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ABSTRACT  Numerical solutions  of  the hydrodynaTnic stability  equations  for buoyancy-induced flows

adjacent  to a vertical,  planar, isothermal surface  in cold  pure water  have been obtained  for various  values  of thc

density extremum  parameter R L=  (7;.-T.Jlr71,-T.Y. The  present numerical  study  yields neutra]  stability  results  for

the  region  ofthe  fiows corresponding  to O,O S  R  S O.1515, where  outside  buoyancy force reversa]s  arise.  Also, it
includes the first stability  analysis  by obtaining  the spatial amplification  of  disturbances. When  the stability

results  ofthe  present work  are  compared  to the preyious experimental  data. the numerical  resu]ts  agree  wel]  .

Keywords:  NeutFal StabiLity, Spatial Amplification,
         meter

Outside Buoyancy  Force Reversal, Density Extremum  Para-

1, INTRODUCTION

     The existence  ofa  density extremum  near  40C signi-

ficantly affbcts  the characteristics  of  buoyancy induced
flows in cold  water  (Gebhart[1]; Gebhart et  aL[21).  The
occurrence  of  bi-directional buoyancy  forces in the thermal
boundary ]ayer complicates  their stabi]ity  analysis.  This
study  is the continuation  ofHwang  et  aL  [3] to analyze  the

stabi]ity  of  laminar, vertical  natural  convection  flows in

cold  pure water  in the presence of  buoyancy force

reversals.  tn this part, we  treat the case  of  disturbances of

downflow, i e., outside  buoyancy force reversais.

     Our  resu]ts  are very  accurate  because the stability

equations  has been solved  using  an  adequate  computing

code  (COLNEW)  designed to accurately  solve  two  point
boundary-value problems (Ascher et aL  [4]; Bader and

Ascher [5]). Moreover, our  results  are  new  in that we  have
analyzed  the stabitity  by obtaining  the  spatial  amplification

contours  of disturbances ofthe  steady-state  solutions  found
ln this  prob]em by El-Henawy  et al, [6].
     Most of  the past stability  studies  utilize  the
Boussinesq  fbrmutation of  the density as  a linear function
of temperature,  such  as  for fiows in air,  warm  water  etc.

Recently, Gebhart et al. [2] haye comprehensiyely  reviewed

the literature in this regard,

     In the present study, the system  under  consideration

{as seen  in Fig.1) is quiescent, cold,  pure water  ad.iacent  to

a  vertical,  planar, isothermaL impermeable surface.  In this

situation  the  Boussinesq  approximation  does not  accurately

express  the buoyancy force,
     This is due to the existence  of  the density extremum

ofcold  water  (its density is maximum  at  Zn =
 4,029325  at 1

bar) in the thermal  boundary layer, A  considerable

buoyancy  force reversal  arlses  across the thermal  boundary

]ayer. To  predict the resulting  subtle  fiow patterns. the

fo11owing density extremum  parameter was  defined b>･
Gebhart and  Mollendorf[7]

    71n T  7:o
R=Z,

 
-
 T.

Cb

where  Z, and  7L, are  temperature  ofthe  isotherrnal surface

and  the temperature  of  the ambient  medium  (cold pure
water),  respectively.

     The  analysis  ofthe  steady-state  flows in lhe presenee
of  buoyancy force reversals  in the range  ofO  

<
 R 

<
 O.5 is

complex.  To  save space  we  do not  discuss these matters  in

detail here, but we  refer to Wilson and  Wyas  [8], and  Carey

and  Gebhart [9] for experimentally  observed  flows and  to

El-Henawy  et  aL  [6], Gebhart and  Mollendorf [101, and

Carey et aL  [11] for the representation  of  similarity

solutions  for such  flows.

     This study  is concerned  principally with  the
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.3 Detail of  the variation  of  mass-flow  rate

   fL ( oo  ) with  R  . The  marks  A, B, and  C  corres-

    pond to the three multiple  steady-state  selutions  for

    the base flow at R=O.1515.  From  El-Henawy  et

    al,  [6].

