The Japan Soci ety of Mechanical Engineers

International Symposium on Scheduling 2006
July 18-20, 2006, Tokyo, Japan

5B2

AN ITERATED LOCAL SEARCH ALGORITHM BASED ON NONLINEAR
PROGRAMMING FOR THE IRREGULAR STRIP PACKING PROBLEM

Takashi Imamichi and Hiroshi Nagamochi
Department of Applied Mathematics and Physics,
Kyoto University
Sakyo-ku, Kyoto, 606-8501, Japan
{ima, nag}@amp.i.kyoto-u.ac.jp

Mutsunori Yagiura

Department of Computer Science and Mathematical Informatics,
Nagoya University,
Furocho, Chikusaku, Nagoya, 464-8603, Japan
yagiura@nagoya-u.jp

Abstract

The irregular strip packing problem is a combinatorial op-
timization problem that asks to place a set of 2-dimensional
polygons within a rectangular container so that no two poly-
gons overlap each other and no polygon protrudes from the
container, where each polygon is not necessarily convex.
The container has a fixed width, while its length can change
so that all polygons are placed in it. The objective is to find
a layout that minimizes the length of the container. This
problem has many applications in material industry such as
paper and textile industries, where raw materials are usually
given in rolls.

We propose a new separation algorithm based on nonlin-
ear programming, and an algorithm that swaps two polygons
in a sophisticated way; it tries to find their positions with
the least overlap. We incorporate these algorithms as com-
ponents in an iterated local search algorithm for the over-
lap minimization problem and then develop an algorithm for
the irregular strip packing problem using the iterated local
search algorithm. Computational comparisons on represen-
tative instances disclose that our algorithm is competitive
with other existing algorithms. Moreover, our algorithm up-
dates several best known results.

Keywords: irregular strip packing problem, iterated lo-
cal search, unconstrained nonlinear programming.

1. Introduction

The irregular strip packing problem is a combinato-
rial optimization problem that asks to place a set of 2-
dimensional polygons within a rectangular container so that
no two polygons overlap each other and no polygon pro-
trudes from the container, where each polygon is not nec-
essarily convex. The container has a fixed width, while its
length can change so that all polygons are placed in it. The
objective is to find a layout that minimizes the length of

the container. This problem has a few variations depend-
ing on rotations of polygons: (1) rotations of any angle are
allowed, (2) finite number of angles are allowed, (3) no ro-
tation is aliowed. Among them, we deal with case (2). Note
that case (3) is a special case of (2) in which the number
of given orientations for each polygon is one. The irregular
strip packing problem has many applications in material in-
dustry such as paper and textile industries, where raw mate-
rials are usually given in rolls. In textile industry, rotations
are usually restricted to 180 degrees because textiles have
the grain and may have a drawing pattern. The irregular
strip packing problem is known to be NP-hard even without
rotation.

Adamowicz and Albano (1976) proposed an algorithm
that first partitions a given polygons into several subsets
of polygons, then generates for each subset a rectangle
enclosure in which the polygons in the subset are placed
compactly (i.e., being with a little wasted space), and fi-
nally finds a layout of these enclosures. Albano and Sa-
puppo (1980) gave an algorithm that places polygons one
by one at the bottom-left position according to a sequence
of input polygons, where they used tree search to obtain a
good sequence. Mathematical programming was also used
for this problem. Based on linear programming, Li and
Milenkovic (1995) proposed compaction and separation al-
gorithms that reduce the overlap and the length of the con-
tainer by perturbing the current positions of all polygons si-
multaneously. Afterwards, Bennell and Dowsland (2001)
combined the bottom-left method and compaction algorithm
to obtain a better algorithm. Gomes and Oliveira (2006) hy-
bridised the bottom-left heuristic and linear programming
based compaction and separation algorithms. They further
incorporated the method with simulated annealing. Burke,
et al. (2005) developed a bottom-left-fill heuristic algorithm
and utilized it with hill climbing or tabu search to obtain
good solutions quickly. Egeblad, et al. (2006) developed an

Copyright © 2006 JSME

132

NI | -El ectronic Library Service

The Japan Soci ety of Mechanical Engineers

efficient method that finds a layout with minimum overlap
position when a polygon is translated in a given direction,
and they utilized it in guided local search. See a review
by Hopper and Turton (2001) for more on the strip packing
problem including the irregular strip packing problem.

