -O')df

28)
where A" is the adjoint operator matrix corresponding to A,
and A" possesses the form as

0 \% 0
A =|V @-Vv+@v) +a o
1 (29)
0 Grj u-v+—A
Pr

Equations (28) and (29) derived above correspond to
Eqgs. (12) and (14) in the forced convection problem. Thus, our
basic idea presented in the previous section can easily be
extended to mixed convection problems for arbitrary thermal
and flow boundary perturbations.

According to Eq. (28), if we choose the adjoint prob-
lem as

Ag =0 (30)

under

*

0 =1 on I,, g =0 on r,,

=0 on I

u?’

6 =0 on T, @
then we can predict the change of total heat transfer rate on
the Dirichlet boundary. The result is

J,, aar
jr,, G 0dr - Jr., 8'Gdr + jr& Sddr - jg* .&dr

0

Il

It

(32)
Equation (32) means that the change of total heat transfer rate
can be obtained under arbitrary thermal and flow perturba-
tions by solving numerically the adjoint problem under the
boundary conditions (31). Thus, the distributions of 67', 9,
o and #", all of which will be obtained from a numerical
solution of the adjoint problem, can be regarded as sensitivity
functions of the perturbations of temperature, heat flux, ve-
locity and stress for the total heat transfer change.
In addition, if we set the adjoint problem as

A¢ =[00,5¢)] (33)
under

8 =0 on r,, G =0 on r,,

=0 on I, 0°=0 on T, (34

then we can predict the temperature change at a specific loca-
tion £, such that

R

€N
under arbitrary thermal and flow boundary perturbations.

It is interesting to note that if we set a point pressure
source or a point velocity source instead of the point heat
source in Eq. (33), we can predict the change of pressure or
velocity at a specific location & under arbitrary thermal and
flow perturbations.
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3. NUMERICAL EXAMPLES

To demonstrate the present approach to the convec-
tion heat transfer problems, we present numerical examples
for forced convection heat transfer and for mixed convection
heat transfer. It should be noted that the numerical examples
presented below have no practical meaning, but will give the
illustration of the present method.

3.1 Application to Forced Convection Heat Transfer

As an application of the present method to forced con-
vection problems, we computed the adjoint equations defined
in Egs. (15) and (18) in a square cavity, the flow of which is well
known as a lid-driven cavity flow as shown in Fig. 1. In the
computations, a standard flow and temperature calculation
code based on the finite difference method [1] was employed,
in which the direction of the velocity vector was reversed to
compute Eqgs. (15) and (18) instead of Eq. (9).

As the first example, let us consider the total heat trans-
fer rate from the bottom surface under its arbitrary tempera-
ture distributions. To obtain the influence function of the bot-
tom-surface temperature on the total heat transfer rate, we
calculated the adjoint problem, namely

1

u-veo =-—AGg 36
Pr (36)
under
=1 on I,, =0 on I,,
g =0 on TI,UTl, 37
Then we can get the following relationship from Eq. (17):
0= qdr = q6ar G8)

The influence function, .i.e, the adjoint heat flux on the
bottom surface, is indicated in Fig. 2, in which the usual heat
flux distribution under an isothermal condition is also indi-
cated by a dashed line. From Fig. 2, the adjoint heat flux on the
bottom surface increases from right to left, while the usual
heat flux decreases in that direction. This suggests that rais-

‘ u=100,6=0
o1 w > )

(1,0)

Fig. 1 Configuration of forced convection heat
transfer in a square cavity
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Fig. 2 Influence of bottom surface temperature
distribution on total heat transfer
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Fig. 3 Influence of wall heat flux distributions
on temperature at the center of cavity

ing the surface temperature from right to left, we get a larger
heat transfer capability even if the bottom surface has the
same average temperature.

As the second example in the same lid-driven cavity,
let us evaluate the temperature at the center of cavity under
arbitrary surface heat flux distributions on side and bottom
walls. This corresponds to the case described in Eq. (18). Thus,
we computed the adjoint problem

A B
uVO =-—-86" +3(¢) (39)

where £ is the center of the cavity. According to Eq. (19), the
boundary conditions for this problem become

=0 on T,

g =0 on I,uT, UT, (40)
Then we can predict the temperature at £ as

6(&) = _Jr, 0 qdr - jr' 6'qdr —jrh 8'qdr
@1

From the numerical solution of the adjoint problem, the
adjoint temperature distributions on the side and bottom walls
are indicated in Fig. 3. Figure 3 shows that the heating effects
on the temperature at the center of cavity is the largest at the
upper portion of the right-side wall. This suggests that if we
install a heater on the wall, the upper portion of the right-side
wall is the best position to warm the center of the cavity.
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3.2 Application to Mixed Convection Heat Transfer .

