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Abstract

In this paper, we consider to solve an extended class of
flexible shop scheduling problems under the condition that
information on jobs to be processed is not given beforehand,
i.e., under the framework of real-time scheduling. To find
a solution, we apply such a method where jobs are to be
dispatched by applying a set of rules (a rule-set), and pro-
pose an approach in which rule-sets are generated and im-
proved by using the genetics-based machine learning tech-
nique. Through some computational experiments, the ef-
fectiveness and the potential of the proposed approach are
investigated.

Keywords: Rule acquisition, genetics-based machine learn-
ing, flexible shop scheduling problem, simulation.

1 Introduction

Recently, scheduling has been recognized as one of the
most important issues in the planning and the operation of
manufacturing systems. Extensive researches on scheduling
have been reported from the theoretical as well as the prac-
tical view points. Most of them deal with the static envi-
ronment, i.e., problems on the assumption that all informa-
tion with respect to jobs are given beforehand (Pinedo 2002,
Blazewicz et al. 2001).

In actual manufacturing system, not a few unexpected
troubles happen, and it is important to make feasible sched-

ules promptly once any trouble happens. Furthermore,
there is no guarantee that every parameters of the prob-
lems are given beforehand. These kinds of the problems
are called real-time scheduling problems, to which rule-
based dispatching approaches are widely applied (Shaw et
al. 1992, Shafaei and Brunn 1999a, 1999b). In these ap-
proaches, the jobs are dispatched just when they arrive.
However it is rather difficult to acquire effective rules for
the scheduling from the practical view point.

In this paper, a class of flexible shop scheduling prob-
lems is considered in the framework of real-time scheduling.
That is, each shop includes multiple parallel machines in the
framework of job shop scheduling problems, and there are
several auxiliary restrictions which originate from the neces-
sity of set-up processes. In our past study,we have dealt with
the problems as deterministic and static ones, and have pro-
posed a method of modeling the problem based on a math-
ematical programming approach, in which an integer pro-
gramming method and a genetic algorithm are combined to
obtain good schedules fastly (Sakakibara et al. 2002).

In our approach, jobs are to be dispatched in real-time
using some rules, and the dispatching rules are generated
and improved, in an off-line manner, by using the genetics-
based machine learning (GBML) frameworks (Smith 1980,
Goldberg 1989). In implementing a GBML, we use the
Pitt approach, where a rule-set is represented symbolically
as an individual of genetic algorithms, and the fitness of
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an individual, i.e., the (global) objective function value of
the problem, is calculated according to the results of some
simulations using the rule-set. By extending the ways of
some applications adopting this framework presented so
far (Sakakibara et al. 2003a, Sakakibara et al. 2003b), in the
paper, a way of applying our Pitt approach to a class of flex-
ible shop scheduling problems are proposed. Furthermore,
some computational experiments are also shown, where the
effectiveness and the potential of the proposed approach are
discussed.

2 Description of the Problem
There are NM machines M; (i = 1,..., N™) and N’ jobs

J; (j=1,...,N"). Each jobJ; is processed in a machine
environment with NS stages(i.e., shop floors); At stage F,
(r=1,...,NS), there are n, identical machines M; (i =

N_i+1,---,N. where N, =%/_;n (r >1),Ng=0) in
parallel. Each job J; includes a series of n; operations Oy
(k=Nj_14+1,...,N;; N; = 2{:1'1/'; No = 0), and these n;
operations are to be processed in this order. To each opera-
tion Ok (k=1,...,N; N=Ny = Z’}’J 1 1), the set of avail-

able machines M; and the type & are associated. The type
of operation represents the kind of production, and the com-
bination of the machine and the type determines production
speed.

In a scheduling or dispatching process, the following re-
strictions should be taken into account.

(a) Restriction of machines: each operation can be pro-
cessed on one of the fitted machines. (This is due to
the mechanical structure, size, weight, etc. of the ma-
chines and the fitness of operations to machines.)
Setup time : If the types of two operations which are
processed successively on any machine differs, a setup
time is needed between their processing. The setup
time consists of two parts: the time required before
processing and the time required after processing.

