108 フリーピストンヴィルミエサイクルヒートポンプの動的解析

Dynamic Analysis of Free Piston Vuilleumier Cycle Heat Pumps

O正 松栄 準治(三洋電機空調) 正 井汲 米造(三洋電機空調)

Junji MATSUE, Sanyo Electric Air Conditioning Co., Ltd., Sakata 1-1-1, Oizumi-Machi, Oura-Gun, Gunma Yonezou IKUMI, Sanyo Electric Air Conditioning Co., Ltd.

A dynamic analysis of free piston Vuilleuer cycle heat pumps has been carried out by a time-stepping integration technique. This technique allows application of a nonlinear relationship between displacements and working gas pressure variations in the equations of motion for reciprocation components. Although ideal isothermal thermodynamics was assumed for the Vuilleumier cycle, the present analysis provided accurate information on its characteristics. Some calculations for a case study were performed, including nonlinear viscous dissipative force due to an oscillating working gas flow and discontinuous damping force caused by solid friction in seals. It was found that the present method was very effective in predicting the dynamic behavior of free piston Vuilleumier cycle heat pumps.

Key Words : Forced Vibration, Nonlinear Vibration, Numerical Analysis, Stirling Cycle, Heat pump Vuilleumier Cycle, Free piston

1. まえがき

近年の CFC's に関する問題は、オゾン層の保護から地球温暖 化防止へと変化し、塩素を含まない HFC も規制の対象として議 論されている.このような観点からすると、将来的に空調や冷凍 分野での需要をすべて HFC で賄うことは難しく、HFC の需要を一 部肩代わりする冷媒や機器の開発が必要である.現在では価 格的な面から空調機としての競争力は失っているが自然冷媒と いう特徴を持つヴィルミエサイクルヒートポンプ(VMHP)は、HFC を用いた空調機や冷凍機に代わる将来的な選択肢の一つとして の可能性を持っている.

著者らは、1993 年から VMHP の駆動部にスターリング機器の 技術であるフリーピストン(FP) 機構を適用したフリーピストン型 ヴィルミエサイクルヒートポンプ(FPVMHP)の解析的研究を行っ ている^{1),2),3)}. FPVMHP は、駆動部にクランク機構を採用した機 械式 VMHP に比べて①構造が簡単で小型・軽量・低コストに向 き、②高負荷軸受けが省略でき潤滑油が不要でメンテナンスに 有利であるという特徴を持っている.前者の特徴は、現在 VMHP が不利とされている価格競争力を改善する鍵である.

本報告では、既報にて提案した動的解析手法を用いて FPVMHP におけるフリーピストン機構のメカニズムを明らかにし たので、結果について報告する.

2. 動的解析手法とケーススタディ機

動的解析に使用した解析モデルは図1に示すもので、質点としての二つのディスプレーサーピストン(m_h , m_c)とケーシング(m_e)、これらを繋ぐ二つのバネ(K_h , K_c)および熱サイクルの構成要素である高温側熱交換機群(Heater, Hot regenerator, Hot radiator)と低温熱交換機群(Cold radiator, Cold regenerator, Cooler)からなる. この解析モデルを用いた動的解析モデルは、次の三つの解析部分から構成される.

1)3つの質点と2つのバネからなる振動系の動的解析

シールによる固体摩擦力を考慮した各質点の運動方程式²⁾ の数値解析を行う.運動方程式におけるシールの固体摩擦 カは,シールを挟む圧力差とシール張力の関数として与えられる^{2),4)}.

Fig.1 Dynamic model of FPVMHP

- 2) 圧力変動を予測する VMHP の熱サイクル解析 運動方程式に含まれる高温室作動ガス圧力(P_h),中温室作 動ガス圧力(P_m)及び低温室作動ガス圧力(P_c)を予測する. この各作動室の圧力は、次の2つのステップにて求める.
 - ①作動空間を各温度の作動室と各熱交換器に11分割し、各空間での温度がサイクルを通じて一定で、作動空間内での圧力が一様であるとする等温モデル¹⁾の熱サイクル解析を使用して中温室ガス圧力を計算する。
 - ②作動ガスの往復流動による流体摩擦損失を計算し、中温 室ガス圧力に加えて高温室と低温室の作動ガス圧力を予 測する.流体摩擦損失計算に使用する摩擦係数は、円形

日本機械学会関東支部ブロック合同講演会-2000 桐生-講演論文集〔2000-6.23~24,桐生〕

管路に対しては Blasius の式を, ポーラスな素材に対して は田中ら⁵⁾の式を用い, 流路の拡大縮小による損失係数 は Heames ら⁶⁾が整理した式を用いる.

3)運動方程式を解く数値解析

時間進行法として Runge-Kutta-Gill 法を浮動小数点向きの アルゴリズムに改良したもの⁷⁾を採用した.

解析に使用したケーススタディ機の仕様を表1に示す.機器の 構成は、タイプ2¹⁾(二つのディスプレーサーピストンをバネで接 続し、いずれかー方のピストンのみをケーシングにバネで接続 する方式)を採用した.