In this paper, we propose a new separation algorithm
based on nonlinear programming. We also give an algo-
rithm that swaps two polygons in a sophisticated way;. it
tries to find their positions with the least overlap provided
that the positions of other polygons in a given layout are
fixed. We incorporate these algorithms as components in an
iterated local search algorithm whose objective is to mini-
mize the total amount of overlap and protrusion of a layout,
where a layout may not be completely contained in the con-
tainer during the algorithm. We then develop an algorithm
for the irregular strip packing problem using the iterated lo-
cal search algorithm, which we call ILSQN because we use
the quasi-Newton method in the iterated local search algo-
rithm. Computational comparisons on representative bench-
mark instances disclose that our algorithm is competitive
with other existing algorithms. Moreover, our algorithm up-
dates several best known results.

2. Formulation

- Forthe irregular strip packing problem, we are given a set

P = {P,..., P} of polygons, a set O = {Oy,...,0,}
of orientations where O; (1 < ¢ < n) is a set of possible ori-
entations of £;, and a rectangular container C = C(W, L)
with width W and length L, where W is a constant and
L > 0is a variable. Polygons in P may not be convex.

We denote polygon P; € P rotated by o € O; degrees
by P;(0), which may be written as P; for simplicity when
the orientation is not specified or clear from the context. Let
S be polygon P;(o) or rectangle C. For convenience, we
regard each of polygons F;(o) (¢ = 1,...,n) and rectan-
gle C as the set of points inside it including the points on
the boundary. Let int(S) be the interior of S, 85 be the
boundary of S, S be the complement of S, and cl(S) be
the closure of S. We describe translations of polygons by
Minkowski sums. Let ; = (z;1,2:2) (i = 1,...,n) bea
translation vector for P;. The polygon obtained by translat-
ing polygon P, by «; is P, @ z; = {p+«; | p € P;}.
Recall that L > 0 is the length of the container C, which is
a decision variable to be minimized. Then the irregular strip
packing problem is formally described as follows:

minimize L
subjectto int(P;(0;) @ ;) N (P;(0;) & ;) = 0,

1<i<j<n,
Pio) ®a: COW, L), 1<i<n, O
LeR,, = €R? 1<i<n,
0,€0;,, 1<i<n.

We represent a solution of this problem with two n-tuples

x = (x1,...,2,) and o = (03, ...,0,). Note that a solu-
tion (=, o) uniquely determines the layout of the polygons;
i.e., the minimum length L is the z-coordinate of the right-
most point of the polygons placed by (z, o).

3. Overlap minimization based on nonlinear program

Our separation algorithm is based on nonlinear program.
‘We move all polygons simultaneously to minimize the total
amount of overlap and protrusion, where the length of the
container is fixed. In this section, we formulate the overlap
minimization problem as an unconstrained nonlinear pro-
gramming problem, and gives the way of computing the ob-
jective function and its gradient.

3.1 The overlap minimization problem

Our objective is to find a feasible solution of the prob-
lem (1) with a given length L of the container. For this
purpose, we allow solutions to have some polygons which
overlap and/or protrude from the container, and penalize the
amount of overlap and protrusion so that a solution with
penalty zero gives a feasible layout for the irregular strip
packing problem.

In this section, we fix the orientations o = (01, ...,0r,)
of all polygons, and omit writing it explicitly for simplic-
ity. Letx = (@1,...,%5) be a list of translation vectors
of all polygons, f;;(x) be a function evaluating the amount
of overlap of P; and P;, and g;(x) be a function evaluating
the amount of protrusion of P; from the container. Vari-
ous choices of functions are possible for fi;(-) and gi(-),
and we will choose suitable functions for f;;(-) and g;(-) in
Section 3.4. Now we formulate the overlap minimization
problem by

minimize F(z)= Z fij(z) + Z gi(z)

1<i<i<n 1<i<n @
subjectto x € R?",
This is an unconstrained nonlinear programming problem.
For defining suitable functions f;;(-) and g;(-), we introduce
some notions such as the no-fit polygon and the penetration
depth in the next subsections. Our separation algorithm in-
vokes the quasi-Newton method to compute a locally opti-
mal solution to problem (2) by using the current layout as
an initial solution.

