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ABSTRACT

Numerical solutions of the hydrodynamic stability equations for buoyancy-induced flows

adjacent to a vertical, planar, isothermal surface in cold pure water have been obtained for various values of the
density extremum parameter R = (7,,-T.)/(T,-T,). The present numerical study yields neutral stability results for
the region of the flows corresponding to 0.0 < R < 0.1515, where outside buoyancy force reversals arise. Also. it
includes the first stability analysis by obtaining the spatial amplification of disturbances. When the stability
results of the present work are compared to the previous experimental data, the numerical results agree well .
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1. INTRODUCTION

The existence of a density extremum near 4°C signi-
ficantly affects the characteristics of buoyancy induced
flows in cold water (Gebhart[1]; Gebhart er al.[2]). The
occurrence of bi-directional buoyancy forces in the thermal
boundary layer complicates their stability analysis. This
study is the continuation of Hwang et al. [3] to analyze the
stability of laminar, vertical natural convection flows in
cold pure water in the presence of buoyancy force
reversals. In this part, we treat the case of disturbances of
downflow, i. e, outside buoyancy force reversals.

Our results are very accurate because the stability
equations has been solved using an adequate computing
code (COLNEW) designed to accurately solve two point
boundary-value problems (Ascher er al. [4]; Bader and
Ascher [5]). Moreover, our results are new in that we have
analyzed the stability by obtaining the spatial amplification
contours of disturbances of the steady-state solutions found
in this problem by El-Henawy et al. [6].

Most of the past stability studies utilize the
Boussinesq formulation of the density as a linear function
of temperature, such as for flows in air, warm water etc.
Recently, Gebhart ez al. [2] have comprehensively reviewed
the literature in this regard.

In the present study, the system under consideration
(as seen in Fig.1) is quiescent, cold, pure water adjacent to
a vertical, planar, isothermal, impermeable surface. In this
situation the Boussinesq approximation does not accurately
express the buoyancy force.

This is due to the existence of the density extremum
of cold water (its density is maximum at 7 = 4.029325 at 1
bar) in the thermal boundary layer. A considerable
buoyancy force reversal arises across the thermal boundary

1-639

layer. To predict the resulting subtle flow patterns, the
following density extremum parameter was defined by
Gebhart and Mollendorf [7]

—- Tm_Too

R=
T,-T,

(N

where T, and 7, are temperature of the isothermal surface

and the temperature of the ambient medium (cold pure
water), respectively.

The analysis of the steady-state flows in the presence
of buoyancy force reversals in the range of 0 <R <05 is
complex. To save space we do not discuss these matters in
detail here, but we refer to Wilson and Wyas [8], and Carey
and Gebhart [9] for experimentally observed flows and to
El-Henawy et al. [6], Gebhart and Mollendorf [10], and
Carey et al. [11] for the representation of similarity
solutions for such flows.

This study is concerned principally with the
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Fig. 1 The coordinate systems.

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

Teof———— ==

T F-——>

To

€

ef

Fig. 2 [lllustration of density behavior near T, ; R=0.1,
outside buoyancy force reversal.

presentation, for various values of the density extremum
parameter R in the range of 0.0<R<0.1515, of
numerical results that predict realistic physical conditions
of stability for the base flow generated by natural
convection adjacent to a vertical, isothermal plate (as seen
in Fig. 1) in cold pure water.

The hydrodynamic stability of these base flows is of
special interest, since under these conditions outside
buoyancy force reversals (such as those seen in Fig. 2) exert
a strong influence upon the flow and the multiple steady-
state solutions of El-Henawy et al. [6] are predicted to exist
(see Fig. 3).

The numerical study of the hydrodynamic stability
for non-Boussinesq situations is difficult as mentioned by
Hwang er al. [3]. The difficulty exists partly because the
base flow itself is sensitive to buoyancy force reversal via
the nonlinear buoyancy-force term in the mathematical
model. An additional significant difficulty may come from
the presence of a singularity in the linear stability equations
as used by Qureshi [12] and Higgins [13]; see also, Higgins
and Gebhart [14] and Qureshi and Gebhart [15]. Thus,
reformulated stability equations of Hwang ar al. [3] to be
solved is required in order to make them nonsingular.