Working gas		Helium	
Mean pressure	8 MPa		
Gas temperature (T_h, T_m, T_c)		873,333,273 K	
Displacer piston diameter(Hot/Cold)		φ 75 mm	
Rod diameter		φ 21 mm	
Spring constant(Hot/Cold)		24000/2400 N/m	
Mass(Hot/Cold/Casing)		1/0.5/20kg	
Design amplitude(Hot/Cold)		10 mm	
Top clearance(Hot/Cold)		2 mm	
Distance between 2 pistons at neutral		19 mm	
Effective volume		$1.24 \times 10^{-6} \text{ m}^3/\text{K}$	
Hot and Cold	D×B×T	ϕ 75 × 3 × 2 mm	
piston seals	Tension × Amount	2 N×2 stages	
Pod coolo	$D \times B \times T$	$\phi 21 \times 3 \times 2 \text{ mm}$	
Kod seals	Tension × Amount	3 N×2 stages	

Table 1 Specification of FPVMHP

3. 計算結果及び考察

表 1 にて設定したケーススタディ機の動的挙動を計算した結果 を表 2 に示す.

Item		Symbol	Result
Frequency		Hz	18.19 Hz
Hot side displacer piston amplitude		X _h	8.73 mm
Cold side displacer piston amplitude		X _c	9.70 mm
Casing amplitude		X _e	0.43 mm
Amplitude ratio (X_c/X_h)		-	1.11
	Defined	β.	76.03 deg.
Phase difference	Hot side	β_{h}	34.05 deg.
	Cold side	β _c	110.08 deg.
Work in Hot space		W _h	27.88 J
Work in Cold space		Wc	51.85 J
Work in Medium space		W _m	-79.07 J
	Total	W _r	6.71 J
Rod work	Hot side	W _{rh}	2.37 J
	Cold side	W _{rc}	4.34 J
	Total	W _p	-6.07 J
Flow friction loss	Hot side	W _{ph}	-2.67 J
4 -	Cold side	W _{pc}	-3.40 J
	Total	W _k	-0.65 J
Solid friction loss	Hot piston seal	W_kh	-0.11 J
Solid friction loss	Cold piston seal	W _{kc}	-0.13 J
	Rod seal	· W _{kr}	-0.41 J
Cooling Coefficient of Performance		COP _c	1.86
Heating Coefficient of Performance		COP _h	2.84

Table 2 Calculation results

ケーススタディ機は 18.19Hz で継続的な運転を得ることができ, このときの振幅は高温側 8.73mm, 低温側 9.70mm で低温側振 幅の方が大きいことが判った.

表中 W_h, W_c, W_m は, 夫々高低中温室の作動ガスが行う仕事³⁾ で, 符号が正の場合は熱の吸収を, 負の場合は熱の放出を示 す. W_r はロッドを介して作動ガスが行う機械出力²⁾, $W_p \ge W_k$ は 夫々作動ガスによる流体摩擦とシールの個体摩擦による減衰仕 事²⁾を表す. これらの仕事の間には, 表 2 の計算結果から次の 関係があることが判る.

$$W_{\rm h} + W_{\rm c} + W_{\rm m} + W_{\rm k} = 0$$
 (1)

$$W_r + W_p + W_k = 0 \tag{2}$$

式(1)は、FPVMHPのヒートバランスを表し、熱サイクルへの入力 はW_hとW_cで、出力はW_mとW_kである。W_hは、高温熱源から の熱入力で熱サイクルの駆動源となる。W_cは低温熱源からの吸 熱量で冷房や冷凍に利用でき、W_mは中温熱源への放熱量で暖 房に利用できる。W_kを含むため、式(1)は入力された熱エネルギ の一部を機械エネルギとして消費することを示している。

式(2)は、FP 機構の駆動メカニズムを示している. ロッドの容積 変化を利用して熱エネルギから機械エネルギに変換された Wr は、作動ガスの流体摩擦損失仕事($W_p=W_{ph}+W_{pc}$)とシールの 固体摩擦損失仕事($W_k=W_{kh}+W_{kc}+W_{kr}$)に消費される. 内部で 発生した機械エネルギと損失仕事が釣り合う振幅で、継続的な 振動(自励振動)が得られることを示している. また、ロッド仕事 を高温側と低温側に分離すると、高温側より低温側のロッド仕事 の方が大きく、低温側ディスプレーサーピストンの駆動により大 きな仕事を要していることが判る.

ディスプレーサーピストンに働く力と変位との間には、図2に示

rig.2 rhase difference

す関係が得られた.VM サイクルの位相差(高温室最小容積を 与える点と低温室最小容積を与える点の位相差)は、高温側と 低温側の位相差の差として与えられることが判る.高温側と低 温側の位相差は90度を挟んだ値となっていて、強制力 (18.19Hz)と表1の質量とバネからなる系の自然振動数(10.6Hz と26.6Hz)から得られる位相の関係と一致する.

最後に、本研究を報告するに当たり御協力と御理解を頂いた 三洋電機空調(株)の関係各位に深甚なる謝意を表する。

文献
1)松栄他,機論,60-577,C(1994),3070
2)松栄他,機論,60-580,C(1994),4150
3)松栄他,機論,61-588,C(1995),3253
4)菅原他,舶用機関学会誌,Vol.17 No.2,(1982),91
5)田中他,機論,55-516,B(1989),2478
6)Heames T., Report of Argonne National Laboratory, ANL-82-

59,(1982),16

7)高田・春海,数値計算の手順と実際,(1984),コロナ社

- 24 --