When we need to clarify the orientation o explicitly as in
Section 4, we write the objective function F'(2) as F'(z, o).

3.2 The no-fit polygon

The no-fit polygon (NFP) is a data structure that is often
used in algorithms for the irregular strip packing problem. It
is also used for other problems such as robotics, in which the
no-fit polygonis called configuration-space obstacle. Practi-
cal algorithms to calculate an NFP of two non-convex poly-

133

NI | -El ectronic Library Service

The Japan Soci ety of Mechanical Engineers

gons have been proposed, e.g., by Bennell, ez al. (2001) and
Ramkumar (1996).

The no-fit polygon NFP(P;, F;) for an ordered pair of
two polygons P; and P; is defined by

NFP(P;, P;) = int(P;) ® int(—F;)
= {v —w | v € int(¥;), w € int(#;)}.

The NFP have the following important properties:

o F,®z;and F; ®x;overlapif andonly if x; — x; €

NFP(P, F).
o P, ® z; touches P; ® «; if and only if ; — =; €
ONFP(P,, P;).
o P; @ x; and P; @ x; are separated if and only if 2; —
x; & cI(NFP(P;, Pj)).
Hence the problem of checking whether two polygons over-
lap or not becomes an easier problem of checking whether a
point is in a polygon or not. Figure 1 shows an example of
NFP(F;, P;) of two polygons P; and F;.
We can also check whether a polygon P; protrudes from
the container C' or not by

NFP(C, P;) = int(C) & int(—P;)
={v—-w|v eR?\C, we int(P)},
which is the complement of a rectangle whose boundary is

the trajectory of the reference point of ¥; when we slide £;
inside the container C.

NFP(P;, P))

Fig. 1 Tllustration of NFP(P;, P;)

3.3 The penetration depth

The penetration depth (also known as the intersection
depth) is a function used for robotics, computer vision and
so on (Agarwal, et al., 2000; Dobkin, et al., 1993). The
penetration depth 6(P;, P;) of two overlapping polygons P;
and F; is defined to be the minimum translational distance
to separate them. If two polygons do not overlap, their pene-
tration depth is zero. Formally, the penetration depth of two
polygons P; and P; is defined by

8(P;, P;) = min{| [z | int(P;) N (P; & 2) = 0, z € R?},

where || - || denotes the Euclidean norm.

We can separate two polygons F; and F; by translat-
ing the reference point of P; to a point on 8 NFP(FP;, P;).
Hence 6(P; @ «;, P; ® «;) is the minimum distance from
x; —x; 10 ONFP(£;, Pj).

3.4 The amount of overlap

We define functions f;;(-) and g;(-) using the penetration
depth. To represent the amount of overlap between P; and
P;, £:i(-) is defined by

fij ()

where ® = (@1,...,%,) and m is a positive parameter.
Similarly g;(z) is defined by

—§P @z, Pjox;)™, 1<i<j<n,

gi(x) = 8(cl(C), Pid)™, 1<i<n,
where cl(C) is the exterior region of C and its boundary.

In order to apply efficient algorithms for solving the non-
linear program to the overlap minimization problem, we
need to compute the values of f;;j(x) and g;(«) and their
gradients for a given solution (x,0). We explain below
how we realize such computation, where «; and z; are the
translation vectors of P; and P; respectively and we denote
v = x; — x; for convenience. We consider how to compute
fij (=) and its gradient. We compute g;(x) and Vg;(x) sim-
ilarly as in the case of fi;(x) and V f;;(2). There are three
cases for the computation of f;;() and V f;; ().

