229 一足跳躍ロボットの開発

Development of One Foot Jump Robot

〇正 村上 岩範 (群馬大) 谷澤 翔 (群馬大院) 田中 純一 (キャノン)

Iwanori MURAKAMI, Gunma University, Tenjintyou 1, Kiryuu-shi, gunma Jyunichi TANAKA, Canon Sho YAZAWA, Gunma University

1. 緒言

近年、歩行や跳躍等を移動手段とするロボットが急速に 発展している。しかし、人間のような動きを高速に行うロ ボットは今だ開発されていない。ロボットの高速化は自重 及び慣性力を補償することで可能だと考えられる。そこで 本研究では自重及び慣性力補償用のサブアクチュエータの 一案として、ドーナツ型永久磁石とコイルを積層した電磁 リニアアクチュエータを提案し、それを利用した跳躍ロボ ットを設計し、その有用性を検証する。

2. 跳躍ロボット

跳躍ロボットの写真を Fig.2.1、諸元を Table2.1 に示す。 提案した電磁リニアアクチュエータと DC モーターを上段 に一つずつ、下段に二つずつ積載している。電磁リニアア クチュエータはワイヤーでプーリを介して力を伝達してい る。モーターはかさば歯車を介してその相対運動で脚の屈 伸を行う力を伝達する。本跳躍ロボットはこの屈伸運動の 伸びをワイヤーで瞬間的に停止させて跳躍を行う。

Fig.2.1 Photo of jump robot

		Upper leg	Lower leg	Foot	Total
Length	[m]	0.155	0.150	0.150	-
Breadth	[m]	0.066	0.076	0.304	-
Length of between link	[m]	0.140	0.120	0.050	_
Mass	[kg]	0.465	0.795	0.186	1.446

3. 電磁リニアアクチュエータ

Fig.3.1 に示すように電磁リニアアクチュエータはコイル の両側に永久磁石を配置したものである。永久磁石は四種 類、コイルは三種類用いており、後述の説明のために、永 久磁石 A,B,C,D、コイル A,B,C と名前をつけ、コイルの構 造を Fig.3.2、諸元をそれぞれ Table3.1、Table3.2 に示す。コ イルは電磁軟鉄を用いて製作した芯を両側から永久磁石で 挟み、さらにその外側に薄い電磁軟鉄の板をつけたもので ある。永久磁石は反発力を強めるために用いているが、吸 引時に動作の妨げになるという短所がある。そのため、永 久磁石の外側の面に薄い電磁軟鉄の板を用いて永久磁石の 反発力を弱めている。

Fig.3.1 Structure of actuator

Fig.3.2 Structure of coil

Table 3.1 Dimension of the magnet					
		Magnet A	Magnet B	Magnet C	Magnet D
Outside diameter	[m]	0.020	0.025	0.030	0.045
Inside diameter	[m]	0.003	0.003	0.003	0.003
Thick	[m]	0.005	0.005	0.005	0.005
Mass	[kg]	0.0115	0.0185	0.0260	0.0600

Table 3.2 Din	nension of	the	coil
---------------	------------	-----	------

		Coil-A	Coil-B	Coil-C
Outside diameter	[m]	0.032	0.032	0.0325
Inside diameter	[m]	0.010	0.010	0.010
Height of The coil	[m]	0.0222	0.0271	0.0270
Diameter of	[m]	0.020	0.025	0.030
Magnet				
Mass	[kg]	0.1145	0.1420	0.1525
Number of turns		432	525	369
Wire diameter	[m]	0.00075	0.00075	0.00075
Resistance	[Ω]	0.7181	0.861	0.822
Self-inductance	[H]	0.001097	0.001922	0.001837

日本機械学会関東支部ブロック合同講演会-2005 足利-講演論文集〔2005.9.2~3, 足利〕

4.実験方法 及び 実験結果

4・1 電磁リニアアクチュエータの性能測定

コイルに、0A,2A,4A,6A の電流を吸引方向と反発方向に 流して発生する力を測定する。このとき永久磁石とコイル の間の距離を 0[mm]から 30[mm]まで 1[mm]おきに測定を行 い距離と力の関係を調べる(永久磁石とコイルの接してい る面はコイルの両端であり、その両方に 1[mm]ずつスペー スを空ける)。アクチュエータは永久磁石 C をコイルの両 側に配置したもの、永久磁石 C と D をコイルの片側ずつに 配置したもの、永久磁石 D をコイルの両側に配置したもの の三種類と三種類のコイルの組み合わせからなる九種類で、 後述の説明のためコイル A は Type-A1,A2,A3、コイル B で は Type-B1,B2,B3、コイル C では Type-C1,C2,C3 と名前をつ ける(1 は永久磁石 C を両側に、2 は永久磁石 C と D を片 側ずつ、3 は永久磁石 D を両側に配置していることを表 す。)

代表例として、コイル C の Type-C1,C3 について、0A,吸 引・反発 6A の電流を印加したときの推力と距離の関係を コイル C は Fig.4.1.1 に示す。

Fig.4.1.1 Performance of actuator

Fig.4.1.1 から Type-C1 より Type-C3 を用いるほど 0[mm] 時の推力は減少するが、距離が離れたときに推力が保持されている。また、0[mm]付近で吸引 6A の推力が大きく減少し、制御性が良くなっている。

4・2 跳躍実験結果及び考察

アクチュエータの性能測定の結果を参考にし、実際に動 作タイミングと動作角度を変えて跳躍実験を行い、最も高 い跳躍高さの得られる組み合わせを探った。実験時のポテ ンショメータから得られた関節の角度データは DSP を用い てコンピュータに取り込んだ。Fig.4.2.1 にポテンショメー タから得られた関節角度の変化(初期縮み時の角度を 0[deg]としている)、Fig.4.2.2 跳躍高さの時間推移、Fig.4.2.3 に最大高さに達したときの写真を示す。

Fig.4.2.3 のとおり約 50[mm]の跳躍に成功した。Fig.4.2.1 のように上段を下段より先に最大角に到達させることで跳 躍開始時に姿勢を前傾させ、蹴り足をつけて跳躍させてい る。蹴り足がつくと跳躍の最終段階で加速をつけることが できるので、跳躍高さを増加させられる。また、性能測定 の結果から Type-C3 はコイルー永久磁石間の距離が狭いと きの制御性が良く、離れたときは推力を保持できるため、 十分な推力が得られることがわかっている。このことから Type-C3 が最も高い跳躍をしたと考えられる。

Fig.4.2.3 Height of jumping

5. 結言

本研究では、跳躍ロボットのサブアクチュエータとして 電磁アクチュエータを開発し、跳躍実験を行うことにより その有用性を検証した。その結果以下の結言を得た。

- (1) 実験によりアクチュエータ特性を明らかにし、跳躍 ロボットのサブアクチュエータとして有用な電磁リ ニアアクチュエータを開発した。
- (2) 実際に、昨年の跳躍ロボットにサブアクチュエータ として積載し、その有用性を実証した。
- (3) 跳躍ロボットに跳躍運動を実行させた結果、最大約 50[mm]の跳躍高さが得られた。
- (4) 以上のことから、本研究で提案した電磁リニアアク チュエータをサブアクチュエータとして用いた跳躍 ロボットの有効性が確認された。

6. 参考文献

- (1) 有川敬輔,美多勉,多自由度跳躍ロボットの開発,自動制御連合講演会講演論文集,45th, p.309-310,2002
- (2) 細江繁幸, システムと制御, P.1-82, 1997
- (3) 松井信行, アクチュエーター入門, P.1-27, 2000