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Abstract

  We  describe our  attempts  to build general solvers  that

cover  a  large portion of  schduling  problems encountered  in
real  world  applications. For this, we  select  a  list of  stan-

dard problems, and  develop their solvers  which  are  based

on  local search  and  metaheuristics.  As standard  problems,
we  have chosen  so  far RCPSP  (recource constrained  project
scheduling  problem), CSP  (eonstraint satisfaction  prob]em),
VRP  (vehicle routing  problern), SCP  (set covering  problem)
and  others, In this paper, we  outline definitions of  these

problerns, algorithmic  contents  of  solvers,  and  some  com-

putational results.

Keywords:  General solvers,  scheduling  prob]ems, loca]

search,  rnetaheuristics,  standard  problems.

night  shifts,  no  three consecutive  night  shifts, no  single  iso-
lated night  shift, no  four consecutive  day shifis  and  so  forth,

The total numbers  of day. evening  and  night  shifts  of  each

nurse  in each  month.  respective]y have to be kept within

given upper  and  lower bounds. There are  usually  other  con-

straints  paniculaT to each  hospital, Then  find a  shift  assign-

ment  of  all nurses  that minimizes  the number  of  violations

ofgivenconstraints.

  Parcel delivery prob)em: There are  vehicles  to deliver
parcels to customors,  starting  from a post oence  , Each parcel
has its weight  and  each  vehicle  can  carry  some  nurnber  of

parcels within  its capacity.  It is asked  to determine the set

of  customers  which  each  vehicle  scrves,  together with  the

travel route  of  each  vehicle,  so  that the total travel distance
of  all vehicles  is mimimized.

1. RealWor}dSchedulingProblems

  Scheduling problems are  abundant  in real  world  applica-

tions. They take  quite different fornis, sizes  and  complexi-

ties. We  give below four types  ofscheduling  problems. as
exampLes  which  can  be commonly  fbund in various  areas  of

social  and  industrial activities.

  Machine  scheduling:  There are njobs  to be processed
on  m  rnachines,  each  of  which  handles only  one  job at a

time. Other resources  such  as  operators,  machine  tools and

associated materials  also  have to be assigned  when  ajob  is

processed on  a  machine.  The  objectitive  is to find a  time

schedule  of  alljobs  on  m  machines,  which  minimizes  a cer-

tain measure  such  as  the time  to complete  al] jobs, while

satisfying  the  resource  and  technological  constraints.

  Workforce  scheduling:  A  typical example  in this type
of scheduling  is the nurse  scheduling  problem in a  hospital,

where  the work  time  table ofn  nurses  is constructed  over

a specified  time  horizon, e.g., one  month.  There are  three

shifts, day, evening  and  night,  in one  day, and  each  shift  in
each  day requires  a given number  ofnurses.  Also from the
side  ofeach  nurse,  there are  a  number  of  constraints,  e.g., at

]east one  day-off every  week,  one  day-off after  consecutive

  Crew  scheduling  probtem: As a  typical exarnple,  we

consider  the assignment  ofpi]ots  to all fiights scheduled  in
an  uirline  company,  where  each  flight must  have at least one

pilot. A  seqence  of  consecutive  flights attended  by a pi)ot
is caLled  a  leg, ifit satisfies  the safety  and  other  regulations.

Then we  are asked  to find aminimum  nurnber  of  legs, which

together cover  al] flights.

  Although  all these are  called  scheduling  problems, they

have very  different mathematical  structures, wh{ch  we  need

to exploit  in order  to produce  effective algorithms. As  a

result,  it is usually  necessary  to invest some  amount  ofman-

power and  time  to develop such  solvers.  Furthermore, as  a

characteristic  of  combinatorial  optimization  problems. sueh
algorithns  may  exhibit  quite different perfbrmance if some
new  constraints  are  added,  or  some  new  features are  intro-

duced to the problem, necessitating the  development of  an

entirely  new  a}gorithm  in some  cases.