Due to the difficulties mentioned above, the previous
numerical studies were limited to the stability analyses for
simple cases of unidirectional buoyancy force: Higgins [13]
for several values of R with 1.0<R<8.0 and R=-0.5
(see also, Higgins and Gebhart [14]); Qureshi [12] for
R =0 (see also, Qureshi and Gebhart [15]).

The experimental studies by Higgins and Gebhart
[16] and Qureshi and Gebhart [17] in cold water indicate
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Fig.3 Detail of the variation of mass-flow rate

fp () with R . The marks A, B, and C corres-

pond to the three multiple steady-state solutions for
the base flow at R=0.1515. From El-Henawy er
al. [6].
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Fig. 4 Distributions of vertical velocity components f,'(7)

of the base flows. The arrow indicates increasing
R=0.0,0.05,0.10,0.11667 and 0.15.

0.0<R<0.1515for Pr=11.6. In particular, spatial

amplification contours of disturbances are obtained at
R=0.1167 and 0.15. Also, neutral stability curves are
obtained at R=0.1515 for the three steady-states of the
base flow which were found by El-Henawy et al. [6]. The
effect of outside buoyancy force reversals on stability will
be shown.

2. THE GOVERNING EQUATIONS
2.1 Base Flow

The similarity equations for steady laminar base
flows (with the coordinate definitions in Fig.1) are well
known ; for example, El Henawy ef al. [6]), Gebhart
and Mollendorf [10], and Carey et al. [11]. To formulate
them the following nondimensional quantities were used :
n a similarity variable), f,(7) (stream function), and

that the density extremum behavior was found to delay 0y() ) (temperature),
transition, compared to results in water at room where G
temperature. _Yu V) =G P _ T-T, 5
The present numerical study includes neutral stability 7 4x° V(%) 75 (1), 0 (1) T, -T, (2a)
results for the region of the base flows corresponding to
1-640
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and
1

3
G= 4( Gr(x))*, Gr(x)—g" arlTy -7, . (@b)

Here «; and g are the thermal expansion coefficient and

exponent, respectively, from the density relation of Gebhart
and Mollendorf [7]. For conditions at 1 bar pressure and no
salinity,  @,;=9.297173x 10° ( °C)® and ¢=1.894816.

The equations for the base flow in similarity form are:

fo *35ty =214 +8(0, - RI-|R*) =0 (3a)
0, +3Pr f,0, =0 (3b)

with boundary conditions

15(0) = /,(0) = £, () = 64(0) ~1=Gy() =0 (4)

with & = +1 for upward flow, & =1 for downward flow;
see Gebhart and Mollendorf [10]. Pr = 11.6 is the Prandt!
number for cold pure water.

Here we only consider upward flows in the range 0.0
<R<0.1515 where outside buoyancy force reversals
occur. The boundary-value problem (3a, b)-(4) was solved
on intervals [0,7,] with 7,= 23~300 by using two

computer codes: COLNEW (Ascher et al. [4]; Bader and
Ascher [5]) and BOUNDS (Deuflhard and Bader [18]).
Examples of dimensionless vertical velocity profiles for
0<R< 0.15 are given in Fig. 4.

Buoyancy force reversals cause significant effects on
hydrodynamic transport. As R increases from 0 to 0.15, the
downward buoyancy force, near the outer edge of the
thermal boundary layer, increases. For multiple steady-
states of the base flow, the downward buoyancy force,
which becomes stronger, causes an outside flow reversal as
R increases from 0.15 to 0.1515.

As R increases from 0 to 0.1333, the location of the
single point of inflection in the profiles of the vertical
component of velocity shifts closer to the isothermal
surface (7=0); see Fig. 4 and Table 1. However, for

0.1333 <R <0.15, the location of point of inflection remains
775, = 0.97 and does not change significantly as R increases.
The shift of the location of point of inflection

associated with its strength — f,,”(O) might increase the

limit of stability of flow, just as in forced flow problems.
This point will be discussed later.

