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Abstract

  In this paper, we  consider  to solve an extended  class  of

flexible shop  scheduling  problems under  the condition  that

infbrrnation onjobs  to be processed is not  given beforehand,
i,e., under  the ftamework ofreal-time  scheduling. Tb find
a solution, we  apply  such  a  method  where  jobs are  to be
dispatched by applying  a  set  ofrules  (a rule-set),  and  pro-
pose an  approach  in which  rule-sets  are  generated and  im-

proyed by using  the genetics-based machine  learning tech-

nique.  Through some  cornputational  experiments,  the  efl

fectiveness and  the potential ofthe  proposed approach  are

investigated.

Keywords:  Rule acquisition, genetics-basedmachine  learn-
ing, flexible shop  scheduling  problem, simulation.

1 Entroduction

  Recently, scheduling  has been recognized  as one  of  the
rnost  important issues in the planning and  the operation of

manufacturing  systems.  Extensive researches  on  scheduling

have been reported  from the theoretical as  well  as  the  prac-
tical view  points. Most  of  them  deal with  the static  envi-

ronment,  i.e., problerns on  the assumption  that all informa-
tion with  respect  to jobs are  given be forehand (Pinedo 2002,
Blazewicz et  al. 2001).

  In actua] manufacturing  system,  not  a  few unexpected

troubles happen, and  it is important to make  feasible sched-

ules  prornptly once  any  trouble happens. Furthermore,
there is no  guarantee that every  parameters of  the prob-
lems are  given befbrehand. These kinds of the problems
are  called  real-time  scheduling  problems, to which  rule-

based dispatching approaches  are  widely  applied(Shaw  et

aL  1992, Shafaei and  Brunn 1999a, 1999b). In these ap-

proaches, the jobs are  dispatched just when  they  anive.

However  it is rather  diMcult to acquire effective  rules  for
the scheduling  from the practical view  point.

  In this  paper, a class of flexible shop  scheduling  prob-
1emsisconsideredintheframeworkofreal-timescheduling.
That is, each  shop  includes multiple  parallel machines  in the
framework ofjob  shop  scheduling  problems, and  there are

severa]  auxiliary  restrictions  which  originate from the neces-

sity ofset-up  processes, In our past study,we  have dealt with
the problems as  deterministic and  static  ones,  and  have pro-
posed a  method  ofmodeling  the problem based on  a  math-

ematical  programming  appreach,  in which  an  integer pro-
gramrning method  and  a genetic algorithm  are  combined  to

obtain  good schedules  fastly (Sakakibara et al. 2002).

  In our  approach,  jobs are to be dispatched in real-time
using  some  rules,  and  the dispatching rules  are  generated
and  improved, in an  offLline  manner,  by using  the genetics-
based machine  leaming (GBML) frameworks(Smith 1980,
Goldberg 1989). tn implementing a  GBML,  we  use  the

Pitt approach,  where  a rule-set is represented  symbolically

as  an  individual of  genetic algorithms,  and  the fitness of
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an  individual, i,e., the  (globab objective  functien value  of

the  preblem, is calculated  according  to the results  of  some

sirnulations  using  the  rule-set.  By  extending  the ways  of

some  applications  adopting  this framework presented so

far (Sakakibara et al, 2003a, Sakakibara et aL  2003b), in the

paper, a way  ofapplying  our  Pitt approach  to a  class  offlex-

ible shop  scheduling  problems are  propesed. Furthermore,

some  computational  experiments  are  also  shown,  where  the

effectiveness  and  the potential of  the proposed approach  are

discussed.
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2 DescriptionoftheProblem

  There are  NM  machines  Mi  (i ;  1,..., NM)  and  NJ jobs
Ji (y' 

--
 1,..., Nj). Eachjob Jy･ is processed in a machine

environrnent  with  IVS stages(i.e.,  shep  floers); At stage  Fr

Si'.t/.1I'i',zl,71;'eeAe,,g'k,rLg9,Zli:a,i(.mgcUir,e};,Y.I',(J';.
parallel. Each ]ob Jj･ inc]udes a  series  ofnv-  operations  Ok

(k =  Nt-i +  1 . . . , , Nf ; AC,･ = Zf=i ni  ; IYb =:  O), and  these n1

operatibns  are  to be processed  in this order,  To each  opera-

tion Os- (k =  1,..., N; IV =  IVNJ =  Z/NiL" i ni･), the set ofavail-

ablc  machines  su(1 and  the  type  6k are  associated.  The type

ofoperatienrepresentsthekindofpreduction,andthecom-

bination ofthe  machine  and  the type  determines production
speed.

