The Japan Soci ety of Mechani cal

Engi neers

International Symposium on Scheduling 2004
May 24-26, 2004, Awaji-Yumebutai, Japan

K1

BUILDING GENERAL SOLVERS FOR SCHEDULING PROBLEMS

Toshihide IBARAKI
Graduate School of Informatics,
Kyoto University,

Kyoto, Japan 606-8501
ibaraki@i.kyoto-w.ac.jp

Abstract

We describe our attempts to build general solvers that
cover a large portion of schduling problems encountered in
real world applications. For this, we select a list of stan-
dard problems, and develop their solvers which are based
on local search and metaheuristics. As standard problems,
we have chosen so far RCPSP (recource constrained project
scheduling problem), CSP (constraint satisfaction problem),
VRP (vehicle routing problem), SCP (set covering problem)
and others. In this paper, we outline definitions of these
problems, algorithmic contents of solvers, and some com-
putational results.

Keywords: General solvers, scheduling problems, local
search, metaheuristics, standard problems.

1. Real World Scheduling Problems

Scheduling problems are abundant in real world applica-
tions. They take quite different forms, sizes and complexi-
ties. We give below four types of scheduling problems, as
examples which can be commonly found in various areas of
social and industrial activities.

Machine scheduling: There are n jobs to be processed
on m machines, each of which handles only one job at a
time. Other resources such as operators, machine tools and
associated materials also have to be assigned when a job is
processed on a machine. The objectitive is to find a time
schedule of all jobs on m machines, which minimizes a cer-
tain measure such as the time to complete all jobs, while
satisfying the resource and technological constraints.

Workforce scheduling: A typical example in this type
of scheduling is the nurse scheduling problem in a hospital,
where the work time table of » nurses is constructed over
a specified time horizon, e.g., one month. There are three
shifts, day, evening and night, in one day, and each shift in
each day requires a given number of nurses. Also from the
side of each nurse, there are a number of constraints, e.g., at
least one day-off every week, one day-off after consecutive

night shifts, no three consecutive night shifts, no single iso-
lated night shift, no four consecutive day shifts and so forth.
The total numbers of day, evening and night shifts of each
nurse in each month, respectively, have to be kept within
given upper and lower bounds. There are usually other con-
straints particular to each hospital. Then find a shift assign-
ment of all nurses that minimizes the number of violations
of given constraints.

Parcel delivery problem: There are vehicles to deliver
parcels to customors, starting from a post office. Each parcel
has its weight and each vehicle can carry some number of
parcels within its capacity. It is asked to determine the set
of customers which each vehicle serves, together with the
travel route of each vehicle, so that the total travel distance
of all vehicles is mimimized.

Crew scheduling problem: As a typical example, we
consider the assignment of pilots to all flights scheduled in
an airline company, where each flight must have at least one
pilot. A segence of consecutive flights attended by a pilot
is called a leg, if it satisfies the safety and other regulations.
Then we are asked to find a minimum number of legs, which
together cover all flights.

Although all these are called scheduling problems, they
have very different mathematical structures, which we need
to exploit in order to produce effective algorithms. As a
result, it is usually necessary to invest some amount of man-
power and time to develop such solvers. Furthermore, as a
characteristic of combinatorial optimization problems, such
algorithms may exhibit quite different performance if some
new constraints are added, or some new features are intro-
duced to the problem, necessitating the development of an
entirely new algorithm in some cases.

In view of these, we consider it very useful if we could de-
velop general sovers, each of which can cover a wide range
of schduling problems of similar types. Such solvers must
be efficient, flexible, robust and easy to use.

NI | -El ectronic Library Service

The Japan Soci ety of Mechani cal

Engi neers

2. NP-Hardness and General Solvers

An important theoretical achievement in complexity the-
ory is the concept of NP-completeness and NP-hardness.
The NP is a class of problems that includes most of the
combinatorial problems encountered in applications. Some
problems in class NP can be shown to be NP-complete or
NP-hard. (There are slight differences in the definitions of
NP-completeness and NP-hardness, but we use only termi-
nology NP-hard hereafter for simplicity sake.) For example,
problems SAT (satisfiability) and IP (integer programming)
are NP-hard.

Every NP-hard problem A4 has an important property that

any problem in class NP can be reduced to A,

implying that an algorithm for 4 can solve any problem B in
class NP. In other words, the algorithm for 4 can be regarded
as a general solver for all problems in NP. This is a positive
side of NP-hardness.