2.2 The Linear Stability Equation

A linear stability of two dimensional disturbances is
considered. The disturbance quantities are normalized in
the following manner, where D and U are the characteristic
length and velocity:

a?( ). S _HW)
p(n) = S(m) = To—Tw’H(") e
_BD p4x G
a=aD,p= UDGU—4x. )

The reformulated stability equations by Hwang et al. [3] are
used to avoid the singularity in buoyancy force term. The
nonsingular Orr-Sommerfeld equations for buoyancy-
induced flows are:

X-momentum,

(fy =)@ —f3q>=—H+,L(cb —a’® +Z,5) (6a)
iaG

y-momentum,

U -0=-L L@ -a20 (6b)
o iaG
energy,
-¢)S -6, = S -a’s 6
(fy -0 ;) e Pr( a’s) (6¢)

where ¢ = f/a, 6= +1.0 for upflow and &= 1.0

for down flow, and

6 - R)

q6, - R

The nondimensional boundary conditions for an isothermal
vertical surface are:

D0) =D (0)=S5(0)=P (0)=S(0)=H(®x)=0 . (7)

The linear stability Eqgs. (6a-c) and (7) constitute a
complex-valued, sixth-order, linear systems of
homogeneous differential equations. The eigenvalues of the
system are the nondimensional wave number « and
frequency f. The ration f/a is referred to as the wave

speed c.
As a disturbance of a given frequency is convected
downstream, from a position G, to G,, the amplitude

ratio e” for the two location is given by
G,
A=-1 "‘a,dG‘ 8)
G,
The neutral stability curve is thus 4=0 (i e, «, =0).

The spatial amplification contours are the loci of
downstream location have common values of 4.

3. NUMERICAL METHOD

To reduce the error propagation and to avoid the
inaccuracies in simple shooting of Qureshi [12] and
Higgins [13], the two-point-boundary-value-problem solver
COLNEW (Ascher et al. [4], Bader and Ascher, [5]) was
used. With it we were able to compute accurate numerical
solutions of the stability equations in the range
0.0<R<0.1515. These cannot be found by simple shooting.
To generate families of solutions, two different ad hoc
schemes were used. These are described below. Since there
is no way to normalize the solutions of eigenvalue problem
(6a-c) and (7) which has all homogeneous boundary
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conditions, an alternative must be found to avoid the trivial
solution.
The first scheme, which succeeded, was to replace

the boundary conditions @, (0)= @/ (0)=0 by

S0y =k, S,(0)=—k, 9)

with 0.25<%,<1.0 and 0.1 <k,<1.0. For moderate values
of aand . we use k;=k,=1.0. The computing procedure

employed to use the orthogonal collocation code COLNEW
for obtaining the neutral stability curve is described below.
For a given value G, one guesses a pair of eigenvalues «
and /. One then solves the boundary value problem (6a-c)
and (7) with the modified boundary conditions (9),
replacing @,(0)=®}(0)=0 using COLNEW, and one
iterates by adjusting the values of and until the boundary
conditions @ (0)=®(0)=0 are satisfied with
(@ (0)] =]} (0)] <107°.

The second scheme is to add the trivial differential
equations

a'=0,5=0 (10)
to the system (6a-c) and to impose two nonzero conditions
Sp(0)=-k, and S;(0)=—k, in addition to (7). This
scheme yields exact numerical solutions of the original
eigenvalue problem (6a-c), (7) and (10). However, to get it
to work accurate initial guesses are required.

When we used the first scheme, we insisted that, for a
solution to be accepted, the following criteria were all met:

i 'CDR(O)),i(D’(O)l <107 (11a)
CDR(U)' ‘(DI(U)\

©,.(0)] |, (0)
max| ‘——— ———
M M

0<nsn,
\

<107’ (11b)

where M is the largest magnitude of any of the eigenvector
components (i.e., @, P, D", S,S H)on0<n<n,.

In addition, the error estimates given on output by
COLNEW are less than 10 . The second scheme was used
for the purpose of verification and improvement of the
numerical results, which were obtained by the first scheme.