  In a  scheduling  or  dispatching process, the following re-
strictions  should  be taken into account,

 (a) Restriction ofrnachines:  each  operation  can  be pro-
    cessed  on  ene  ofthe  fitted machines.  (This is due to
    the mechanical  structure,  size, weight,  etc. ofthe  ma-

    chines  and  the fitness efoperations  te machines.)

 (b} Setup time  : lf the types of  two  operations  which  are

    processed successively  on  any  machine  difTers, a  setup

    time is needed  between their processing. The setup

    time consists  of  two  parts: the tirne required  before

    processing and  the time required  after  processing.

  Tb describe the scheduling  problem,  we  use  the fo11owing
notations  and  parameters. First, the  basic parameters are

    NS  :numberofstages.

    NM  :numberofmachines,

    NJ :numberofjobs,and

    NO  :nurnberofoperations(=  N,wJ),

Then, the fo11owing parameters are  associated  with  ma-

chines,  jobs and  operations.  With each  stage  F. (r =

1,..., NS), the fo11owing pararneters are  associated:

    n,･ : number  ofmachines.

With each  machine  Mi  (i =  1,...,NM), the fo11owing pa-
rameter  is associated  :

    ptia : time  per unit  product on  Mi  when  an  ope-

       ration  of  type Ts is processed.
With  eachjob  Jt (j =  1,..., NJ), the fo11owing parameters
are  associated  ]

    di: due date,

    e･ : required  quantity, and

Jl s cF3
 [Ml,M2.Mr,} {Mfi.Mil

J2 t u F3

 IMI.M?.Mj} IM4,Ms} (M6.Mll

jr, t s
Fl

  IM4･Ms} [Ml･M2･M3} [M6･M7)

 (b) Operational view  (Technical ordeT)

Fig.1An  example  efflexible  shop  probiems.

   ni  : number  of  operations.

With each  operation  Ok  (k =  1,..., ,VO), the fo11owing pa-
rameters  are  associated  :

    6k :typeofOk,

    rkO  : required  quantity (the value  ofrkO  is

       determined according  to that ofrJi･ ),

    sl : setup  time  required  before procegsing,

    sl : setup  time  required  afteF  processing,

    eql : set ofmachines  which  can  proccss Ok.

  As for evaluation  ofschedules,  various  kinds of  criteria

may  be censidered,  It is impossible, however, to  take  a]1 of

them  into considerati  on.  So, we  consider  here the maximum
completion  time  C... and  the total tardiness 4um :

       zL 
=
 Cmax=mJa.xt,l･i=mkax tkF ,, (1)

       z2 =  Tkum ==  Z{max (O.tAF,i-4t)}. (2)
                  j

where  tkF represents  the completion  tirne ofthe  operation  Ok.
Then, we  use  the weighted  sum  :

z  =  a111  +a2  72  =  a1 Ch]ax +a2  %um (3)

as a scalar objective functien, where  the weights  a  ] and  a2

arenonnegative.

  The scheduling  problem as  defined above  is categorized
as  flexible shop  problems (or flexiblejob shop  problems,
generalized shop  problems), which  little have been stud-

ied(Blazewicz et aL  2001, Brucker 2001). In Fig. 1. an  ex-

ample  ofthe  flexible shop  problems  with  NM  =  6, NJ =  3
and  NO  =  8 is shown.
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F;g. 2Precedure for generating a schedule.

  To represent  a  schedule,  we  have to determine the fo]low-
ing items :

 (i) Assignment ofeach  operation  to a  certain  machine,

Cii) Sequence of  operations  to be processed on  each  ma-

   chine,

{iii) Start time  ofeach  operation,  and

<iv) Cempletion time of each  eperation.