Fig. 2l]lustrationofdensitybehaviornear 7L,; R=O.1,

outside  buoyancy  force reversal,

presentation, for various  values  of  the density extremum

parameter R in the range  of  O.OSRSO.1515,  of

numerical  results  that predict realistic  physical conditions

of  stability  fbr the base flow generated by natural

convection  adjacent  to a  vertical,  isothermal plate (as seen
in Fig. 1) in cold  pure waten

     The hydrodynamic  stability  ofthese  base flows is of

special interest, since  under  these conditions  outside

buoyancy force reversals  (such as  those  seen  in Fig. 2) exert
a  strong  influence upon  the flow and  the multiple  steady-

state  solutions  ofEl-Henawy  et  at. [6] are  predicted to exist

(see Fig. 3),
     The numerical  study  of  the hydrodynamic stability

for non-Boussinesq  situations is difTicult as  mentioned  by
Hwang  et  aL  [3]. The  difficulty exists  partly because the

base flow itself is sensitive to buoyancy  force reversal  via

the nonlinear  buoyancy-force term  in the mathematical

model.  An  additional significant difficulty may  come  from

the presence ofa  singularity in the linear stability  equations

as  used  by Qureshi [12] and  Higgins [13]; see  also,  Higgins

and  Gebhart [14] and  Qureshi and  Gebhart [151, Thus,

reformulated  stability equations  of  Hwang  at  al. [3] to be
solved  is required  in order  to make  them  nonsingular.

     Due  to the difficulties mentioned  above,  the previous
numerica]  studies  were  limited to the stability  analyses  for
simple  cases  of  unidirectional  buoyancy force: Higgins [13]
forseveralvalues of  R with  1.0-<RS8.0  and  R=-O.5

(see also,  Higgins and  Gebhart [14]); Qureshi [12] for
R  = O (see also,  Qureshi and  Gebhart [15]),
     The experimental  studies  by Higgins and  Gebhart

[16] and  Qureshi and  Gebhart [17] in cold  water  indicate
that the density extremum  behavior was  found to delay

transition, compared  to  results  in water  at  room

temperature,

     The present numerical  study  includes neutral  stabi}ity

results  for the  region  ofthe  base flows corresponding  to
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. 4 Distributions of  vertica]  velocity  components  .fL 
'(n)

  ofthe  base fiows. The arrow  indicates increasing
  R=O.O,  O.05, O.10, O.11667 and  O,15.

O.OSRSO.1515  for PEII.6. In panicular, spatial

amplification  contours  ofdisturbances  are  obtained  at

R==O,1167 and  O.15. Also, neutral  stability  curves  are

obtained  at R  
=O.1515

 for the three steady-states  of  the

base flow which  were  found by El-Henawy et al, [6], The
effect  of  outside  buoyancy  force reversals  on  stability  wi][

be shown.

2. THE  GOVERNING  EQUATIONS

2.1 Base Flow

     The  similarity  equations  for steady  laminar base

flows (with the coordinate  definitions in Fig.1) are  well

known;  for example,  El Henawy  et aL  [6]), Gebhart
and  Mollendorf [10], and  Carey et  aL  [11]. Tb formulate
them  the  following nondimensional  quantities were  used  :

ij a  similarity  variable),  fb(o) (stream function), and

Ch (o) ) (temperature),
where

     o=  
Y4G.
 , yb (x, y) 

=

 ,orh  (o), eh (o) 
=

 fl i T7L]i (2a)
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and

            1 3

G  
=

 4(;Gr(x))1,  Gr(x) 
=
 
Ell2
 av･7b  

-
 7L. Ig(2b)

Here a7･ and  q are the thermal  expansion  coecacient  and

exponent,  respectively,  from the  density relation  of  Gebhart
and  Mollendorf [7]. For conditions  at  1 bar pressure and  no

salinity, a,-=9.297173 × 10'S ( 
eC)'q

 and  e-1.894816,
The equations  for the base flow in similarity  form are:

fl, +3.fi,fJ, 
-2h,2+6(q-RFg-1Rq)=o

 eg+3prfleL=o

with  boundarv conditions          J

(3a)(3b)

,ri,(o)-A(o)-A(co)-q(o)-1-q(co)-o  (4)

with  ti =;1  forupward  flow, ti =1
 fbr downward  flow;

see  Gebhart and  Mollendorf[10].  Pr 
=

 11,6 is the Prandta
nurnber  for cold  pure water.