Such a general solver is difficult to construct, however,
because of the following negative side of NP-hardness.

NP-hard problems are computationally in-
tractable (not solvable in polynomial time).

(To be more precise, this statement holds only if the famous
N#NP conjecture is true.) Therefore, it is not possible to
build a general solver that works efficiently for all problems.

An approach to overcome this difficulty may be using an
efficient approximate algorithm for an appropriate NP-hard
problem 4. As good approximate solutions are sufficient for
most of the practical purposes, this approach appears quite
meaningful. However, there are the following two obstacles.

o The problem size may explode in the process of
reducing a given problem instance to a prob-
lem instance of 4.

e A good approximate solution to 4 may not be
a good approximate solution of the original
instance, due to the distortion of the distance
to optimal solution incurred during reduction
process.

To avoid this, we have to allow only “natural” reductions,
which are free of the above two defects.

Our conclusion from these observations is that we have
to prepare a list of standard NP-hard problems, instead of a
single problem that represent all problelms in NP. Based on
this, we have defined several standard problems so far and
developed effective approximate algorithms for them. This
scheme is illustrated in Figure 1.

3. List of Standard Problems

Among possible standard problems for scheduling, we
selected the following list so far. Each standard problem
is selected from the view point that it is general enough to
cover a wide range of important scheduling problems, flex-
ible enough to allow various additional constraints and ob-

jective functions, and still has mathematical structures that
make the development of efficient algorithms possible.

1. Integer programming (IP)

2. Constraint satisfaction problem (CSP)

3. Resource constrained project scheduling prob-
lem (RCPSP)

4. Vehicle routing problem (VRP)

5. Set covering problem (SCP)

[P solvers have been studied as the most repre-
sentable general solvers for combinatorial problems includ-
ing scheduling problems. A few commercial software pack-
ages are already available and appear very powerful. For this
reason, we have not tried to develop IP solvers. Although
[P is very general, there still remain many problems which
are not appropriate for IP. Problems CSP, RCPSP and VRP
can handle scheduling problems with some special struc-
tures that make direct application of IP solvers rather dif-
ficult. Problem SCP may be considered as a special case
of IP, but can be solved more efficiently by exploiting its
structure.

CSP: In principle, CSP allows any type of constraints,
and tries to find a solution that satisfies all constraints. If
no such solution exists, CSP finds a solution with a mini-
mum violation of constraints. The violation of constraints
is usually measured by the sum of weights given to the vi-
olated constraints. In our implementation, we treat linear
equality and inequality constraints under 0O-1 variables as
standard constraints (like IP approach), as well as non-equal
() constraints. Quadratic constraints of 0-1 variables can
also be handled. Any domain of each variable consisting of
finite values can be transformed into domains of 0-1 vari-
ables by introducing value variables (which are 0-1 valued).
By adding constraints oracles (prepared by users), any con-
straints can be incorporated into the solver.

RCPSP: This problem asks to determine start times of
n activities, where each activity consumes some amounts of
resources, such as machines, tools, man-power, energy, bud-
get, raw materials and so forth, and the available amounts
of those resources (which are time-dependant) are given as
constraints. The resources are classified into renewable and
nonrenewable. To process each activity, one mode from a
given set of modes can be chosen, where each mode has
its own process time and resource consumption. Other
aspects such as precedence constraints between activities,
setup times and various types of objective functions can also
be taken into account. If there is no schedule that satisfies
all constraints, it is asked to output a solution with the min-
imum constraint violation, as in CSP.

VRP: There are m vehicles and n customers, where a
good of weight w; must be delivered to customer j and the
capacity of each vehicle is Q. It is asked to assign those cus-
tomers to vehicles, so that the capacity constraint is satisfied
for each vehicle, and then to determine the route of each ve-
hicle. Each customer may have its time window constraint

NI | -El ectronic Library Service

The Japan Soci ety of Mechanical Engineers

Real world problems

[Standard problem A l
| Standard problem B l

L D

! Standard problem K |'/,

Fig. 1 General solvers via standard problems

that specifies the time slots in which the good can be deliv-
ered. In such a case, not only the route of each vehicle but
also the start time of serving the customer have to be deter-
mined. A typical objective function to minimize is the total
length of all vehicles dgym. A typical example of VRP is the
parcel delivery problem described previously.