Here, the item (iv) is dependent on. i.e,, is automatically de-
termined  by referring  to. the  items (i) to (iii). Moreover,

the objective function efthe  problem  considered  here is a
regular  one,  and  it is known  that  the  optirnal $chedule  of

the problerns with  regular  objective  function be)ongs to the
setofactiveschedules{Pinedo2002,Blazewiczetal.2001).

Under this situation,  by fixing the items (i) and(ii),  a  feasi-
ble schedule  can  be uniquely  determined. In the  fo]lowing,
therefore, we  censider  a  method  ef  acquiring  rules  for de-
termining the items {i) and  (ii) eficiently, based on  simula-

tiens in which  the items {iii) and  (iv) are  calculated  by using

aprescribedprocedure.

3 PriorityScheduling

  In our  approach  to the scheduling  problem, we  use  a  set ef

rules  (a rule-seO  to make  decisions in real-time  throughout

manufacturing.  As  mentioned  in Section 2, the rule-set  is
used  to determine the assignment  ofjobs  to machines  and

the sequence  ofjobs  on  each  machine.  To acquire  a goed
(possibly the best) rule-set  beforehand, the GBML  method

is desigried and  applied  (as described in Section 4), where
several  computer  simulations  are  required  fbr evaluating  the

rule-sets  according  to the schedules  obtained  by applying

them.  In the fo11owing, the method  ofcemputer  sirnulations,

i.e., the schedu]ing  procedure, is descTibed.

   operation  within  a  job (i.e,, 
iJi･

 1k =  Ni +  1) er

   the operation  directly preceding  it has been com-

   pleted (i.e., Ok-i E  Oi(T)).

(b) For each  Ok E  oj(r), calculate  the earliest  time

   to start processing (tkS') as  fo]lows:

'i'' ==

max  (tkF. .i, t(F, +  (si, +  sl)At,k)  ,

     if kl  Ni-1+Ly' -- 1,･･･,NJ,

max  (O, tiF, +  (sZ +  sk)Af,k)  ,

     otherwise,

                                 (4)
where  Ot, represents  the current]y  ]ast operation
assigned  on  Mi. and  Aknt is a  constant  defined as

Ak" =  (?l tsfth5,Arwl, ,5,k' 
'

(5)

   (c) Among  the set  of  Ok E Ui Oii(T), find the  opera-

      tion Ok* and  the machine  Mi･ such  that the com-

      pletion time  ofOke  is the minimum.

3C Determination  ofa set  ofcandidate operations: Find

   oj (T) (g oj (T)) such  that any  operation  Ok  in pt (T)
  satisfies  the cendition  tkS' < tP' +  pi, in .
40 Sleleetion ofone operationforprocessing : Find  an ep-

  eration  Oi with  the  highest priority calculated  by using

  a  rule-set  among  the operatiens  in Oi.(T), Then, set

  ti =  t,S- 

',

 t,F- -  ti +pi･k,  and  Oi (T) =  Oi (T) n{oi}.
50 fermination: If 1Oi(T)1 =  NO  terminate. Otherwise

  set  T=  T' where  T' is the earliest  completion  time

  among  all machines,  and  go to 2C.

31 Schedulingproeed"re

  The procedure for making  a  schedu]e  ofthe  problems is
designed as fo11ows (Fig.2).

 1- Initiatization: Set T =  O and  O](T) t:  ¢ ,
 where  T and

    O](T) represent  the timing  of  dispatching anda  set  of

   operations  that has been assigried,  respectively.

 2Z Selection oj'one machinefor  assignment  :

    (a) For  each  Mi, first set  oj(T) =  ¢ ,
 where  of(T)

       represents  a set of  possible operations  to start

       processing on  Mi,  Then,  for each  eperation

       Ok  ¢ Oi (T) and  foreach machine  which  can pro-

       cess  Ok, set  oj (T) =  oj (T) U{Ok}  ifOk is the first

32 Calcu}atienofpriority

  tn the  step  40 ofthe  scheduling  procedure in Section 3, it
is required  to calculate  the priority ofoperations  according

to the status  efthe  production systern  as well  as the  charac-

teristicsofoperations.