  In view  ofthesc,  we  consider  it very  usefu1  ifwe could  de-

velop  general severs,  each  ofwhich  can  cover  a  wide  range

of  schduling  problems of  similar  types. Such solyers  must

be erncient,  flexible, robust  and  easy  to use,
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2. NP-Hardness  and  General Solvers

  An  important theoretical achievernent  in complexity  the-

ory  is the concept  of  NP-comp]eteness and  NP-hardness,
The NP  is a  class  of  problems that includes most  of  the

combinatorial  problems encountered  in applications.  Some

problems in class NP can  be shown  to be NP-complete or

NP-hard. (There are  slight  difft]rences in the definitions of

NP-completeness and  NP-hardness, but we  use  only  termi-

nology  NP-hard hereafier for simplicity  sake.)  For exarnple,

problems SM  {satisfiability) and  IP (integer programming)
are  NP-hard.

  Every NP-hard problem A has an  important property that

an.vprobtem  in class  NP  can  be redtteed  to A,

implying that an  algorithm  fbr A can  solve  any  problem B  in

class NR  In other words,  the algorithm  forA can  be regarded
as a genera] selver fbr all problems in NP, This is a positive
side  ofNP-hardness.

  Such a  general solver is diMcult to constmct,  however,

because ofthe  fo11owing negative  side  efNP-hardness.

NP-hant problems are  comptttationatly  in-
tractable (hot solvable  in polynoJnial time).

(Tb be more  precise, this statement  holds only  if the famous
NINP  corijecture  is true.) Therefore, it is net  possibie te
buildageneralsolverthatworkserncientlyforal1problems.

  An  approach  to overcome  this dirnculty may  be using  an

eMcient  approximate  algorithm  for an  appropriate  NP-hard

problem A. As  good  approximate  solutions  are  suMcient  for

most  ofthe  practical purposes, this appreach  appears  quite
meaningfu1.  However, there are  the fo11owing two  obstacles.

. The problem size  may  explode  in the process of

   reducing  a  given probEem instanee to a  prob-
   lem instance ofA.

. A good approximate  solution  to A may  not be

   a  good approxirnate  solution  of  the original

   instance, due to the distortien of  the distance

   to optimal  solution incurred during reduction

   process.

  
'fo

 avoid  thjs, we  have to a]low  only 
`'natura]"

 reductions,

which  are free ofthe  abeve  two  defects.

  Our conelusion  fi'orn these observations is that we  have
to prepare  a  list of  standard  NP-hard  problems,  instead of  a

single  pToblem  that represent  all problelms in NP. Based on

this, we  have defined several  standard  problems so  far and
developed efTective  approximate  algorithms  for them.  This
scheme  is illustrated in Figure 1.

3. ListofStandardProblems

  Among  possible standard  problems for scheduling,  we

selected  the fo11owing list so  far, Each standard  problem
is selected  from the view  point that it is general enough  to

cover  a  wide  Tange  of  important scheduling  problems, flex-
ible enough  to allow  various  additional  constraints  and  ob-

jective functions, and  still has mathematical  structurcs  that

makethedevelopmentofeMcientalgorithrnspossible.

1. Integerprogramining (IP)
2. Constraint satisy2iction  problem  (CSP)
3 . Resottnce constrained  pttv'ect sehedttling  prob-
   iem (RCPSP)
4. lehicle toutingproblem  (VRP)
5. Sbt covering  ptobleJn (SCP)

  IP solvers  have been studied  as  the most  repre-

sentable general solvers fbr combinatorial  problerns includ-
ing scheduling  problems. A  few cornmercial  software  pack-
ages  are  already  availabie  and  appear  very  powerfu1. For this
reason,  we  have not  tried to develop IP solvers.  Although
IP is very  general, there still remain  many  problems which
are  not  appropriate  fbr IR Problems CSR  RCPSP  and  VRP
can  handle schedu[ing  problerns with  some  special  struc-

tures that make  direct application  of  IP solvers  rather  difi
ficult. Problern SCP may  be considered  as a special case

of  IR but can  be solyed more  ernciently by exploiting its
structure.