SCP: Given a family of subsets S;,j = 1,2,...,n of a
ground set S = {1,2,...,m}, SCP asks to find a subfam-
ily §;,,{ = 1,2,...,k such that the sum of weights given to
S, is minimized under the constraint that union of the se-
lected subfamily covers S. This problem has wide appli-
cations since certain types of vehicle routing problems and
crew scheduling problems can be formulated as SCP.

4. Algorithmic Aspects of Solvers

The solvers for the above standard problems must be effi-
cient so that large scale instances arising in practice can be
handled, flexible so that constraints and objective functions
particular to applications can be included, and robust against
small structural changes in the problem. A key question here
is whether algorithms with such characteristics exist or not.
We believe that the framework of metaheuristics based on
local search (LS) is the one for such purposes. Metaheurts-
tics include as special cases such algorithms as genetic algo-
rithms (GA), evolutionary computation (EC), simulated an-
nealing (SA), tabu search (TS), iterated local search (ILS)
and others.

Local search: LS starts from an appropriate initial solu-
tion x, and repeats the operation of moving to a better so-
lution »' (i.e., x := x') in its neighborhood N(x) if such a
solution exists. If there is no better solution in the neighbor-
hood N(x), solution x is called locally optimal and LS halts
there.

The performance of LS depends on how the solution
space and the neighborhood are defined, and how other de-
tails are implemented such as construction of initial solu-
tions and the order of searching the solutions in the neigh-
borhood, and when to move to a new solution (e.g., the best
solution in N(x) or the first improved solution found).

Metaheuristics: Algorithms in metaheuristics use LS as
their important ingredient, and repeat the processes of gen-

erating an initial solution and its improvement by LS in the
following manner.

METAHEURISTICS

I (Initial solution): Generate an initial solution x.

IT1(LS): Improve x by applying (generalized) LS.

I1I (iteration): If the stopping criterion holds, halt
after outputting the best solution found so far.
Otherwise, return to I.

To generate initial solutions in [, it is common that the
computational history by then is taken into consideration.
For example, a certain number of good solusions are main-
tained during computation, and initial solutions are gener-
ated by combining them in some manner. In GA, offspring
is generated from a selected pair of good solutions by a
crossover operation. In ILS, initial solutions are generated
by ramdomly modifying the best solution in the pool.

The generalized LS in IT for example permits the random-
ized search in N(x) and the move to a worse solution with
certain probability. The probality is controlled by a param-
eter called temperature in SA, to diversify the search in the
initial phase and then concentrate the search to the promis-
ing area found in the initial phase. In TS, the move in Il is al-
ways done to the best solution in N(x) even if it is worse than
x. In this case, to prevent cycling of solutions, a tabu list of
solutions is prepared and the moves to tabu solutions are
prohibited, where tabu list usually contains a certain num-
ber of most recently visited solutions or a set of features of
such solutions.

The stopping criterion in III can be very simple, e.g., it
stops if a specified time limit of computation is over. In other
cases, more sophisticated criterion may be used to consider
the computational history such as when best solutions have
been improved during iterations of I~1I1.

Detailed description on metaheuristics can be found for
example in (Yagiura and Ibaraki, 2001).

We have developed solvers for the above standard prob-
lems CSP, RCPSP, VRP and SCP, following the framework
of metaheuristics. Some are based on TS and others are
based on ILS. For details of these solvers, please see the ref-
erences (Nonobe and Ibaraki, 2001; Nonobe and Ibaraki,
2002; Ibaraki e al., forthcoming; Yagiura, Kishida and
Ibaraki, submitted).

NI | -El ectronic Library Service

The Japan Soci ety of Mechani cal

Engi neers

5. Modeling as Standard Problems

Most important factors pertaining to the success of our
approach are perhaps how to select an appropriate standard
problem from the list, and how to model the given problem
instance into a compact instance of the standard problem.
This is not an easy task. It requires a deep insight into the
relation between structure of the given problem and behav-
ior of the selected solver.

As an example, consider the parcel delivery problem
given in Section 1, which can be naturally modelled as VRP.
As noted in the definition of VRP, the problem may also
have time window constraints. The problem may then be
generalized by allowing pick-up and delivery situation, i.e.,
vehicles accept orders of delivering parcels from some cus-
tomers to other customers, where the pick-up and delivery
of a percel has to be done in the same route (without taking
it back to post office). The resulting problem is no longer
appropriate for the standard problem VRP, because the con-
straint of pick-up and delivery orders is not easily handled.
One of the natural approaches in this case is to use SCP.
We first construct a number of cadidate routes of vehicles
by selecting appropriate sets of pick-up and delivery orders
within the capacity constraint, and then choose a minimum
number of routes from them so that all orders can be cov-
ered. The last problem can be easily formulated as SCP.