(b

~—

To describe the scheduling problem, we use the following
notations and parameters. First, the basic parameters are

NS number of stages,

NM . number of machines,

N’ : number of jobs, and

NO : number of operations (= Ny ).
Then, the following parameters are associated with ma-
chines, jobs and operations. With each stage F, (r =
1,..., NS), the following parameters are associated :

n, : number of machines.
With each machine M; (i = 1,..., NM), the following pa-
rameter is associated :

U5 time per unit product on M; when an ope-

ration of type T is processed.

With each job J; (j = 1,..., N’), the following parameters
are associated :

d;: due date,

,J

" © required quantity, and

(a) Shop-floor’s view (Product flow)

Fi F3
o (o)——(0)

{Mj. M2. M3} (Mg, My}
Fy ) 3
M. M2, M3} (Mg, Ms} {Mg. M7}
F; F| F3
(Mg, Ms} (M. Mz, M3} (Mg, M7}

(b) Operational view (Technical order)

Fig. 1 An example of flexible shop problems.

n; : number of operations.
With each operation Oy (k= 1,..., N®), the following pa-
rameters are associated :

O : type of Oy,
rg : required quantity (the value of r,? is

determined according to that of 1)),

s, : setup time required before processing,
s;  setup time required after processing,
M; : set of machines which can process Oy.
As for evaluation of schedules, various kinds of criteria
may be considered. It is impossible, however, to take all of

them into consideration. So, we consider here the maximum
completion time Cpax and the total tardiness Tgym :

z1 = Cma,(:maxtf,’,:m]z(ixt,f, (N
PN

n = Tum=Y{max(0.6f,-¢))}, @

J

where t,f represents the completion time of the operation Oy.
Then, we use the weighted sum :

z=a1z1+a222 = a1 Cax + a2 Tsum 3)

as a scalar objective function, where the weights a and a;
are nonnegative.

The scheduling problem as defined above is categorized
as flexible shop problems (or flexible job shop problems,
generalized shop problems), which little have been stud-
ied (Blazewicz et al. 2001, Brucker 2001). In Fig. 1, an ex-
ample of the flexible shop problems with NM =6, NV =3
and NO = 8 is shown.
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Fig. 2 Procedure for generating a schedule.

To represent a schedule, we have to determine the follow-

ing items :
(i) Assignment of each operation to a certain machine,
(ii) Sequence of operations to be processed on each ma-
chine,

(iii) Start time of each operation, and
(iv) Completion time of each operation.
Here, the item (iv) is dependent on, i.e., is automatically de-
termined by referring to, the items (i) to (iii). Moreover,
the objective function of the problem considered here is a
regular one, and it is known that the optimal schedule of
the problems with regular objective function belongs to the
set of active schedules (Pinedo 2002, Blazewicz ef al. 2001).
Under this situation, by fixing the items (i) and (i1), a feasi-
ble schedule can be uniquely determined. In the following,
therefore, we consider a method of acquiring rules for de-
termining the items (i) and (ii) efficiently, based on simula-
tions in which the items (iii) and (iv) are calculated by using
a prescribed procedure.

3 Priority Scheduling

In our approach to the scheduling problem, we use a set of
rules (a rule-set) to make decisions in real-time throughout
manufacturing. As mentioned in Section 2, the rule-set is
used to determine the assignment of jobs to machines and
the sequence of jobs on each machine. To acquire a good
(possibly the best) rule-set beforehand, the GBML method
is designed and applied (as described in Section 4), where
several computer simulations are required for evaluating the
rule-sets according to the schedules obtained by applying
them. In the following, the method of computer simulations,
i.e., the scheduling procedure, is described.

31 Scheduling procedure

The procedure for making a schedule of the problems is
designed as follows (Fig. 2).

1° Initialization: Set 1= 0 and O'(1) = ¢, where T and
0'(1) represent the timing of dispatching and a set of
operations that has been assigned, respectively.