  As  for the state  parameters, we  introduce the four kinds
of  indexes (variables) to represent  the whole  state  space  S:

    sR  : ratio  ofthenumber  ofcompleted  operations,

    sC  : makespan  ofthe  current  (partial) schedule,

    sD  : average  ofslacks  ofremaining  operations,

Then,  S is divided into nS  portions S, (u =  1,....nS) and.
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for each  subset  Sl,, the priority O.k ofOA  is defined as

     n,t

¢.k  =  Z W,,E akt.

    i7.1

{6)

where

    nA  : number  ofattributes  ofan  operation,

    w.t  : weight  ofthe  attribute  AF for .S,, and

    aki ] value  ofA[  ofOk.

As  for the  attribute A,  of  an  operation  Ok, we  introduce the
followings:

    A1 I processing time,

    A2 : number  ofmachines  which  can  process it,

    A3:slack  for its due-date, and

    A4  : nurnber  ofsucceeding  operations  to complete  ajob.

  To determine the weights  M,,,{ 
,
 we  use  a production ru1e  of

the  fo11owing type  :

          R: if <condition> then  <action>.
The <condition> part represents  the current  status  ofthe  sys-

tem, i,e., S,. Moreover, the cendition  of

    sF  / index ofthe  stage  F, to process an  eperation

is also  handled in the <condition> part. This is for dividing
the  ru]e-set  according  to the stage  to process an  operation,

Whilethe<action>partpossessesthe{integer)weightvector
it'u ==  (Wu1, "'u2, wu3,  -'u4), where  the  range  of each  weight

valueis{-n"',･･･,nW}.

  As  for the acquisition  ofa  good rule-set,  i.e., the  adjust-

ment  ofthe  weight  vector  {}v.}, we  adopt  a machine  learn-
ing appreach  which  is described in Section 4.

4 MethodofRuieAcquisition

  As mentioned  in Section 3, we  adopt  a  scheduling  ap-

proach using  the priority rules.  It is rather  dicacult, in

general, to acquire  the effective  rule-set  in heuristic man-

ner. Here. a genetics-based machine  learning (6BML) tech-
nique(Goldberg  1989, Srnith 1980} is used  in erder  to gen-
erate  and  improve the rule-set  eMciently,

  The GBML  is classified  into two  approaches:  the Michi-

gan and  the Pitt approaches.  In the forrner approach,  a rule

is represented  symbolically  as  an  individual of  genetic al-

gorithms (GA), and  the credit  ef  each  rule  is acljusted  ac-

cording  to the resutt  obtained  by applying  a  rule-set.  The
rule  is generated and  improved by applying  GA  at certain

time intervals, where  the fitness ofeach  individual is calcu-
lated according  to  its credit. On  the  other hand, in the latter

approach.  a  rule-set  is represented  symbolically  as  an  indi-
viclua]  of GA,  and  the fitness of an  individual is calculated

based  on  the result, e.g., the simul  ation  result, by applying  a

rule-set.  In the  fbl]owing, because ofits  easier  implementa-
tion, the Pitt approach  ofthe  GBML  is adopted.

  In Fig. 3, we  show  the framework of  our  Pitt approach,
where  the outline  ofthe  learning procedure is as  fo11ows :

 1 O Create an  initial population T(1 ) with  randornly  geneF

    ated  np  individuals (rule-sets), where  each  rule-set in-

           EvaTuntearule-setbasedonaschedulingsimulatien

Sca[chfo[?goodrulc-set 
't'..

     
E,
 

'"
 Simulator

Fig. 3 Outline ofthe  Pitt approach.

   cludes  n,  rules.  Initialize the upper  bound ofgeneration

   ng  and  set  the current  generation t =: 1.

 2C Calcu]ate the  fitness ofeach  individual by applying  an

   individual (rule-set).
 30 lft <  ng,  go to 4". Otherwise go to 50.

 4D Apply  genetic operators  to the population T(t), and

   generate T(t +  1). Set t =  t +  1, and  go back to 2L.

 5S ferminate. The best-so-far individua1 pessesses the

   best rule-set.

  in implementing GBML,  we  have to prefix a  genetic rep-
resentation  and  genetic operators.