The SCP approach for the pick-up and delivery problem
may also be supported from an algorithmic consideration of
the local search for VRP. A solution in the local search of
VRP is a set of routes that together covers all customers.
We search an improved solution in the neighborhood by ex-
changing some subroutes in different routes in a systematic
manner. Hoever, under the constraint of pick-up and de-
livery orders, such exchanges tend to destroy its fesibility,
and finding feasible solutions in the neighborhood becomes
very difficult. This appears to indicate that the local search
for VRP is not effective.

We need this kind of careful consideration whenever
solvers are used in applications. However, due to space lim-
itaion, we omit further discussion here.

6. Implementation of Solvers and Their Computa-
tional Results for VRP and SCP

Extensive computational experiments of the solvers for
the above standard problems have been conducted and can
be found in the associated papers (Nonobe and Ibaraki,
2001; Nonobe and Ibaraki, 2002; Ibaraki et al., forthcom-
ing; Yagiura, Kishida and Ibaraki, submitted). Here, for two
problems VRP and SCP, we explain some implementation
details of solvers, and report a highlight of their computa-
tional results.

VRP: Our solver can handle the VRP with capacity and
time window constraints. A constraint is called hard if it
must be satisfied and is called soft if it can be violated. The
amount of violation of soft constraints is usually penalized
and added to the objective function. In our foumulation,

time window and capacity constraints are both considered
soft.

It should also be emphasized that the time window con-
straints we consider are very general in the sense that one or
more time slots can be assigned to each customer. That is,
the corresponding penalty function can be non-convex and
discontinuous as long as it is piecewise linear. In this case,
after fixing the order of customers for a vehicle to visit, we
must determine the optimal start times of services at all cus-
tomers so that the total time penalty of the vehicle is min-
imized. We solve this sub-problem by dynamic program-
ming.

Let n; be the number of customers assigned to vehicle £,
and & be the total number of linear pieces in the penalty
functions for those customers. Note that & is considered
as the input size of the penalty functions of nj customers,
where &; = O(n;) holds in many cases. The time complexity
of our dynamic programming is O(nd;) if it is solved from
scratch. We also show that the optimal time penalty of each
solution in the neighborhood of the current solution can be
evaluated in O(X cpp Ok) time from the information of the
current solution, where M’ is the set of indices of vehicles
which the neighborhood operation involves.

The essential part of the solver, i.c., assigning customers
to vehicles and determining the route of each vehicle, is
based on local search (LS). In the literature, three types of
neighborhoods, called the cross exchange, 2-opt* and Or-opt
neighborhoods, have been widely used. In addition to these
standard neighborhoods, we use a new type of neighborhood
called the cyclic exchange neighborhood. This is defined to
be the set of solutions obtainable by cyclically exchanging
two or more paths of length at most LY (a parameter). As
the size of this neighborhood grows exponentially with the
input size, we propose an efficient heuritsic algorithm based
on the improvement graph.

We use iterated local search (ILS) and adaptive multi-start
local search (AMLS) in our framework of metaheuristics.
ILS generates initial solutions for LS by perturbing good
solutions obtained in the search by then. On the other hand,
AMLS keeps a set P of good solutions found in the previous
search, and generates initial solutions by combining parts of
the solutions in P.

We report here some results on Solomon’s benchmark in-
stances (Solomon, 1987). The number of customers in each
instance is 100, and their locations are distributed in the
square [0,100]? of the plane. The distances between cus-
tomers are measured by Euclidean distance, and the travel-
ing times are proportional to the corresponding distances.
Each customer i (including the depot) has a single time win-
dow [w1, w§'] , an amount of requirement ¢; and a service time
u;. All vehicles & have a fixed capacity Q. Both time window
and capacity constraints are considered hard. For these in-
stances, the number of vehicles m is also a decision variable,
and the objective is to find a solution ¢ with the minimum
(m,dsum(0)) in the lexicographical order.