4. NUMERICAL RESULTS

Stability results that satisfy the standards for the
accuracy Egs. (11a-b) have been obtained for several values
of R in the range 0< R<0.1515. In particular, for R =
0.1167 and 0.15, we obtained spatial amplification contour
of disturbances. For R = 0.1515, the neutral stability curves
for the three steady-states of the flow are computed. These
results are presented in Table 1 and Figs. 5-8.

Some of our numerical results on stability are
presented in (G, B)-plane,
where

5

1 2
7 2 -3
B = fG3 =7”f(;gz—ar!'l"o -7, 3. (12)

This parameter B has no x dependence; it is proportional to
the physical frequency f. Constant frequency paths for G
are horizontal straight lines in the (G, B)-plane; see Figs. 5-
8.

If |7, -T,] is fixed, a plot or a table in the neutral
stability planes is useful in quantitatively analyzing the
linear stability results for various values of R, because the
parameters G, «, £, and B are depend upon |7, -7, |".

The critical Grashof number G, steadily increases

217

as R increases in the range 0.0<R<0.1333, but,
interestingly, further increase of R causes G,, to decrease.
However, at the same time the value of B (ie,Bat G,)
and B, consistently decrease as R increases; see Table 1

and Figs 5-6. As consequence of these observations. the
upper limit of unstable frequencies with respect to R is
predicted to be reduced and the flow is more unstable for
lower frequencies, as R increases from 0.0 to 0.1515.

It is also observed here that the location of a point of
inflection in a base flow has a strong relationship to the
critical Grashof number G, . As R increases from 0 to

0.1333 (and the heat transfer rate —9,,'(0) decreases from
1.04697 to 0.8555), the location of the point of inflection
1, in the profile of the velocity of the base flow £, shifts

from 7,,=1.163 at R=0 to 7,; =0.967 at R=0.1333; at

the same time the stress — fb"(npl) decreases (see Table

1). In addition, the present results show that the G,

increases from 41.88 at R=0 to 47.69 at R=0.1333. But, as R
increases from 0.1333 to 0.15, the 7, increases from

0.967 to 0.971 and the corresponding—f,;(np,,) increases

from 0.02925 to 0.03441. Also, G, decreases from 47.69 at
R=0.1333 to 47.39 at R=0.15. As the consequence of the

above results, it is found that the shift of 7,, to =0
with its weaker stress — f,,"(np’,) makes the velocity profile

of the base flow more stable.
These phenomena are due to the effect of outside
buoyancy force reversals. A slight increase of the

Table 1 Values of 7., - f,(17,,), B  and o for

various values of R.

R 7717.1' - /}:(?71,,) Gcr B* a*
0.0 1.163 | 0.02847 | 41.89 |0.19536 | 0.5928
0.05 1.086 | 0.02575 | 44.16 |0.18027 | 0.5981
0.10 1.004 | 0.02574 | 46.55 |0.16188 | 0.6034

0.11667 | 0.982 | 0.02693 | 47.22 0.15542 | 0.6081
0.1333 0.967 | 0.02925 | 47.69 |0.14506 | 0.5969

0.15 0.971 | 0.03441 | 47.39 |0.12955 | 0.5638
0.1515A - - 47.17 |0.12646 | 0.5548
0.1515B - - 46.98 10.12449 | 0.5477
0.1515C - - 47.01 10.12451 | 0.5473
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Fig. 6 Computed neutral stability curves in the (G,B) plane
for the three steady-states of the base flow at
R=0.1515

downward buoyancy force in the outer region of the
thermal boundary layer causes the base flow to be stable,
but a further increase of this force causes the base flow to
become unstable. Note, while buoyancy force reversals
occur for 0<R<0.15, they are too weak to cause any
reversals in the flow.