Case 1: the case in which the two polygons F; and P; do
not overlap. This case is easy; we just return f;;(2) = 0
and Vf,'j (m) =0,

Case 2: the case in which the two polygons overlap (i.e.,
fij(2) > 0) and the nearest point on dNFP(F;, #;) from v
is unique. See an example in Figure 2. Let w be the nearest
point and let z = w — v. Because the variable @ is a list of
n 2-dimensional vectors, V f;; () is also such a list; hence
we denote V f;;(2) = (Vifij(2),...,Vafij(x)), where
Vi = (6/8mk1,6/6wk2) forall1 < k < n. Then, f,-j(a:)
and Vf;;(z) forl < i < j < n are given by

fij(@) = ||z[I™,
Vifij(®) = =V, fij(=) = m|z|™ 2z, 3)
kaij(m):()) ke{l,,n}\{z,]}

Every Vi fi;(x) except V; fi;(x) and V; f;(x) is zero be-
cause only F; and F; have influence on their overlap.

Fig. 2 The computation of f;;(x) and V f;; (x)

Case 3: the case in which f;;(®) > 0 and the nearest
point from v to 3NFP(F;, F;) is not unique. In this case,
V £i;(-) is not differentiable at a; however, we choose one
of the nearest points arbitrarily as w and calculate V f;; (x)
with (3) as in Case 2. Then this is one of the subgradients

134

NI | -El ectronic Library Service

The Japan Soci ety of Mechanical Engineers

of fij(x). Note that Case 3 can occur only when v is on the
medial axis of NFP(#;, F;).

The positive parameter m determines the differentiability
of f,'j (w) and gi(:c). When v is on aNFP(P,‘, P]), f,‘j (a:)
is differentiable for mn > 1, while it is indifferentiable for
m < 1. It is preferred that the objective function is differ-
entiable for the quasi-Newton method. Moreover, V f;; ()
in (3) becomes simpler for m = 2 because | z||™ 2 disap-
pears. The situation is the same for g;(x¢), and hence we let
m = 2 in our experiments.

4. lterated local search

This section proposes an iterated local search algorithm
for the overlap minimization problem (2) defined in the pre-
vious section. Iterated local search is one of the representa-
tive metaheuristic algorithms that repeats local search many
times, where initial solutions for local search are generated
by perturbing promising solutions obtained by then. The lo-
cal search of our algorithm, which can be regarded as a sep-
aration algorithm, moves all polygons (usually) slightly to
reduce overlap. For this purpose, we use the quasi-Newton
method for the overlap minimization problem. For the per-
turbation in the iterated local search, we adopt the operation
of swapping two polygons described in the next section.

4.1 The operation of swapping two polygons

We swap two polygons in our iterated local search algo-

rithm to perturb locally optimal solutions. Instead of just ex--

changing two polygons P; and P; in their reference points,
we attempt to find their positions with the least overlap.
FINDBESTPOSITION(P;) is a heuristic algorithm to find a
minimum overlap position of a polygon P;, without chang-
ing the positions of the other polygons, while considering
all possible orientations 0 € O; of P;. For each point v
of all vertices and intersections of d NFP(Px @ =z, Pi(0))
k € {1,...,n}\ {i} and 8NFP(C, F;(0)), the heuristics
computes the overlap of F;(0) & v with the other poly-
gons, and finds the position with the least overlap, where
x = (@1,...,%,) is a list of the translation vectors of
polygons, o = (o01,...,0,) is a list of the orientations
of polygons, and the amount of overlap is computed by
the objective function Fi(z,0) of the overlap minimization
problem (2). It repeats these operations for all orientations
o € O; of P; and seeks the best position and orientation.

FINDBESTPOSITION has an important property:
FINDBESTPOSITION(P;) always finds a point v* € R? and
an orientation o* € O; of polygon F; such that F;(o*) & v*
neither overlaps with the other polygons nor protrudes from
the container C' if there exists such a pair of a point and
an orientation. However, FINDBESTPOSITION may miss
the globally optimal position if there is no position whose
overlap is zero.

SWAPTWOPOLYGONS(P;, P;) is an algorithm to swap
two polygons F; and P; by using FINDBESTPOSITION.
We first remove a polygon F; from the container C, which

results in making a hole in the layout. We next place a
new polygon /' (o;) & x;, where P’ = F;, to prevent F;
from staying at the same place. Then we move a polygon
P; to a position computed by FINDBESTPOSITION(F;),
and remove P’, where we expect that P; moves into
the hole. Finally, we place the removed polygon P; by
FINDBESTPOSITION(F;).