  CSP:  In principle, CSP  allows  any  type of  constraints,

and  tries to find a  soiution  that satisfies  all constraints.  If
no  such  solution  exists,  CSP  finds a solution  with  a  mini-

mum  violation  ofconstraints.  The  violation  ofconstraints

is usual}y  measured  by the sum  efweights  given to the vi-
olated constraints. In our  implementatien, we  treat linear
equality  and  inequality constraints  under  O-1 variables  as

standardconstraints(likeIPapproach),aswellasnon-equa]

(l) constraints. Quadratic constraints of  O-l variables  can

a]so be handled. Any  demain ofeach  variable  consisting  of

finite values  can  be transformed  into domains of  O-1 vari-

ab]es  by introducing value  variables  (which are  O-1 valued).
By adding  constraints  oracles  Cprepared by users),  any  con-

straints  can  be incorporated into the solver.

  RCPSP: This problem asks  to determine start times of
n  activities, where  each  activity  consumes  some  amounts  of

resources,  such  as  machines,  tools, rnan-power,  energy,  bud-

get, raw  materials  and  so  fbrth, and  the available  arnounts

ef  those resources  (which are time-dependant)  are given as
constraints.  The  resources  are classified into renewable  and

nonrenewable.  To  precess each  activity,  one  mode  from a
given set  of  modes  can  be chosen,  wheTe  each  mode  has
its own  process time  and  resource  consumptjon.  Other
aspects  such  as  precedence constraints  between activities,

setup  tirnes and  various  types ofobj  ectiye  fUnctions can  also

be taken  into account.  Ifthere is no  schedule  that satisfies

all censtraints,  it is asked  to  output a solution with  the min-

imum constraint  vio]ation,  as  in CSP,

  VRP:  There are  m  vehicles  and  n  customers,  where  a

good of  weight  "ii rnust  be delivered to customer  j and  the

capacity  ofeach  vehicle  is e. It is asked  to assign  those cus-

tomers  te yehicles,  so  that the capacity  constraint  is satisfied
for each  vehic]e,  and  then to determine the route  ofeach  ve-

hicle. Each custorner  may  have its time  wjndow  constrajnt

2
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Fig. 1 General solvers  via  standard  problems

that specifies  the time  slots  in which  the good  can  be del{v-

ered. In such  a case,  not  only  the route  of  each  vehicle  but
also  the start  time  of  serving  the customer  have to be deter-

mined.  A  typical objective  function to minimize  is the tota]
length of  ail vehicles  d,.. . A  typical example  of  VRP  is the

parce] delivery problem described previously.

  SCP:  Given a  family of  subsets  Sj,j =  1,2,...,n of  a

ground set S =  {1,2,....ni}, SCP  as'ks to find a subfam-

ily .S-, ,i  
=  1,2....,k such  that the sum  of  weights  given to

Sff is minimized  under  the constraint that union  ofthe  se-

lected subfami]y  cevers  S. This problem  has wide  appli-

cations  since  certain  types of  vehicle  routing  problems and
crew  schcduling  problems can  be formulated as  SCP,

4. AlgorithmicAspectsofSolvers

  The solvcrs  for the above  standard  problems must  be era-
cient  so  that laTge scale  instances arising in practice can  be
handled, fiexible so  that constraints  and  objective  functions
particular to app]ications  can  be included, and  robust  against

small  structural  changes  in the problem. A  key questien here
is whether  algorithms  with  such  characteristics  exist  or  not.

We  believe that the framework of  rnetaheuristics  based on

local seat=h  (LS) is the  one  for sueh  purposes. Metaheuris-

tics include as  special  cases  such  algorithms  as  genetic  aigo-

rithins  <GA), evohttionacJ,  conu)tttation  (EC), simulated  an-

nealing  {SA), tabtt  seatch  (TS), iterated local search  (1LS)
and  others.

  Locat  search:  LS  starts  from an  appropriate  initial solu-

tion x, and  repeats  the operation  of moving  to  a better so-

lution x' (i.e., x  := x')  in its neighborhood  N(x)  if such  a

solution  exists.  Ifthere is no  better so]  ution  in the neighbor-
hood  N(x), solution  x  is called  iocally optimal  and  LS  halts
there,

  The performance of  LS  depends on how  the solution

space  and  the neighborhood  are  defined, and  how ether  de-
tails are  irnplemented such  as  construction  of  initial solu-

tions and  the order  of  searching  the solutions  in the neigh-

borhood, and  when  te move  to a new  solution  (e.g., the best

solution in N(x) or the first improved solution  found).