     Here we  only  consider  upward  flows in the  range  O.O
sRsO.1515  where  outside  buoyancy force reversals

occur. The  boundary-value problem (3a, b)-(4) was  solved

on  intervals [O,o.] with  rl.=  23-･300 by using  two

computer  codes:  COLNEW  (Ascher et  al. [4]; Bader and

Ascher [5]) and  BOUNDS  (Deuflhard and  Bader [18]).
Examp]es of  dimensionless vertical  yelocity  profiles for
OsRs  O.15 are  given in Fig. 4,

     Buoyancy  force reversals  cause  significant  effects  on

hydrodynamic  transport. As  R increases from O to O.15, the
downward  buoyancy  force, near  the outer  edge  of  the
thermal  boundary layer, increases. For multiple  steady-

states  of  the base flow, the  downward  buoyancy force,
which  becomes stronger,  causes  an  outside  flow reversal  as

R increases from O,15 to O,1515.

     As  R increases from O to O,1333, the location of  the

single  point of  inflection in the profiles of  the  vertical

component  of  velocity  shifts  closer  to the isothermal
surface  (il=O): see  Fig. 4 and  Tleible 1. However, for

O. 1333  gRg  O. 1 5, the location of  point of  infiection remains

tli,, 
=
 O,97 and  does not change  significantly as R increases,

     The shift  of  the location of  point of  inflection

associated  with  its strength  -,rk''(O) might  increase the

limit of  stability  of  flow, just as  in forced flow problems.
This point wM  be discussed later.

2.2 The  Linear Stability Equation

     A  linear stability of  two  dimensional disturbances is

considered.  The disturbance quantities are  norma]ized  in

the fo11owing manner,  where  D  ancl  U  are  the characteristic

length and  velocity:

ip(o) 
-

 
ipu(i)

 , s(rp) 
-

 TbSiJt 
,H(ny)  

=

 :iY,)
                     x  v(}2

    a==dD,fi-7in,DS!,u-  . (s)
               UG                            4x

The reformulated  stability  equations  by Hwang  et aL  [3] are
used  to avoid  the singularity  in buoyancy force term, The
nonsingular  Orr-Sommerfeld equations  for buoyancy-
induced flows are:
x-momentum,

(fL -c)O  
-.fb¢ =-H+

y-momentum,

            Hl
 (A 

-c)¢  =-  , 
+                    (¢

            aJ  iaG

energy,

  (fL - c)s  - e,¢  ==1

 1
   (oicxGLa2¢  +ZoS)

-a? ¢ )

ind  Pr(s
 -a2s)

C6a)

(6b)

where  c 
=

 fila,
for down flow, and

Zo ==6(Ob
 
-
 R)Ie,

 
-R

6=  +1.0  for upflow  and

qleh -Rq-t .

(6c)

ti- 1.0

The nondimensional  boundary conditions  for an  isotherma[

vertical  surface  are:

O(O)  =  ¢  (O) =  S(O) -  ¢  (co) -  S(co) -  H(co) =  O ,(7)

The Iinear stability  Eqs. (6a-c) and  (7) constitute  a

complex-valued  sixth-order, linear systems  of

homogeneous  differential equations.  The  eigenvalues  of  the

system  are the nondimensional  wave  number  a  and

frequency 13.The ration  f]la is referred  to as  the wave

speed  c.

     As a disturbance of a given frequency is convected

downstream, frorn a  position ai to G2, the amplitude

ratio  eA  for the two  location is given by
                     Gl

               A=-t  iaJdG. (8)
                     GL

The  neutral  stability  curve  is thus A=O  (i. e., ai  =O).

The  spatial  amp]ification  contours  are  the loci of

downstream  location have common  vajues  ofA.