{a) Genetic representation  : In the Pitt approach,  a  rule-

   set is represented  symbolically  as  an  individual, and

   includes a set  ofnr  rules:

                 {Rl,R2,･･･,Rnr}-
    The fitness value  ofan  individua[, which  eorresponds

   to the objective  function value  ofthe  problem, is cal-

    culated  by using  the equation  (3) based on  the obtained

    schedule  by sirnulating  the situation in which  a sched-

    ule  is generated by applying  each  rule-set.

(b) Genetic operatot:s  :

    ln calculating  the fitness value,  we  have to evaluate

    the schedule.  Much  computation  is to be required  in

    evaluating  a  solution,  e.g., in so]ving  larger-size exam-

    ples. Then, the steady-state  genetic algorithm  <Back et
    al. 2000) is imp}emented in order  to reduce  the number

    ofevaluations.

    In our  implementation ofthe  steady-state  genetic algo-

    rithms, two  individuals are  paired randomly  in a  popu-
    lation and  a  offgpring  is created  from them  by adepting

    genetic operators.  Then, the fitness ofthe  offgpring  is

    compared  to those ofthe  parent individuals. Ifthe offL

    spring  is better than the worse  one  ofthe  parents, the

    worse  parent is replaced  by the offspring.  As  for the

    genetic operators,  the uniform  cressover  (rate pc) and

    the one-locus-exchange  mutation  (rate p.)  are  applied.

5 CompotationalExamples

  We  have prepared 3 types of  the flexible shop  problem
(EA, EB  and  EC)  by setting  the parameters as  shown  in
Ilable 1, and20  instances (E5- ,EP-  and  EF･ ;i-- 1,･･･,20) have
been composed  randomly  for each  type.  In [lable 1, indexes
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Tlable 1 Parameters  ofthe  Problems

NM  NJnN(aT,a2)

Table 3 Resu]ts of  Computational Experiments

          (a) GBML  using  RT

EAEBof 6 6 18 13.6 (O.S.O,5)
12 9 45  362  (O.5.0.5)
11 70 219 190.6 (O,S,O,5)

Problem
Ratio p {pi }

Min.Max.Avg.Std.Dev.

1fable 2 Setting ofthe  GA  Pararneters
EA

Populatien size  np

Numberofgenerationsn,

Mutatien rate  pm

Nurnberofrulesnr

1005000O.1iindividual

100

EBof

O.96(1.00)O.97O.961.06(].14)1.031.041,Ol(1,OS)O.991.00O.03(O.04)

 O.OlO.02

(b} GBML  using  R2

Problem
Ratiop{p"}

Min. Max.Avg.Std.Dev.

of  the gap between  the  due-date and  the  completion  time of

ajob  defined as

                    q-dAVci
                n

±
 pM,G･  (7)

where  q, dAN'G and  pAVG  represent  the tota] pTocessing time,
the average  due-dates and  the average  processing time  ofal1

operations  respectively,  are  a]so  shown  as  characterizing  the

tightnessefthedue-dates.

  These examples  have been solved  by using  two  proposed
methods  introduced in Section 3 and  Section 4, where  two

types ofrule  structure  (Ri and  R2) are  implernented as fo1-
lows:

    Ri: The <cendition> part is consists  ofonly  the

       current status  ofthe  systcm,  i.e., s..

    R2 : The <condition> part is consists  ofsn  ancl  the

       condition  ofsF.

The  parameters efa  rule  are set as  nS  =  103 and  nW  =  4

(e ;  1,･･･,4), and  that of  the GBML  are  set as  shown  in
Tab]e2. In the  experiments,  1O trials have been executed  by
changing  initial conditions,  and  then the best schedule  (the
schedule  generated by using  the acquired  rule-set)  has been
selected  for each  tria}.

  In table 3, the minimum,  the maximum,  the average  and

the standard  deviation ofthe  ratios  among  20 instances are
summarized,  where  the ratio  pi is defined, for each  instance

(E;",EP･ and  EF- ), as

EAEBEC･
O.95(1.00)O,97O.961.02(1.08}1.021.04 1.00{1.04)O.99

 1.C)O

o,e2{O,03)

 O.OlO,02

pi =JSBML.fFA

 

･

Table 4 Number  ofRules  Applied in Scheduling

 (a) GBML  using  Rl (a) GBML  using  R2

Prebtem #ofRules Problern #ofRules

EAEBof 9.07.27.9.