  Metaheuristics: Algorjthms in metaheuristics  use  LS  as

their important ingredient, and  repeat  the processes ofgen-

erating  an  initial solution  and  its improvernent by LS  in the

fo11owingrnanner.

METAHEURISTICS
I (Initial solution):  Generate an  initial solution  x.

II CLS): Improve x  by applying  (generalized) LS.

III (iteration): Ifthe stopping  criterion holds, halt

  after  outputting  the best solution  found so  far.
  Otberwise, return  to I.

  To generate initial soiutions  in I, it is common  that the

cemputational  history by then is taken  into consideration.
For exarnplc,  a certain  number  ofgood  solusions  are  main-

tained during computation,  and  initial solutions  are  gener-
ated  by combining  them  in some  rnanner.  In GA.  offspring

is generated from a selected pair of good solutions  by a

crossover  operation.  In ILS, initial solutions  arc  gcnerated

by ramdom]y  modifying  the best solution  in the pool.
  The generalized LS  in II for example  permits the  random-

ized search  in N(x) and  the move  to a  worse  solution  with

certain  probability. The probality is controlled  by a  param-
eter  called tenrperature in SA, to  diversify the search  in the

initial phase and  then  concentrate  the search  to the prornis-

ing area  found in the initial phase. In TS, the rnove  in II is al-
ways  done to the best solution  in N(x) even  ifit is worse  than

x. In this case,  to prevent cycling  ofsolutions,  a  tabu  list of

solutions is prepared and  the moves  to tabu  solutions  are

prohibited, where  tabu list usually  contains  a certain  num-

ber ofmost  recently  visited  solutions  or  a set of  features of

such  solutions,

  The stopping  criterion  in IIJ can  be very  sirnple,  e.g., it
stops  ifa specified  time  limit ofcomputation  is over.  In other

cases, more  sophisticated criterion may  be used  to consider

the computational  history such  as when  best solutions  have

been irnproved during iterations ofltL.III.

  Detailed description on  metaheuristics  can  be found fbr
example  in <Yagiura and  Ibaraki, 2001).

  We  have developed solvers for the  above  standard  prob-
lems CSR  RCPSR  VRP  and  SCR  following the frarnework
of  metaheuristics.  Some  are  based on  TS  and  others  are

based on  ILS, For details ofthese  solvers,  please see  thc refL

erences  (Nenobe and  Ibaraki, 2001; Nonobe  and  Ibaraki,
2002; Ibaraki et  at., forthcoming; Yagiura, Kishida and

Ibaraki,submitted).
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5. ModelingasStandardProbtems

  Most  important factors pertaining to the success  of  our

approach  are perhaps how  to select an  appropriate  standard

probiem from the list, and  how  to rnodel  the given problem
instance into a  compact  instance of  the standard  problem.
This is not  an  easy  task. It requiresa  deep insight into the
relation  between stmcture  ofthe  given problem and  behav-
jor ofthe  selected  solver.

  As  an  example,  consider  the parcel delivery problem
given in Section 1, which  can  be naturallymodelled  as  VRP,
As  noted  in the definition of VRR  the problem rnay  also

have tirne window constraints. The problem may  then  be

generaLized by allowing  pick-up and  delivery situation,  i,e.,
vehicles  accept  orders  of  delivering parcels from some  cus-

tomers  to other  customers,  where  the pick-up and  delivery
ofapercel  has to  be done in the sarne route  (without taking

{t back to post ornce).  The  resulting  problem is no  longer
appropriate  for the standard  problem  VRR  because the cen-

straint  ofpick-up  and  delivery orders  is not  easily  hand]ed.
One  of  the natural  approaches  in this case  is to use  SCP.
We  first construct  a number  of  cadidate  routes  of  vehicles

by selecting appropriate  sets  of pick-up  and  delivery orders
within  the capacity constraint, and  then  choose  a  rninimum

number  ofroutes  frorn them  so  that all orders  can  be cov-

ered.  The last problem can  be easity  formulated as  SCP,

  The  SCP  approach  for the pick-up and  delivery problem
may  also  be supported  from an  algorithmic  consideratjon  of

the local search for VRR  A  solution in the local search  of

VRP  is a set of  routes  that together covers  ali customers,

We  search  an  improved solution  in the neighborhood  by ex-

changing  sorne  subroutes  in different routes  in a systematic

manner.  Hoever,  under  the constraint  ofpick-up  and  de-
livery ordcrs,  such  exchanges  tend  to destroy its fesibi]ity,
and  finding feasible solutions  in the neighborhood  becomes
very  diMcult. This appears  to indicate that the local search
for VRP  is not  efTective.