5. DISCUSSION AND CONCLUSION

The present numerical results indicate that when the
parameter R is changed, the characteristic shape of the
corresponding neutral stability curve is systematically
changed : the critical Grashof number G,, increases for

0< R <0.1333, but the upper limit of unstable frequency for
flows B, and the quantity B" (i.e., Bat G, ) decreases

at the same time; see Fig. 5. It is clear from our stability
results that the unstable frequency range of disturbances
becomes narrower as R increases. In other words, the band
of corresponding favored frequency is reduced. Also, the
neutral stability curves have blunter noses as R decreases.
Not only from the above tendencies but also from the
present spatial amplification results in Figs. 7-8, it is found
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o 100 200 300 400 500 600

G
Fig. 7 Spatial amplification contours of disturbances in the
(G,B)-plane at R=0.0. @: Experimental frequency
data at R=0.0 come from Higgins[13]
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0.5—
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0.0 100 200. 300. 400. 50¢C 600

Fig. 8 Spatial amplification contours of disturbances in the
(G,B)-plane at R=0.1167. B:Experimental frequency
data at R=0.12 come from Higgins[13]

that the corresponding spatial amplification contours have
more sharply pointed noses as R increases further toward
0.15. And at the same time we find that the most favored
frequency B, which is the frequency that, according to

theory, amplifies most quickly as the disturbance travels
downstream, is decreased from B,= 037 at R=0.0

and B,= 029 at R=0.1167 to B,= 023 at R=0.15.

Moreover, the spatial amplification factor 4 is drastically
increased as R increases. For example, for fixed value of
G=600, the maximum value of 4 is near14 at R =0.0, 18 at
R =0.1167, and 20 at R=0.15, respectively.

When we compared the spatial amplification results
of the present work to the experimental data of Higgins [13]
and, also, Higgins and Gebhart [16] at R ~0.0 and
R ~0.12, the numerical results agree reasonably in a
quantitative way with the experimental data. They observed
that for R =0, the data lie at a frequency slightly higher
than the corresponding theoretical frequency B, =0.37.
The range of frequencies, which arose at each G location, is

broader than has been observed in warm water. Some
intermittent bursts of turbulence were detected at G=378 for
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R ~0.For R ~0.12, the frequency bands lie closer to, and
even below our computed value of B,= 0.29. The band is

narrower than that found at R ~0.0. For R =0.12,
Higgins [13] (also, Higgins and Gebhart [16]) observed a
small amount of burst activity at G=385. From their
observation, the point of transition to turbulence occurs
some eight or nine times of G, downstream. Also, their

observation implies that the neutral stability curve
corresponding to R=0.12 lies left and shifts downward with
respect to the neutral stability curve corresponding to R =
0. (See also Table. 1). Higgins and Gebhart also observed
that at G=417, the disturbances corresponding to R =0.12
were more vigorous than those corresponding to R=0.0.
They judged that disturbances corresponding to R =0.12
are amplified more quickly downstream than those
corresponding to R =0.0.

From the results of our stability calculation, it is
found that there is a stabilizing or destabilizing effect due to
the characteristics of the buoyancy force. In the range
0< R<0.1333, a small amount of the buoyancy force
reversal causes both of the critical Grashof number and of
the spatial amplification rate of a disturbance along the
most favored frequency to increase significantly. However,
in the range 0.1333<R <0.15, a further increase of the
outside buoyancy force reversal causes the critical Grashof
number to decrease. Namely, as R increases, the first
instability of the flow occurs later for 0< R <0.1333, then
occurs sooner for 0.1333<R <0.15. But, the outside
buoyancy force reversal always causes the most favored
frequency to be lower and, also, causes the corresponding
amplification rate to increase, consistently, as R increases
for 0.0<R<0.15.

At the same time the location of the single point of
inflection 7,, (in the profile of the velocity of the base

flow) and it's stress — f,,"(ry',,l)strongly depend upon the

downward buoyancy force (in the outer position of the
thermal buoyancy layer) as mentioned in sec 4. Further
increase of this force causes an outside flow reversal, which
is associated with two points of inflection to exist in the
multiple-steady-state-solution ~ region  0.15<R <0.1518
found by El-Henawy er al.[6], such as the two steady- states
of the base flow at R =0.1515 corresponding to the marks
B and C in Fig.3. From our results (as seen in Fig. 6 and
Table 1), two points of inflection possess slightly lower
values of the critical Grashof number than with one. Thus it
is predicted that further increase of the downward buoyancy
force cause the corresponding flow in the region
0.15< R <0.1518 to become slightly unstable.
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