2° Selection of one machine for assignment :

(a) For each M;, first set O?(T) = ¢, where O?(1)
represents a set of possible operations to start
processing on M;. Then, for each operation
Oy ¢ 0'(1) and for each machine which can pro-
cess Oy, set O (1) = O? (1) U{ Ok} if O is the first

operation within a job (i.e., J;|k = N;+ 1) or
the operation directly preceding it has been com-
pleted (i.e., Oy € O'(7)).

(b) For each Oy € O,»z(‘r,), calculate the earliest time
to start processing (5 ) as follows:

max (r,\F 1 t( s[ +s,‘ )
{ks, ifhk#EN;_1+1,j=1,
max (O7 tl,- + (5‘1‘ +Sk)A;ik) s
otherwise,
“4)
where Oy, represents the currently last operation
assigned on M;, and Ay is a constant defined as

_ 0,if 6’(#6/\"7
Ark = {1 , otherwise. ©)

(c) Among the set of Oy € |J; O2(1), find the opera-
tion Oy~ and the machine M+ such that the com-
pletion time of Oy~ is the minimum.

3° Determination of a set of candidate operations : Find
02 (1) (C O4(1)) such that any operation Oy in O3 (1)
satisfies the condition t,\,s, < tf: + Ditkr -

4° Selection of one operation for processing : Find an op-
eration O;, with the highest priority calculated by using
a rule-set among the operations in O} (t). Then, set
1= t/\s M =1+ pire, and 0'(1) = 0! (1) N {03},

5° Termination: If|O'(‘c)| = NO terminate. Otherwise
set T = 1° where 1 is the earliest completion time
among all machines, and go to 2°.

32 Calculation of priority

In the step 4° of the scheduling procedure in Section 3, it
is required to calculate the priority of operations according
to the status of the production system as well as the charac-
teristics of operations.

As for the state parameters, we introduce the four kinds
of indexes (variables) to represent the whole state space §:

sR : ratio of the number of completed operations,
sC : makespan of the current (partial) schedule,

sP: average of slacks of remaining operations.

Then, S is divided into 5 portions S, (= 1,..., n%) and,
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for each subset 5, the priority ¢, of Oy is defined as

nt
Oux = 2 Wyt Qi (6)

=1

where

n® : number of attributes of an operation,

wy, : weight of the attribute A, for §,, and
ay - value of Ay of Oy.

As for the attribute A, of an operation Oy, we introduce the
followings :

A) : processing time,

A3 : number of machines which can process it,

Aj : slack for its due-date, and

A4 : number of succeeding operations to complete a job.

To determine the weights w,;, we use a production rule of
the following type :

R: if (condition) then (action).
The (condition) part represents the current status of the sys-
tem, i.e., S,. Moreover, the condition of

s 1 index of the stage F, to process an operation

is also handled in the {condition) part. This is for dividing
the rule-set according to the stage to process an operation.
While the (action) part possesses the (integer) weight vector
wy = (Wu1, Wiz, Wy3, wia ), where the range of each weight
value is {—n",---,n%}

As for the acquisition of a good rule-set, i.e., the adjust-
ment of the weight vector {w,}, we adopt a machine learn-
ing approach which is described in Section 4.

4 Method of Rule Acquisition

As mentioned in Section 3, we adopt a scheduling ap-
proach using the priority rules. It is rather difficult, in
general, to acquire the effective rule-set in heuristic man-
ner. Here, a genetics-based machine learning (GBML) tech-
nique (Goldberg 1989, Smith 1980) is used in order to gen-
erate and improve the rule-set efficiently,

The GBML is classified into two approaches : the Michi-
gan and the Pitt approaches. In the former approach, a rule
is represented symbolically as an individual of genetic al-
gorithms (GA), and the credit of each rule is adjusted ac-
cording to the result obtained by applying a rule-set. The
rule is generated and improved by applying GA at certain
time intervals, where the fitness of each individual is calcu-
lated according to its credit. On the other hand, in the latter
approach, a rule-set is represented symbolically as an indi-
vidual of GA, and the fitness of an individual is calculated
based on the result, e.g., the simulation result, by applying a
rule-set. In the following, because of its easier implementa-
tion, the Pitt approach of the GBML is adopted.