  We  need  this  kind of  carefu] consideration whenever

solvers  are  used  in appiications. However, due to space  lim-
itaion, we  omit  further discussion here,

6. Implementation of  So}vers and  Their Computa-

   tional Results for VRP  and  SCP

  Extensive computational  experiments  of the solvers for
the above  standard  problems have been conducted  and  can

be fbund in the associated  papers (Nonobe and  Ibaraki,
2001; Nonobe  and  Ibaraki, 2002; Ibaraki et  al., fbrthcom-
ing; Yagiura, Kishida and  Ibaraki, submitted).  Here, fbr two

problems VRP  and  SCR  we  explain  some  implernentation

details of  solvers, and  report a highlight of  their computa-

tional results.

  VRP:  Our solver  can  hand]e the  VRP  with  capacity  and

time  window  constraints.  A  constraint  is called  hatd if it
must  be satisfied  and  is called  sqfi  ifit can  be violated.  The
amount  ofviolatien  ofsoft  constraints  is usually  penalized
and  added  to the objective  function. In our  foumulation,

time  window  and  capacity  constraints  are  both considered

soft.

  It should  also  be emphasized  that the time  window  con-

straints we  consider  are very  general in the sense  that one  or

more  time  slots can  be assigned  to each  customet  That is,
the corresponding  penalty functjon can  be non-convex  and

discontinuous as  long as  it is piecewise linear. In this case,
after  fixing the order  of  customers  for a vehicle  te  visit  we

must  determine the  optimal  start times  efservices  at al] cus-

tomers  so  that the total time  penalty of  the yehicle  is min-
imized, We  so]ve  this sub-probiem  by dynamic program-
rnlng.

  Let nft be the number  ofcustomers  assigned  to vehicle  k,
and  5k be the total number  oflinear  pieces in the penalty
functions for those customers, Note that 5k is considered
as the input size  of  the penalty functions of  nk  customers,

where  6k ==  O(nA-) holds in many  cases.  The tirne comp]exity

of  our  dynamic programming is O(nk5k ) ifit is solved  ftom
scratch,  We  also  show  that the optimal  tirne penalty ofeach
solution  in the neighborhood  ofthe  current solution can be
cvaluated  in O(Ek,,w 5k) time from the inforrnation of  the

current  solution,  where  M' is the set  of  indices of  vehicles

whieh  the neighborhood  operation  involves.

  The essentia]  part of  the solver,  i.e., assigning  custorners

to vehicles  and  determining the route  of  each  vehicle,  is
based on  local search  (LS). In the literature, three types  of

neighberhoods,caliedtheerossexchange.2-opt"andOr-opt

neighborhoods,  have been widely  used,  ln addition  to these

standardneighborhoods,weuseanewtypeofneighborhood

called  the cyclic  exchange  neighborhood.  This is defined to
be the set  of  solutions  obtainable  by cyclically  exchanging

two  or  more  paths oflength  at most  LCYCijC (aparameter). As

the size of this neighborhood  grows  exponentially  with  the

input size, we  propose an  eMcient  heuritsic algorithm  based
on  the inrprovement gt'aph.

  We  use  iterated local search  (ILS) and  adaptive  multi-start

local search  (AMLS) in our  frarnework of  metaheuristics.

ILS generates initial solutions for LS by perturbing good
solutions  obtained  in the search by then. On  the other hand,
AMLS  keeps a  set  P ofgood  sol  utions  found in the previous
search, and  generates  initial solutions  by combining  parts of
the solutions  in P.