4.2 Iterated local search for the overlap minimization
problem

In this section, we formally describe the framework of our
iterated local search algorithm called MINIMIZEOVERLAP
for the overlap minimization problem (2).

We choose the first solution that minimizes the objective
function of (2) among those searched by then as the incum-
bent solution that will be used for generating the next initial
solution. MINIMIZEOVERLAP perturbs the incumbent solu-
tion by SWAPTWOPOLYGONS(P;, P;), where polygons P;
and P; are randomly chosen, then calls the quasi-Newton
method starting from the perturbed solution, and obtains a
locally optimal solution. If the locally optimal solution has
less overlap than the incumbent solution does, the locally
optimal solution updates the incumbent solution. MINI-
MIZEOVERLAP stops these operations after failing to update
the incumbent solution N,p, (a parameter) consecutive calls
to local search. ’

4.3 Initial solution

‘We generate an initial feasible layout of our algorithm for
the irregular strip packing problem as follows. We assume
that the length L of the container is long enough to place all
polygons. We prepare a sequence of polygons in descending
order of area and place polygons one by one in the order of
the sequence, where the position of each polygon P; is de-
cided by FINDBESTPOSITION. If there are several positions
with no overlap, we choose the bottom-left position (i.e., the
position with the minimum «;;, breaking ties with the min-
imum z;9, where ®; = (21, ;2) is the translation vector
of polygon P;). After placing all polygons, we let L be the
z-coordinate of the right most point of the resulting layout.
Gomes and Oliveira (2006) also generated initial solutions
in a similar way using a different sequence of polygons.

4.4 The entire algorithm for the strip packing problem

In this section, we describe the entire algorithm for the
irregular strip packing problem, which we call ILSQN. It
consists of two layers of computations. The inner layer is to
find a feasible layout for a tentatively fixed length L of the
container, which corresponds to MINIMIZEOVERLAP. The
outer layer is to search the minimum feasible length L by
shrinking or extending its left and/or right sides. We control
the outer layer using parameters rgec, 7inc € (0,1), where
r4ec and iy are the ratio we shrink or extend the length L of
the container, respectively.

135

NIl -Electronic Library Service

The Japan Soci ety of Mechanical Engineers

ILSQN first generates an initial solution, sets the length
L of the container so that it contains all polygons and the
both sides touch some polygons, and then shorten L by
L := (1 —rgec)L. Then, ILSQN repeats the following
two operations until a time limit is reached. ILSQN tries
to reduce the overlap of the current solution (@cur, Ocur)
by MINIMIZEOVERLAP. If ILSQN obtains a layout with
no overlap, it shortens the length L of the -container by
L := (1 — rgec) L; otherwise, ILSQN extends the length by
L := (1 + rinc)L. The entire algorithm of ILSQN is for-
mally described in Algorithm 1.

Algorithm 1 : ILSQN(P, O, W, 74ec, Tinc)
Generate an initial solution {x,0) by the algorithm in
Section 4.3.
Let L be the minimum feasible length of the container for
the initial solution (2, 0).
Let Lpest := L and (Tpest, Obest) := (¢, 0).
Let L := (1 — rgec) L and (xcur, Ocur) := (¢, 0).
while within a time limit do '
Let (@cur, Ocur) := MINIMIZEOVERLAP(Zcyr, Ocyr)-
if #'(®cur, Ocur) = O then
Let Liest := L and (2pest, Obest) := (mcur;ocur)-
Let L := (1 — rgec) L.
else
Let L := (1 + rinc) L.
if L > Lyes then
Let L := (1 - wa)Lbest.
Let (®cur, Ocur) = (%best, Obest).
end if
end if
end while
Return Lbest and (mbest, Obes().

5. Computational results
5.1 Environment

Benchmark instances for the irregular strip packing prob-
lem are available online at EURO Special Interest Group on
Cutting and Packing (ESICUP) website!.