These benchmark instances consist of six different sets
called C1, C2, R1, R2, RC1 and RC2, respectively. Loca-

NI | -El ectronic Library Service

The Japan Soci ety of Mechanical Engineers

Table 1 Comparison of the solution quality on Solomon’s VRP instances

problem ILS ILS AMLS AMLS G&H BBB Br BVH H&G
class 2000s 15000s 2000s 15000s (2002) (2003) (2003) (2001) (2003)
Cl MNV 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

MTD §28.38 82838 828.38 828.38 828.63 82848 828.38 828.38 82838

C2 MNV 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
MTD 589.86 589.86 589.86 589.86 590.33 589.93 589.86 589.86 589.86
R1 MNV 12,00 11.92 1192 1192 12,00 11.92 1192 1192 1192
MTD 1215.83 1214.26 1220.02 1217.40 1217.57 1221.10 1222.12 1213.25 1212.73
R2 MNV 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73
MTD 978.84 967.03 961.64 959.11 961.29 97543 975.12 966.37 955.03
RC1 MNV 1150 11.50 11.63 11.50 11.50 11.50 11.50 1150 11.50
MTD 1385.89 1385.42 1378.72 1391.03 1395.13 1389.89 1389.58 1384.22 1386.44
RC2 MNV 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
MTD 1147.38 1131.24 1132.17 1122.79 1139.37 1159.37 1128.38 1141.24 1123.17
All CNV 406 405 406 405 406 405 405 405 405
CTD 57798 57516 57480 57444 57641 57952 57710 57567 57309

tions of customers are clustered in groups in type C, uni-
formly distributed in type R, and the two types are mixed in
type RC. Furthermore, for instances of type 1, the time win-
dow is narrow at the depot, and hence only a small number
of customers can be served by one vehicle (meaning that
relatively many vehicles are required). Conversely, for in-
stances of type 2, the time window is wide, and hence many
customers can be served by one vehicle. Each type consists
of from 8 to 11 instances.

The results in Table 1 compare the best solutions obtained
by algorithms ILS and AMLS with other existing methods.
In the table,

“MNV” represents the mean number of vehicles,

“MTD” represents the mean total distance,

“CNV” represents the cumulative number of ve-
hicles, and

“CTD” represents the cumulative total distance.

Column “ILS 2000s” is the result of ILS, where the time
limit for each instance is 2000 seconds. The meaning of
columns ILS 15000s, AMLS 2000s and AMLS 15000s are
similar. Other columns are taken from the following refer-
ences: “G&H (2002)” is the result by algorithm HM4C in
(Gehring and Homberger, 2002), “BBB (2003)” is the result
by (Berger, Barkaoui and Briysy, forthcoming), “Br (2003)”
is the result by algorithm RVNS(2) in (Briysy, forthcom-
ing), “BVH (2001)” is the result by (Bent and Van Henten-
ryck, 2001), and “H&G (2003)” is the result by (Homberger
and Gehring, forthcoming).

The average computational time of algorithms G&H
(2002), BBB (2003), Br (2003), and BVH (2001) for each
instance are roughly estimated as 800, 6000, 1300, 500, and
14000 seconds, respectively, if they were run on our com-
puter. Computational time of H&G (2003) is not clearly
stated in (Homberger and Gehring, forthcoming).

The solution quality of ILS and AMLS with the time
limit of 2000 seconds are competitive with G&H (2002),
but slightly worse than BBB (2003), Br (2003), BVH
(2001), and H&G (2003). If much longer computational

time, 15000 seconds, is allowed, both ILS and AMLS ex-
hibit better quality than BBB (2003), Br (2003), and BVH
(2001). Note that the computational time of our algorithms
is roughly equivalent to algorithm BVH (2001).

These results are significant, since our algorithms are very
general and not tailored to the VRP of Solomon’s instances.

SCP: The set covering problem (SCP) can be formulated
as the following special case of integer programming:

Minimize Y cjx;
jes

subjectto Y ajx;>1, ieM
=Y
x;€{0,1}, jJEN,

where
a;;=1(ifi € S;), 0 (otherwise).

It is understood that variable x; equals 1 if subset S; is cho-
sen, and O otherwise.

The SCP has been intensively studied, and various codes
are available. Our code is based on the iterated local search
and has the following features.

(1) The use of large neighborhood called the 3-flip neigh-
borhood, which is the set of solutions obtainable from the
current solution by flipping up to three elements. As the
size of the 3-flip neighborhood is O(n?), the neighbor-
hood search becomes expensive if naively implemented. To
overcome this, we employ an efficient implementation that
greatly reduces the number of candidates in the neighbor-
hood without sacrificing the solution quality.

(2) It is allowed for the search to visit the infeasible re-
gion, and the strategic oscillation technique is incorporated.

(3) The size reduction of the problem by using the in-
formation from the Lagrangean relaxation of SCP is added,
which turned out to be effective in solving very large in-
stances.