3. NUMERICAL  METHOD

     To  reduce  the error propagation and  to avoid  the
inaccuracies in simple  shooting  of  Qureshi [t2] and

Higgins [13], the two-point-boundary-value-problem  so[ver

COLNEW  (Ascher et al. [4], Bader and  Ascher, [5]) was

used.  With it we  were  able  to compute  accurate  numerica]

solutions  of  the  stability  equations  in the  range

O.OsRSO.1515,  These cannot  be found by simple  shooting.

Tb generate families of  solutions,  two  diffbrent ad  hoc
schemes  were  usecl.  These are described below. Since there
is no  way  to normalize  the solutions  ofeigenvalue  prob]em
(6a-c) and  (7) which  has all homogeneous  boundary

1 
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conditions,  an  alternative  must  be fbund to avoid  the trivial

solution.

     The first scheme,  which  succeeded,  was  to rep]ace

theboundaryconditions  O'R(O)= ¢ 1(O)=O by

S),(O) =  k, , S) (O) - -k2 (9)

with  O.25 Sk,  S 1.0 and  O.1 s k, g 1.0. For moderate  values

of  aandfi.  we  use  k,=k,=1.0. The  computing  procedure

emp]oyed  to use  the orthogonal  collocation cocle  COLNEW

fbr obtaining  the neutral  stability  curve  is described below.
For a  given value  G, one  guesses a pair of  eigenvalues  a

and  fi , One  then so[ves  the boundary value  problem (6a-c)
and  (7) with  the modified  boundary conditions  (9),
replacing  Ol,(O)= ¢ 1(O)=O using  COLNEW,  and  one

iterates by adjusting  the values  of  and  until  the boundary

conditions  ¢ 1,(O)=¢ 1(O)=O are  satisfied  with

i¢  1, (O) =  lo f, (o) s lo-6.

     The  second  scheme  is to add  the trivial differential

equatlons

        crr.o,  fi' ..o  (1O)
to the  system  (6a-c) and  to impose two  nonzero  conclitions

Sit(O)=:-ki and  S;(O)=-k2  in addition  to (7). This

scheme  yields exact  numerical  solutions  of  the original

eigenva]ue  problem (6a-c), (7) and  (10). However, to get it
to work  accurate  initial guesses are required.

     When  we  usecl  the first scheme,  we  insisted that, for a

solution  to be accepted,  the fo11owing criteria  were  all met/

      oue.[.
¢

,ii((,O,i,
 .O,'i:i)giO'`  -,)

        max(  
¢

 i' i( 
O)

 , 
¢

 ii(O) j g io" (] ib)

where  M  is the largest magnitude  of  any  of  the eigenvector

components  (i,e., ¢ , ¢ Z O'1 S, S', H  ) on  OS rp S ny. .

In addition, the error  estimates  given on  output  by
COLNEW  are  less than  10 `.

 The  second  scheme  was  used

for the purpose of  verification  and  improvement of  the

numerical  results,  which  were  obtained  by the  first scheme.

4. NUMERICAL  RESUUI'S

     Stability results  that satisfy  the standards  for the

accuracy  Eqs. (11a-b) have been obtained  fbr several  values

ofR  in the range  OSRSO.1515,  In panicular, for R  
='

O,1 167 and  O.15, we  obtained  spatial  amplification  contour

ofdisturbances.  For R  
=

 O.1515, the neutral  stability  curves

for the  three steady-states  of  the flow are  computed.  These
results  are  presented in fable 1 and  Figs. 5-8.

     Some  of  our  numerical  results on  stability  are

presented in (G, B)-plane,
where

      1 7

B=  pai =  
2cl

 (.g, a,  % - TL,lc,)"a' "2)

This parameter B has no  x  dependence; it is proportional to
the physical frequencyf  Constant frequency paths for G
are  horizontal straight  lines in the (G, B)-plane; see  Figs, 5-
8.

     If17i, 
-

 7L,1 is fixed, a  plot or  a table in the neutra[
stability  planes is useful  in quantitatively analyzing  the

linear stability  results  for various  values  of  R, because the

parameters G, a  
,
 fi ,

 and  B  are  depend upon  7L - 7,1 
[i

 .