We implemented our algorithm in the C++ language,
compiled it by GCC 4.0.2 and conducted computational ex-
periments on a PC with a Pentium4 2.8GHz processor and
1GB memory. We adopt a quasi-Newton method package L-
BFGS by Liu and Nocedal (1989) for the overlap minimiza-
tion problem. L-BFGS has a parameter mpggs that is the
number of BFGS corrections in L-BFGS. We set mppgs = 6
because 3 < mppgs < 7 is recommended by Liu and No-
cedal (1989).

A layout is judged to have no overlap when the objective
function of (2) is less than ¢ = 10~19W?2 due to limited
precision. Thus, our algorithm may generate layouts that
have slight overlap.

1ESICUP: http://www.apdio.pt/sicup/

We set rgec = 0.04, ripe = 0.01 and Noy = 200 for
the computational experiments of all benchmark instances
in Section 5.2.

5.2 Results

In this section, we show the computational results of our
algorithm ILSQN and compare it with other existing al-
gorithms. We run algorithm ILSQN ten times for each
instance and compare our results with those reported by
Gomes and Oliveira (2006), Burke, e? al. (2005) and Ege-
blad, et al. (2006). Table 1 shows the best and average
length and efficiency in % of ILSQN and the best efficiency
in % of the other algorithms. ILSQN is our algorithm,
SAHA is the algorithm of Gomes and Oliveira (2006), BLF
is the algorithm of Burke, et al. (2005), and 2DNest is the
algorithm of Egeblad, et al. (2006). The column EF shows
the efficiency in %. The best results among these algorithms
are written in bold typeface. Table 2 shows the computation
time (in seconds) of the algorithms. -

Gomes and Oliveira (2006) did not use time limit but stop
their algorithm by other criteria. They conducted 20 runs for
each instance and the best results of the 20 runs are shown
in Table 1, while their computation times in Table 2 are the
average computation time of the 20 runs.

Burke, et al. (2005) conducted four variations of their al-
gorithms, and conducted 10 runs for each variation. Their
results in Table 1 are the best results of the 40 runs, which
are taken from Table 8 in Burke, et al. (2005). They limited
the number of iterations for each run, and their computation
time in Table 2 is the time spent to find the best solution re-
ported in Table 1 in the run that found it (i.e., the time for
only one run is reported). Since they conducted experiments
for instances ALBANO, DIGHE!1 and DIGHE?2 with differ-
ent orientations from the other papers, we do not include the
results.

Egeblad, et al. (2006) and we conducted experiments us-
ing the time limits for each run shown in Table 2. Although
our total computation time of all runs for each instance is
not so long compared with SAHA and 2DNest, ILSQN ob-
tained the best results for 5 instances out of the 15 instances
in efficiency of the resulting layouts and also obtained the
results with almost equivalent efficiency to the best results
for some instances. The computation time of BLF is much
shorter than that of ILSQN, and ILSQN obtained better re-
sults in efficiency than those BLF obtained for all instances.

6. Conclusions

We proposed an iterated local search algorithm for over-
lap minimization based on nonlinear program and the op-
eration of swapping two polygons in a sophisticated way,
and incorporated it in our algorithm for the irregular strip
packing problem. We showed through computational exper-
iments that our algorithm is competitive with existing algo-
rithms, updating the best known solutions for several bench-
mark instances.

136

NI | -El ectronic Library Service

The Japan Soci ety of Mechanical Engineers

. References

Table 1 The best efficiency in % of the four algorithms Adamowicz, M. and A. Albano. (1976). Nesting
Instance ~ ILSQN SAHA BLF 2DNest two-dimensional shapes in rectangular modules.
ALBANO 8776 8743 - 8744 Computer-Aided Design, Vol. 8, No. 1, pp. 27-33.
DAGLI 8562 8715 83.7 8598 Agarwal, P. K., L. J. Guibas, S. Har-Peled, A. Rabinovitch,
DIGHEL 99.83 . 100.00 - 99.86 and M. Sharir. (2000). Penetration depth of two convex
DIGHE2 80.52 100.00 - 9995 polytopes in 3D. Nordic Journal of Computing, Vol. 7,
FU 90.83 9096 869 91.84 No. 3, pp. 227-240.
JAKOBS!1 89.09 1:7889 826 89.07 Albano, A. and G. Sapuppo. (1980). Optimal allocation
JAKOBS2 80.68 77.28 74.8 804l of two-dimensional irregular shapes using heuristic
MAO 84.60 8254 795 8515 search methods. IEEE Transactions on Systems, Man
MARQUES 89.09 88.14 865 89.17 and Cybernetics, Vol. 10, No. 5, pp. 242-248.
SHAPESO 6762 6650 60.5 67.09 Bennell, J. A. and K. A. Dowsland. (2001). Hybridising