(8)

EAEBEC

In Equation (8), ,ff}BML  and  YPA represent  the objective

value  of  the  best schedule  acquired  by the proposed ap-

proach, and  the ebjective  value  obtained  by using  the GA
clirectly to each  instance E5･ , E,B･ and  EF･ , respectively.

  In applying  the GA,  an  individual is represented  by  us-

ing a  string  of  the priorities ofoperations  and  a schedule  is

generated by using  the procedure intreduced in Section 3.
The parameters setting  of  the GA  is the sarne  as  shown  in
Ilable2. In Table3 the statistic scores  efthe  ratios  p' de-
fined as

                p;=fpBLMELx (g)

12.014218.1

where  fSPLEX represents  the  optimal  schedule  acquired  by
using  the CPLEX  (a commercial  package  of  mathematieal

programming solver)  (CPLEX 200  I ), are also shown  for the
c]ass EA. To investigate the obtained  rule-set,  the number

ofrules  applied  in scheduling  is shown  in fable4,

  From Table 3, we  can  observe  that:

(a) good schedules  are  obtained  surnciently  fast by apply-

   ing the best rule-set  obtained  by the preposed method

   specially  in the  condition  efthe  rule  structure  R ] .

From fable4, it is observed  that severa[  ru]es  in the best
rule-set  acquired  by the GBML  using  Ri never  be applied
for the scheduling.  In the case  ofthe  GBML  using  R2, we
can  observe  that more  rules  are  applied  for the scheduling

than the that efthe  GBML  using  R1.

  Furthermore,therobustnessoftheacquiredrule-setshave
been examined.  First, rule-sets  have been acquired  by us-

ing the proposed GBML  method  where  the fitness value  is
calculated  based en  the average  of  the objective  values  to

newly  composed  20 examples  El A,  ElB and  ElC for each
type, i.e., EA, EB  and  EC, Then, these rule-sets  have been
applied  to another  20 examples  EF- A, EF- B and  E,E- 

C
 for each

one.  In Fig.4, ratios  to the best values  of  EF･ A,  EP･ B and

EP- C  are  summarized  where  the ratio  pl is defined, for each
mstances,  as

                  pi=lll  oo)

In Equation ( ]O}, .L･R and  fi represent  the objective  va]ue  of

a schedule  obtained  by using  the acquired  rule-set  and  that
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Fig. 4Robustness of  the obtained  rule-set.

ofthe  best among  schedules  obtained  by  using  the GBML,

the GA  method  and  the CPLEX  methods,  ln Fig.4, the re-
sultsobtainedbyusing3kindsoftypicalheuristicru1es,i.e.,

SPT (shortest precessing time), EDD  (earliest due date) and

SLACK.

  From Fig. 4, it is observed  that good schedules  are  ob-

tained  by using  SPT  to the problem with  small  n value,  and

by using  EDD  to the  problem with  large n value.  On  the

other  hand, any  single heuristic rule  does not  show  good

perforrnance to 3 kinds ofproblerns  considered here. As for

the best rule-sets  acquired  by using  the GBML  method,

(b) the  schedules  obtained  by applying  the best rule  are  at

   most  5%  worse  than  the  best schedule  for every  prob-
    lem.

Thus,  the results  by using  propesed methods  indicate good
rebustness.

  As a  result  of  the above  observations,  the proposed ap-

proach is efTective  for findiing good rule-set  for real-time
scheduling.

6 Cenelusien

  In this paper, we  deal with  an  extended  class  of  fiexible
shopschedulingproblems,andconsiderasolutionunderthe

conditiens  of  real-time  scheduling.  [[b find a  solutien,  we

adopt  such  a  method  in which  jobs are  to  be dispatched by a

rule-set.  and  effective  rule-sets  are  to  be acquired  by using  a

GBML  technique, From  computational  exarnples,  we  have

confinmed  the  usefuIness  ofour  proposed method.

  The fo11owing issues are  still left for further studies  ; {i)
to  investigate the definition and  the division form ofstatus

of  the  production system  in order  te reduce  the rules  never

match  the input status,  and  <ii) to extend  the proposed ap-

proach to the on-line  leaming.
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