In Fig. 3, we show the framework of our Pitt approach,
where the outline of the learning procedure is as follows :

1° Create an initial population P(1) with randomly gener-

ated n,, individuals (rule-sets), where each rule-set in-

Evaluate a rule-set based on a scheduling simulation

Search for a good rule-set s,
Simulator

]

& Génetip Algorithms ]

-
Evaluation
Rule-set 2 §
T Rulesset

Fig. 3 Outline of the Pitt approach.

cludes n; rules. Initialize the upper bound of generation
ng and set the current generationt = 1.

2° Calculate the fitness of each individual by applying an
individual (rule-set).

3° Ift < ng, go to 4°. Otherwise go to 5°.

4° Apply genetic operators to the population P(r), and
generate P(t+1). Setf =1+ 1, and go back to 2°.

5° Terminate. The best-so-far individual possesses the
best rule-set.

In implementing GBML, we have to prefix a genetic rep-
resentation and genetic operators.

(a) Genetic representation : In the Pitt approach, a rule-
set is represented symbolically as an individual, and
includes a set of n; rules :

{Ri,Rz,..., Ry}
The fitness value of an individual, which corresponds
to the objective function value of the problem, is cal-
culated by using the equation (3) based on the obtained
schedule by simulating the situation in which a sched-
ule is generated by applying each rule-set.

(b) Genetic operators :

In calculating the fitness value, we have to evaluate
the schedule. Much computation is to be required in
evaluating a solution, e.g., in solving larger-size exam-
ples. Then, the steady-state genetic algorithm (Back et
al. 2000) is implemented in order to reduce the number
of evaluations.

In our implementation of the steady-state genetic algo-
rithms, two individuals are paired randomly in a popu-
lation and a offspring is created from them by adopting
genetic operators. Then, the fitness of the offspring is
compared to those of the parent individuals. If the off-
spring is better than the worse one of the parents, the
worse parent is replaced by the offspring. As for the
genetic operators, the uniform crossover (rate p) and
the one-locus-exchange mutation (rate p ) are applied.

5 Computational Examples

We have prepared 3 types of the flexible shop problem
(E*, EB and EC) by setting the parameters as shown in
Table 1, and 20 instances (Ef‘, E? and EI.C; i=1,---,20) have
been composed randomly for each type. In Table 1, indexes
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Table 1 Parameters of the Problems

MW N n N (a,a)
6 6 18 136 (0.5,0.5)
EB 12 9 45 362 (0.5.0.5)
€ 11 70 219 1906 (0.5.0.5)

Table 2 Setting of the GA Parameters

Population size np 100

Number of generations ng 5000

Mutation rate pp, 0.1 / individual
Number of rules »; 100

of the gap between the due-date and the completion time of
a job defined as

_ q- dAVG ‘
n= TG @)
where ¢, d*V0 and pAVYS represent the total processing time,

the average due-dates and the average processing time of all
operations respectively, are also shown as characterizing the
tightness of the due-dates.

These examples have been solved by using two proposed
methods introduced in Section 3 and Section 4, where two
types of rule structure (R and Rj) are implemented as fol-
lows:

Ry : The (condition) part is consists of only the
current status of the system, i.e., s,,.

R, : The (condition) part is consists of s, and the
condition of sF.

The parameters of a rule are set as #° = 10° and n¥ = 4
(¢ =1,---,4), and that of the GBML are set as shown in
Table 2. In the experiments, 10 trials have been executed by
changing initial conditions, and then the best schedule (the
schedule generated by using the acquired rule-set) has been
selected for each trial.

In Table 3, the minimum, the maximum, the average and
the standard deviation of the ratios among 20 instances are
summarized, where the ratio p; is defined, for each instance
(EX, EP and ES), as

BML
pi = fl:(;GA . (8)

In Equation (8), f,.GBML and /iGA represent the objective
value of the best schedule acquired by the proposed ap-
proach, and the objective value obtained by using the GA
directly to each instance E*, EP and E¥, respectively.