As an application to mixed convection heat transfer,
let us consider a square cavity with several inlets and an out-
let as shown in Fig. 4. The purpose of this example is to pre-
dict the change of temperature at a specific location &, where
is the center of the cavity in this example, when the inlet tem-
perature and inlet flow are varied from base conditions (8 =1,
u = (100,0)"). After a computation of the base problem, we
numerically solved the adjoint problem, which can explicitly
be written as

Vi =0
a-V+(@v) )it =-Vp -Au - Ve

—_—

. It . “2)
u-ve =—P—A9 - Gri j+5(§)
r

and the boundary conditions adopted are
8 =0 on I,ul,ul,ul,ul,ul,,

G =0 on I,uT,

~%*

u =0 on INul,ulullul,ul,ul,,

o'=0 on T, @3)
Then we get the following boundary integral relationship from
Eq.(35):

B(&) = Ir. (°0+5" -@)ar
+J.rZ (Ej'@ﬂ?‘ -ii)df

+J'r3(c7°§+&' -ﬁ)a’l‘ (44)

Equation (44) implies that if we get adjoint heat fluxes § " and
adjoint stress & at the inlets, we can predict the temperature
change at £ for arbitrary temperature and flow perturbations
at the inlets. In this example, the base and the adjoint prob-
lems were computed by a standard finite difference method[1]
as well as that in the previous example.

=0, u=0
S
I T, 1
g I-‘/ ro
I Pr=071 T
_ o
0,=0+0,, u;=u+iu, =P T, x <
. I s I
6,=0+0,, u,=u+i,—»T, rys
| Gr=5x10* |5
6,=0+6,, u, =u+i, =T o
T 0
N 0=0,u=0

Fig. 4 Configuration of mixed convection heat
transfer in a square cavity
(6=1, w=(1000)")
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(a) Influence of temperature (b) Influence of horizontal (c) Influence of vertical
velocity component velocity component
Fig. 5 Influences of thermal and flow perturbations at inlets on temperature at the center of cavity
Figure 5 shows the adjoint heat flux and the adjoint perature decrease (b), such that
stress distributions obtained on the left side of the cavity. 0 =11 6. =10. 8.=09
According to Fig. 5 (a), the adjoint heat flux distributions at (@) { Lo TR e .
lower two inlets are positive. This indicates that if the tem- ¢, =+10% ¢, =-10° @, =-10

perature at lower two inlets increase, the temperature at the

center of cavity also increases. On the other hand, the in- (b) {6‘ =09 002 =19, 92 = .

crease of temperature at inlet 3 causes the temperature de- ¢, =-10° @, =+10° ¢,=+10

crease at the center of cavity, because the adjoint heat flux at where ¢ is the inlet flow angle measured from the horizontal
this inlet is negative. From Fig. 5 (b), we can raise the tempera- line. As shown in Fig. 6, the temperatures at the center of
ture at the center of cavity by simply increasing the horizontal cavity can be well controlled by slightly changing the inlet
velocity components at all inlets. Moreover, Fig. 5 (¢) sug- conditions suggested by the present method. In the figure,
gests that the vertical velocity components at the upper two the temperatures obtained by the direct simulations are com-
inlets should be decreased to increase the temperature at the pared with those predicted from the present method, which
center of cavity, while that at inlet 1 should be increased. appear in parenthesis. The agreement is fairly good.

In order to confirm the predictions discussed above, It should be noted again that the adjoint variables ob-
we carried out direct numerical simulations of mixed convec- tained in mixed convection problems are sensitivities for ther-
tion fields with small thermal and flow perturbations at the mal and flow perturbations. Although the sensitivity provides
inlets. Figure 6 shows the results obtained under typical inlet no idea for the limitation of the perturbation, it will provide
conditions; these are chosen from the predictions in Fig. 5 for useful information for thermal design, especially when com-
the case of temperature increase (a) and for the case of tem- bined with gradient-based optimization strategies.

ju| = 100 [
— 0.0 02 0.4 0.6 0.8 10

9=
0=
9=
6(£€=0.847(0.858) 6(5H=0.737 8(£&=0.609(0.603)
(a) Temperature increase conditions Base conditions (no perturbation) (b) Temperature decrease conditions

Fig. 6 Thermal and flow inlet conditions to increase and decrease temperature at £
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4. CONCLUSIONS NOMENCLATURE
In this paper, we propose a numerical approach based A differential operator defined in Eq. (10)
on adjoint formulation of convection heat transfer to predict A differential operator matrix defined in Eq. (25)
the heat transfer characteristics. The main features of the Gr  Grashof number
present approach can be summarized as follows: j unit vector parallel to the gravitational force
(1) By numerically solving the adjoint problem for forced n unit normal vector to the boundary
convection heat transfer, the total heat transfer rate or the Pr Prandt] number

temperature at a specific location can be obtained under arbi- p nondimensional pressure
trary thermal boundary conditions. The computation time for 0 total heat transfer rate
the adjoint problem is equal to that required in a numerical q nondimensional heat flux
simulation of forced convection heat transfer under a specific u nondimensional velocity vector
thermal boundary condition. X horizontal coordinate
(2) For mixed convection heat transfer problem, by in- y vertical coordinate
troducing perturbations from the base boundary conditions, ) Dirac’s delta function
the adjoint system can be derived for the perturbation prob- ] vector defined in Eq. (24)
lem. Thus, by numerically solving the base and the adjoint r boundary
systems, the change of total heat transfer rate or the change @ angle measured from horizontal line
of temperature at a specific location can be predicted not only 0 nondimensional temperature
for arbitrary thermal boundary perturbations but also for arbi- o nondimensional stress vector
trary flow boundary perturbations. Q convection domain
£ space vector at a specific location
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*

adjoint operator or adjoint variable
given or base value
perturbation from base value
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