NI | -El ectronic Library Service

The Japan Soci ety of Mechanical Engineers

Table 2. Computational results of SCP algorithms.

instances m n density LB 3-FNLS CNS CFT
RAIL507 507 63009 1.2% 173 «174 %174 %174
RAILS16 516 47311 1.3% 182 x182 %182 %182
RAILS582 582 55515 1.2% 210 #2111 x211 %211
RAIL2536 2536 1081841 0.4% 685 *690 692 691
RAIL2586 2586 920683 0.4% 936 *x945 951 947
RAIL4248 4248 1092610 0.2% 1053 *x1064 1070 1065
RAIL4872 4872 968672 0.2% 1509 *x1528 1534 1534

* The best results obtained by these algorithms.

Table 2 shows some computational results for benchmark
instances known as RAIL, which come from the crew as-
signment problem in Italian railway systems. In Table 2,
“density” denotes the density of nonzero elements in matrix
{ai;}, “LB” the lower bound of the optimum value obtained
by Lagrangean relaxation, “3-FNLS” the best objective val-
ues computed by our code, “CNS” the best values of (Ce-
ria, Nobili and Sassano, 1998) and “CFT” the best values
of (Caprara, Fischetti and Toth, 1999). We note that CFT is
known as one of the best SCP codes. For large instances,
our code 3-FNLS could get better solutions than those ob-
tained by CFT, by spending more computatinal time (about
5 times) (Yagiura, Kishida and Ibaraki, submitted).

Acknowledgement

Most of this research, particularly the devolopment of
solvers, has been done in collaboration with Mutsunori Yag-
iura and Koji Nonobe of Kyoto University, and graduate stu-
dents in our group, which is gratefully appreciated. This
work was partially supported by a Grant-in-Aid from the
Ministry of Education, Culture, Sports, Science and Tech-
nology of Japan, and the 21 Century COE project “Informat-
ics Research Center for Development of Knowledge Society
Infrastructure” of Kyoto University.

References

Bent, R. and P. Van Hentenryck. (2001) A two-stage hybrid
local search for the vehicle routing problem with time
windows, Technical Report, CS-01-06, Dept. of Com-
puter Science, Brown University, Providence, RI.

Berger, J., M. Barkaoui and O. Braysy. (Forthcoming) A
route-directed hybrid genetic approach for the vehicle
routing problem with time windows, /INFOR.

Briysy, O. (Forthcoming) A reactive variable neighborhood
search for the vehicle routing problem with time win-
dows,” INFORMS Journal on Computing.

Caprara, A., M. Fischetti, and P. Toth. (1999) A heuristic
method for the set covering problem, Operations Re-
search, Vol. 47, pp. 730-743.

Ceria, S., P. Nobili and A. Sassano. (1998) A Lagrangean-
based heuristic for large-scale set covering problems,
Mathematical Programming, Vol. 81, pp. 215-228.

Gehring, H. and J. Homberger. (2002) Parallelization of
a two-phase metaheuristic for routing problems with
time windows, Journal of Heuristics Vol. 8, pp. 251—
276.

Homberger, J. and H. Gehring. (Forthcoming) A two-phase
hybrid metaheuristic for the vehicle routing problem
with time windows, European Journal of Operational
Research, to appear.

Ibaraki, T., M. Kubo, T. Masuda, T. Uno and M. Yagiura.
(Forthcoming) Effective local search algorithms for
the vehicle routing problem with general time window
constraints, Transportation Science.

Nonobe, K. and T. Ibaraki. (2001) An improved tabu search
method for the weighted constraint satisfaction prob-
lem, INFOR, Vol. 39, pp. 131-151.

Nonobe, K. and T. Ibaraki. (2002) Formulation and tabu
search algorithm for the resource constrained project
scheduling problem, in Essays and Surveys in Meta-
heuristics (MIC’99), edited by C. C. Rebeiro and P.
Hansen, Kluwer Academic Publishers, pp. 557-588.

Solomon, M. M. (1987) The vehicle routing and scheduling
problems with time window constraints, Operations
Research, Vol. 35, pp. 254-265.

Yagiura, M. and T. Ibaraki. (2001) Combinatorial Opti-
mization — Centering around Metaheuristics —, (in
Japanese), Asakura-Shoten, Tokyo.

Yagiura, M., M. Kishida and T. Ibaraki. (Submitted) A 3-flip
neighborhood local search for the set covering prob-
lem.

NI | -El ectronic Library Service