     The critica[  Grashof number  G,,, steadi[y  increases

as R increases in the  range  O.OsRsO.]333.  but,
interestingly, further increase ofR  causes  G,,,to decrease.
                                i

However, at  the  sametime  the value  ef  B <i. e.. B at G, 
,
 )

and  B... consistently  decrease as  R increases: see  fab[e 1

and  Figs 5-6, As consequence  of these observations.  the

upper  limit of  unstable  frequencies with  respect to R is
predicted to be reduced  and  the flow is more  unstab[e  for
lower frequencies, as  R increases from O.O to O.15l5.

     It is also  observed  here that the  location of  a  point of
inflection in a  base flow has a  strong  relationship  to the

critical  Grashof number  G,,,, As  R increases from O te

O.1333 (and the heat transfer rate  
-

 eb (O) decreases from

1.04697 to O.8555), the ]ocation of  the point of  inflection

np, in the profile ofthe  velocity  ofthe  base flow .fL shifts

ftom op.,=1.163 at R=O to op., =O.967 at R=O.l333i al

the same  time the stress - f;'(op.,) decreases (see Table

1). In addition, the present results  show  that the C;,,

increases frorn 41.88 at R=O to 47.69 at R=O.1333. But, as  R
increases from O.1333 te O.I5, the rzmi increases from

O.967 to O.971 and  the corresponding-A'(on)  increases

from O,e2925 to O,03441. Also, G,, decreases from 47.69 at

R=O.1333 to 47.39 at R;=O.15, As the consequence  of  the

above  results,  it is found that the shift  of  np., to rp =O

with  its weaker  stress - fri'(np,)makes the velocity  profile
ofthe  base flow more  stable,

     These phenomena  are  due to the effect of  outside

buoyancy force reversals.  A  slight  increase ofthe

Thble1Valuesof  tl,,, 
-.fX'(np,),

 B' and  a'  for

       various  values  of  R.

R rpp.,'fL(o,,)GCI'
sB -a

o.o I.163O,0284741.89O,19536O.S928
O.05 r,os.6O.0257544.16O.18027O.5981
O.10 1,O04O.0257446.55O.16188O.6034
O.11667O,982O.0269347.22O.15542O.6081

O.1333O,967O.0292547.69O.14506O.)'969
O.15 O.971O.0344147.39O.12955O.5638
O,1515A- -47.17O.12646O.5548I

O,1515B- .46.98O.12449O.54771/

O,1515C- .47.01O,12451O.54731/

1 
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Fig, 6 Computed  neutral stability curves  in the (G,B) plane
    fbr the  three steady-states  ofthe  base flow at
    R=O.1515

downward  buoyancy force in the  outer  region  of the
thermal  boundary layer causes  the base flow to be stable,

but a  further increase of  this force causes  the base flow to

become  unstable. Note, while  buoyancy force reversals

occur  for O<RSO.15, they  are  too weak  to cause  any

reversals  in the flow,

5. DISCUSSION  AND  CONCLUSION

     The present numerical  results  indlcate that when  the

parameter R  is changed,  the characteristic  shape  of  the

corresponding  neutral  stability  curve  is systematically

changed  : the critical  Grashof number  G,,increases for

O< R (O.1333,  but the upper  limit of  unstable  frequency for
flows B.,. andthequantityB'(i,e.,  Bat  G.,)decreases

at the same  time; see  Fig. 5. It is clear  from our  stability

results  that the unstable  frequency range  of  disturbances
becotnes narrower  as  R increases. In other  words.  the band
of  corresponding  favored frequency is reduced.  Also,  the

neutral  stabi[ity  curves  have blunter noses  as  R decreases,
Not only  from the above  tendencies  but also  from the

present spatial amplification  results  in Figs. 7-8, it is found

a.1- 4.- ..
  C,O /OO.  200. JOO. LOO.  bo:.

                       G
Fig. 8 Spatial amplification  contours  efdisturbances  in the

     (G,B)-plane at R=O.1 167. -:Experimental frequency

     data at  R----O.12 come  from Higgins[13]

that the corresponding  spatial  amplification  contours  have
more  sharpLy  pointed noses  as R  increases further toward
O.15. And  at the same  time  we  find that the most  favored
fi'equency Bf, which  is the frequency that. according  to

theory, amplifies  most  quickly as  the disturbance trave]s
downstream, is decreased from Bt=: O,37 at R=O,e

andBf=  029  at  R=O,1167 to Bf=  O.23 at R=O.]5.