  We  report  here sorne  results  on  Solomon's benchmark in-
stances  (Soiomon, 1987). The number  ofcustomers  in each
instance is 100, and  their locatiens are  distributed in the
square  [O,100]? ofthe  plane. The distances between cus-
tomers  are  measured  by Euclidean  distance, and  the travel-

ing times are  proportional to the corresponding  distances.
Each customer  i (inc]uding the depot) has a singte  time  win-

dow  [Mt･ . ",sc  an  amount  ofrequirernent  qi and  a  service  tirne

ui. All vehicles  k have a fixed capacity  2, Both time windew

and  capacity  constraints are considered  hard. For these in-
stances,thenumberofvehiclesmisalsoadecisionvariable,

and  the objective  is to find a  solution  o  with  the minimum

(m.dsum(6)) in the lexicographical order.

  These  benchmark instances consist  of  six  different sets

called  Cl, C2,  Rl,  R2,  RC1  and  RC2,  respectively.  Loca-
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Tab)e 1 Comparison ofthe  solution  quality on  Solomon's VRP  instances

problemclass  ILS ILS AMLS
2ooos lsooos 2ooesAMLSISOOOsG&H

 BBB  Br BVH  H&G
(2oo2) aoo3) aoo3) {2ool) aeo3)

Cl

C2Rl

mRC1

RC2

MNv  le.oo ]o.oo lo.eo

MTD  828.38 828.38 828.38
MNV  3.00 3.00 3.00
MTD  589,86 589.86 589.86

MNV  12.00 11,92 11,92

MTD  121S,83 121426 1220.02

MNV  2.73 2.73 2.73

MTD  978.84 967.03 961.64
MNV  11.Se 11.5e 11.63

MTD  1385.89 1385.42 1378.72

MNV  3,2S 3.2S 325
MTD  1147.38 113124 1132.17

 IO,OO828.38

  3.00589.86

 11.921217.40

  2.73959.11

 ]1.501391.03

  3.251122.79

 lo,oo lo.oo lo.oo lo.oo le.oo

828.63 828.48 828.38 828.38 828.38
  3.00 3.00 3.00 3.00 3.00

590,33 S89.93 589.86 S89.86 589.86

 12.00 11.92 11,92 ll.92 11.92

1217.57 1221.10 1222.12 1213.25 1212,73
  2J3  2,73 2.73 2.73 2,73

96129 97S.43 975.12 966.37 955.03

 ILSO 11,50 11.50 IL50  11.SO

139S,]3 1389.89 1389.Sg 138422  1386.44

  325  3.25 3.25 3,25 325

1139.37 1159.37 1128.38 l14124  1123.17

AllCNV  406 4e5  406

CTD  57798 57516 S7480
 40557444 406  405  405 40S 405

57641 57952 S7710  57567  57309

tions of  customers  are  clustered  in groups in type C, uni-
formly distributed in type  R, and  the two  types  are  mixed  in
type  RC.  Furthermore,  fbr instances oftype  1, the time  win-

dow is narrow  at  the depot, and  hence only  a  small  number

of  customers  can  be served  by one  vehic]e  (meaning that

relatively  many  vehicles  are  required). Conversely, for in-
stances  of  type 2, the time  window  is wide,  and  hence many
customers  can  be served  by one  vehicle.  Each type consists

of  frorn 8 to 11 instances.

  The results  in Table 1 compare  the best solutions  obtained

by algorithms  ILS and  AMLS  with  other  existing  methods.

In thc table,

    
"MNV"

 represents  the mean  number  of vehicles,

    
tLMTD"

 represents  the mean  total distance,

    
`'CNV"

 represents  the cumulative  number  of  ve-

      hicles, and

    
`LCTD"

 represents  the curnulative  total distance.

Column  
"ILS

 2000s" is the result  of  ILS, where  the time

limit fbr each  instance is 2000 seconds.  The meaning  of

columns  ILS  15000s,  AMLS  2000s and  AMLS  15000s are

simi]ar.  Other columns  are  taken  from the fbllowing refer-

ences:  
"G&H

 (2002)" is the result by algorithm  HM4C  in

(Gehring and  Homberger, 2002), `"BBB
 (2003)" is the result

by (Bergcr, Barkaoui and  Braysy, forthcoming), 
"Br

 (2O03)'i
is the result  by a]gorithm  RVNS(2)  in (Braysy, forthcorn-
ing), "BVH

 (2001)" is the result  by (Bent and  
}vlein

 Henten-
ryck,  200 1), and  

"H&G

 (2003)" is the result  by (Homberger
and  Gehring, fbrthcoming),

  The average  computatienal  time  of  algorithms  G&H

(2002), BBB  (2003), Br (2003), and  BVH  (2001) for each
instance are  roughly  estimated  as  800, 6000, 1300, 500, and

14000 secends,  respective!y,  if they  were  run  on  our  cem-

puter. Cornputational time  of  H&G  (2003) is not  clearly

stated  in (Homberger and  Gehring, forthcoming).