SHAPESL 73.90 71.25 665 73.84 tabu search with optimisation techniques for irregu-

SHAPES?2 82.86 8360 77.7 81.21 lar stock cutting. Management Science, Vol. 47, No. 8,

SHIRTS 86.18 18679 846 86.33 pp. 1160-1172.

'?‘ROUSERS ;‘;(7)2 ;;';Z ggg ;égi Bennell, J. A., K. A. Dowsland, and W. B. Dowsland.
- > - - (2001). The irregular cutting-stock problem — a new

* The value has been corrected according to the in- procedure for deriving the no-fit polygon. Computers
formation sent from Gomes and Oliveira (2006). & Operations Research, Vol. 28, No. 3, pp. 271-287.

' Better results were obtained by a simpler greedy Burke, E. K., R. Hellier, G. Kendall, and G. Whitwell.
approach (GLSHA) (Gomes and Oliveira, (2005). A new bottom-left-fill heuristic algorithm for
2006): 81.67% for JAKOBS1 and 86.80% for the 2D irregular packing problem. Operations Re-
SHIRTS. search, to appear.

Dobkin, D., J. Hershberger, D. Kirkpatrick, and S. Suri.
(1993). Computing the intersection-depth of polyhe-
dra. Algorithmica, Vol. 9, No. 6, pp. 518-533.

Table 2 The computation time in seconds of the four al- Egeblad, J., B. K. Nielsen, and A. Odgaard. (2006). Fast

gorithms neighborhood search for two- and three-dimensional
Instance *ILSQN TSAHA *BLF *2DNest nesting problem. European Journal of Operational Re-
§$2.8GHz%2.4GHz $2.0GHz $3.0GHz search, to appear.
10runs 20runs 40runs 20 runs Gomes, M. A. and J. E. Oliveira. (2006). Solving irregular
ALBANO 1200 2257 - 600 strip packing problems by hybridising simulated an-
DAGLI 1200 5110 188.80 600 . nealing and linear programming. European Journal of
DIGHE1 600 83 - 600 Operational Research, Vol. 171, No. 3, pp. 811-829.
DIGHE2 600 22 - 600 Hopper, E. and B. C. H. Turton. (2001). A review of the ap-
KU 600 296 20.78 600 plication of meta-heuristic algorithms to 2D strip pack-
JAKOBS!1 600 332 4349 600 ing problems. Artificial Intelligence Review, Vol. 16,
JAKOBS2 600 454 8141 600 No. 4, pp. 257-300.
MAO 1200 8245 29.74 600 ’

Li, Z. and V. Milenkovic. (1995). Compaction and separa-
tion algorithms for non-convex polygons and their ap-
plications. European Journal of Operational Research,

MARQUES 1200 7507 4.87 600
‘SHAPESO 1200 3914 21.33 600

SHAPES| 1200 10314 219 683 Vol. 84, No. 3, pp. 539-561.
ggﬁ{l}l&ssz ggg 1(2); 9? gs'g‘ﬁ’ 200 Liu, D. C. and J. Nocedal. (1989). On the limited memory
SWIM 1200 6937 60737 600 BFGS method for large scale optimization. Mathemat-

ical Programming, Vol. 45, No. 3, pp. 503-528.

TROUSERS 1200 8588 756.15 600 Ramkumar, G. D. (1996). An algorithm to compute the

* Computation time is the time limit. Minkowski sum outer-face of two simple polygons. In:
t Computation time is the average computation Proceedings of the twelfth annual symposium on com-

time. putational geometry, pp. 234-241, ACM Press, New
* Computation time is the time spent to find the York. ’

best solution in the run that found it.
§ The experiments are conducted on a PC with a
Pentium4 processor.

137

NI | -El ectronic Library Service