Moreover, the spatiaL amplification  factor A is drastical[>'
increased as  R increases. For  example,  for fixed value  of

G=600,  the maximum  value  ofA  is near14  at R 
=O.O,

 t8 at
R 

=O.
 1 167, and  20 at  R!O,15, respective]y.

     When  we  compared  the spatial amp[ification  results

ofthe  present work  to the experimental  data ofHiggins  r131
and,  also,  Higgins and  Gebhart [16] at R suO,O  and

R :O.12,  the numerical  results  agree  reasonab]y  in a

quantitatiye way  with  the  experimental  data, They observed

that fbr R :O,  the data lie at a frequency slightly  higher
than  the corresponding  theoretical  frequency Bi O.37.

The range  of  frequencies, which  arose  at  each  G  ]ocation, is
broader than  has been observed  in warm  waten  Some
intermittent bursts ofturbulence  were  detected at G=-378 for

6UC.
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R  ,O.  For R AsO.12,  the frequencybands lie closer  to, and

even  below our  computed  value  of  Bt･ =  O.29. The band is

narrower  than that found at  R  AsO.O.  For R nvO,12,

Higgins [131 (also, Higgins and  Gebhart l16]) observed  a

smatl  amount  of  burst activity  at  G=385,  From  their

observation.  the point of  transition to turbulence  occurs

some  eight  or  nine  times  of  a,, downstream, Also, their

observation  implies that the  neutral  stability  curve

corresponding  to R;O.12  lies left and  shifts  downward  with

respect  to the neutral  stability  curve  corresponding  to R 
=

O. (See also Table. 1). Higgins and  Gebhart also  observed

that at  G=417,  the disturbances corresponding  to R ltfO.12

were  more  vigorous  than  those  corresponding  to RkO.O.

They  judged that disturbances corresponding  to R  sO,12

are  amplified  more  quickly downstream than  those

correspondingto  R reO.O,

     From  the results  of  our  stability calculation,  it is

found that there is a  stabilizing  or  clestabilizing effect due to
the characteristics  of  the buoyancy force. In the range

O<RSO,r333,  a  small  amount  of  the buoyancy force
reversal causes  both of  the critical  Grashofnumber  and  of

the spatial amptification  rate  of  a  disturbance along  the
most  favored frequency to increase significantly.  However,
in the range  O.1333<RSO.15,  a  further increase of  the

outside  buoyancy  force reversal causes  the critical  Grashof

number  to decrease. Namely, as  R increases, the first

instability of  the flow occurs  Eater for OSRSe.1333,  then

occurs  sooner  for O,1333<RSO.15.  But, the outside

buoyancy  force reversal always  causes  the most  favored

frequency to be lower and,  also,  causes  the corresponding

amplification  rate to increase, consistentiy,  as  R increases

for O.OsRsO.15,

     At the same  time  the location of  the single  point of
inflection op., (in the profile of  the velocity  of  the base

fiow) and  it's stress -.4'(opp,,)strongly depend upon  the

downward  buoyancy force (in the  outer  position of  the

thermal  buoyancy  layer) as  mentioned  in sec 4, Further
increase ofthis  force causes  an  outside  flow reversal, which
is associated  with  two  points of  inflection to exist  in the

multiple-steady-state-solution  region  O.15<RSO.1518

found by El-Henawy  et al. [6], such  as  the two  steady-  states

of  the base flow at  R 
=O.1515

 corresponding  to the marks

B and  C  in Fig.3. From  our resu]ts (as seen  in Fig, 6 and

Table 1), two  points of  inflection possess slightly  lower

values  ofthe  critical  Grashofnumber  than  with  one.  Thus  it
is predicted that further increase ofthe  downward  buoyancy

force cause  the corresponding  flow in the region

O.15<R  SO.1518  to become  slightly  unstable.
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