  The solution  quality of  ILS and  AMLS  with  the time

limit of2000  seconds  are  competitive  with  G&H  (2002),
but slightly  worse  than BBB  (2003), Br <2003), BVH

(2001), and  H&G  (2003). If much  longer computational

time, 15000 seconds,  is allowed,  both JLS and  AMLS  ex-

hibit better quality than BBB  {2003), Br (2003), and  BVH

(2001). Note that the computatienal  time  ofour  algorithrns

is roughly  equivalent  to algorithm  BVH  (200 1).

  These results  are  significant,  since  our  algorithrns  are  very

gcneral and  not  tailored to the VRP  of  Solornon's instances.

  SCP/ The set covering  problem  (SCP) can be fbrrnulated
as the fo11owing special  case  of  integer programming:

where

Minimize

subjectto

2 cjx.ijEJZaiJ'xj

 >- 1,

.i,'.Jxj
 c  {O, 1},

iEM

y'EN,

aiJ- ==  1 {ifiE Si), O (otherwise).

It is understood  that yariable  xJ- equals1  if subset  Si is cho-
sen,  and  O otherwise.

  The SCP  has been intensively studied,  and  various  codes

are  ayailable.  Our  code  is based on  the iterated local search

and  has the fo11owing features,

  ( 1 ) The use  ef  large neighborheod  called  the 3;t7ip neigh-

borhood, which  is the set  of  solutions  obtainable  from the

current  solution by fiipping up  to three elements.  As  the

size  of  the 3-flip neighborhood  is O(n3), the  neighbor-

hood search  becomes expensive  ifnaively implemented. Te

overcome  this, we  employ  an  eencient  implementation that

greatly reduces  the number  of  candidates  in the neighber-

hood witheut  sacrificing the solution  quality.

  (2) It is allowed  for the search  to visit the infeasible re-

gion, and  the strategic  oscillation  technique  is incorporatcd,

  (3) The  size  reduction  of  the prob]em by using  the in-

formation from the Lagrangean relaxation  ofSCP  is added,

which  turned out to be effective in solving  very  large in-

stances.
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Tbble2.ComputationalresultsofSCPalgorithrns.

instancesm ndensjtyLB  3-FNLS  CNS  CFT
 RAIL507
 RAIL516

 RAIL582
RAIL2536

RAIL2S86

RAIL4248
RAIL4872

 507
 516

 5822536258642484872

 63009

 47311

 555151081841920683109261O968672

1.2%1,3g612%e,4%O,4%O,2%O.2% 173
 18221068593610531509

 *174

 *182

 *211

 *690

 *945*1064*IS28

*174*182*21]

 692
 95]10701534

*174*182*211

 691

 94710651534

*
 The best results  obtained  by these a]gorjthms.

  Table 2 shows  some  computationat  results  for benchmark
instances known as RAIL, which  come  from the crew  as-

signment  problem in Italian railway  systems.  In fablc 2,
"density"

 denotes the density ofnonzero  elements  in matrix

{ai,i}, 
"LB"

 the lower bound ofthe  optimum  value  obtained

by Lagrangean  relaxation,  
"3-FNLS"

 the best objective  val-

ues  computed  by our  code,  
"CNS"

 the best values  of  (Ce-
ria, Nobili and  Sassano, l998) and  

"CFT"

 the best values
ofCCaprara,  Fischetti and  Toth, 1999). We  note that CFT is
known  as  one  of  the best SCP  codes. For  large instances,
our  code  3-FNLS could  get better so]utions  than those  ob-

tained by CFT, by spending  more  computatinal  time  (about
5 timcs)  (Yagiura, Kishida and  Ibaraki, submitted),
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