In applying the GA, an individual is represented by us-
ing a string of the priorities of operations and a schedule is
generated by using the procedure introduced in Section 3.
The parameters setting of the GA is the same as shown in
Table2. In Table3 the statistic scores of the ratios p* de-
fined as

. foBML

p; = f‘_'ma 9)
1

Table 3 Results of Computational Experiments
(a) GBML using R,

Ratio p (p*)

Problem
Min. Max. Avg. Std. Dev.
£ 0.96 1.06 1.01 0.03
(1.00) (1.14)  (1.05) (0.04)
EB 0.97 1.03 0.99 0.01
EC 0.96 1.04 1.00 0.02
(b) GBML using R»
Problem Ratio p (p")
Min.  Max. Avg. Std. Dev.
£A 0.95 1.02 1.00 0.02
(1.00) (1.08)  (1.04) 0.03)
B 0.97 1.02 0.99 0.01
€ 0.96 1.04 1.00 0.02

Table 4 Number of Rules Applied in Scheduling
(a) GBML using Ry (a) GBML using R»

Problem  # of Rules Problem # of Rules

EA 9.0 EA 12.0
B 7.2 B 14.2
€ 7.9 € 18.1

where fCPLEX represents the optimal schedule acquired by
using the CPLEX (a commercial package of mathematical
programming solver) (CPLEX 2001), are also shown for the
class EA. To investigate the obtained rule-set, the number
of rules applied in scheduling is shown in Table 4.

From Table 3, we can observe that:

(a) good schedules are obtained sufficiently fast by apply-
ing the best rule-set obtained by the proposed method
specially in the condition of the rule structure R ;.

From Table4, it is observed that several rules in the best
rule-set acquired by the GBML using Ry never be applied
for the scheduling. In the case of the GBML using R, we
can observe that more rules are applied for the scheduling
than the that of the GBML using R;.

Furthermore, the robustness of the acquired rule-sets have
been examined. First, rule-sets have been acquired by us-
ing the proposed GBML method where the fitness value is
calculated based on the average of the objective values to
newly composed 20 examples EF, EFB and ELC for each
type, i.e., EA, EB and EC. Then, these rule-sets have been
applied to another 20 examples EFA, EFB and EFC for each
one. In Fig. 4, ratios to the best values of EFA, EFB and
Efc are summarized where the ratio p? is defined, for each
instances, as

Pi="- (10)

In Equation (10), f,-R and f;* represent the objective value of
a schedule obtained by using the acquired rule-set and that
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Fig. 4 Robustness of the obtained rule-set.

of the best among schedules obtained by using the GBML,
the GA method and the CPLEX methods. In Fig. 4, the re-
sults obtained by using 3 kinds of typical heuristic rules, i.e.,
SPT (shortest processing time), EDD (earliest due date) and
SLACK.

From Fig. 4, it is observed that good schedules are ob-
tained by using SPT to the problem with small 1 value, and
by using EDD to the problem with large 1 value. On the
other hand, any single heuristic rule does not show good
performance to 3 kinds of problems considered here. As for
the best rule-sets acquired by using the GBML method,

(b) the schedules obtained by applying the best rule are at
most 5% worse than the best schedule for every prob-
lem.

Thus, the results by using proposed methods indicate good
robustness.

As a result of the above observations, the proposed ap-
proach is effective for finding good rule-set for real-time
scheduling.

6 Conclusion

In this paper, we deal with an extended class of flexible
shop scheduling problems, and consider a solution under the
conditions of real-time scheduling. To find a solution, we
adopt such a method in which jobs are to be dispatched by a
rule-set, and effective rule-sets are to be acquired by using a
GBML technique. From computational examples, we have
confirmed the usefulness of our proposed method.

The following issues are still left for further studies; (i)
to investigate the definition and the division form of status
of the production system in order to reduce the rules never
match the input status, and (ii) to extend the proposed ap-
proach to the on-line learning.
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