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Abstract

  The  irregular suip  packing problem is a combinatorial  op-

tirnization problem that asks  to place a ser of  2-dirnensional

polygons within  a rectangular  container  so  that no  two poly-
gons overlap  each  other  and  no  polygon protrudes from the
container,  where  each  polygon is not necessarily  convex.

The  container  has a fixed width,  while  its length can  change

so that al1 polygons are placed in it, [[he objective  is to find
a  layout that rninimizes  the  length of  the  containe=  This

problem has many  applications  in material  industry such  as

paper and  textile indusuies, where  raw  materials  are usually

giyem in rolls.

  We  propose a  new  separation  algorithrn based on  nonlin-

ear programming, and  an  algorithm that swaps  two polygons
in a  sophisticated  way;  it hies to find their positions with
the least overlap.  We  incerporate these algorithms as com-

ponents in an  iterated local search  algorithrn for the over-
lap minimization problem  and  then develop an  algorithm for
the irTegular strip packing problem using  the iterated local
search  algorithm. Computational comparisons  on  represen-

tative instances disclose that our  algorithrn is competitive
with  other  er[isting algorithrns, Moreover, our  algorithrn up-

dates several  best knowri results.
Keywords:  irreg"lar strip packing probtem, iterated lo-
cal search,  umnstrained  noniinear  programmingr

1. Intro(l-ction

  The irrqgular sttip packing piDblem is a  combinato-

rial  optimization  problem  that asks  to place a set  of  2-
dimensionalpolygonswithinareetangularcontainersothat
no  two  polygons overlap  each  other  and  ne  polygon pro-
tmdes  from the container, where  each  polygon is not  nec-

essarily coirvex. [[he container  has a fixed width,  while  its

length can  change  so  that al1 polygons are placed in it. The
objective  is to find a layout that minimizes  the length of

the container. This prob}em has a  few variations  depend-

ing on  rotations of  polygons: (1) rotations  of  any  angle  are

allowed, (2) finite number  of angles  are allowed, (3) no  ro-

tation is allowed. Among  them,  we  deal with  case  (2). Note
that case  (3) is a special case  of (2) in which  the number

of  given orientations  for each  polygon is one.  Tlie irregular

strip  packing problern has many  applications  in material  in-
dustry such  as paper and  textile industries, where  raw  mate-

rials are  usually  given in rolls,  In textile industry, rotations

are usually  restricted lo 180 degrees because textiles have
the grain and  may  have a  drawing pattern. The  irTegular

strip packing problem is known to be NP-hard even  without

rotation.

  Adarnowicz and  Albano (1976) proposed an  algorithn
that first partitions a  given polygons into' seyeral  subsets

of  polygons, then generates for each  subset  a rectangle

enclosure  in which  the polygons in the  subset  are placed
compEctly  (i.e., being with  a little wasted  space), and  fi-
nally  findsa layout of  these enclosures.  Albano  and  Sa-

puppo (1980) gave an  algorithrn that places polygons one
by one  at the bottorn-left position according  to a sequence

of input polygons, where  they used  tree search  to obtaina

good sequence,  Mathematical programming was  also used
for this problem. Based on  linear prograrnming, Li and

Milenkovic (1995) proposed cempaction  and  sepamtion  al-

gorithms that reduce  the overlap  and  the length of the con-

tainer by perturbing the current  positions of  all polygons si-
multaneously.  Afterwards, Bennell and  Dowsland (2oo1)
combinedthebottom-leftmethodandcompactionalgorithrn

to obtain  a  better algorithm. Gomes  and  Oliveira (2oo6) hy-
bridised the bottom-left heuristic and  lmear prograrnming
based compaction  and  separation  algorithms. They ftirther
incorporated the method  with  sirnulated annealing.  Burl[e,
et aL  (2ooS) developed a bottorn-left-fi11 heuristic algorithrn
and  utilized it with  hi11 climbing  or tabu search  to obtain

good solutions  quickly. igeblad. et  al. (2006) developed ar}
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efficient method  that finds a  layout with  minimum  overlap

posltion when  a polygon is translated in u given direction,
and  they utilized it in guided local search.  See a  review

by Hopper  and  [Ihrton (2oo1) for more  on  the strip packing
problem including the irregular strip packing problem.

  in this paper, we  propQse a  new  separation  algorithm
based en  nonlinear  programming. VVe also give an  algo-

rithm that swaps  two polygons in a  sophisticated  way;  it
tries to find their pDsitions with  the teast overlap  previded
that the positions of  other  polygons in a  given layout are
fixed. VVk) incorporate these algorithms as components  in an

iterated local search  algorithrn whose  objeetiye  is to mini-

mize  the total arnount  of  overlap  and  protrusion of  u  layout,
where  a  layout rnay  not  be completely  contained  in the con-
tainer during the algorithm. VVe then deyelop an algorithm
for the irregular strip packing problem using  the iteratecl lo-
cal search  algorithm, which  we  call ILSQN  because we  use

the quasi-Newton methed  in the irerated local search  algo-
rithm. Cornputational comparisonson  representative  bench-
matk  instances disclose that our  algorittm is competitive
with  other  existing  algorithms. Moreover, our  algorithm up-
dates seyeral  best known  results.

2. Formulation

  Iior the irregular strip packing problem, we  are  given a  set

P  =  {A,.,, , R,} of  polygons, a  set O  ;  {Oi,...,O.}
of  erientations  where  Oi (1 S i S n)  is a  set ofpossible  ori-

entations  or 4, and  a  rectangular  container  C  =  C(W,  L)
with  widih  W  and  length L, where  W  is a constant  and

L  2 O is a variable,  Polygons in 1) may  not be convex.

  We  denote polygon ll E 1) rotated  by o  E Oi degrees

by R(o), which  may  be'written as  R  for sirnplicity when
the orientation  is not specified  or clear  from the context.  Let

S  be polygon Il(o) or rectangle  C. For convenience,  we

regard  each  of polygons lt(o) (i ==  1,,..,n) and  rectan-

gle C  as the set of  points inside it including the points on
the boundary. Let int(S) be the interior of  S, eS  be the
boundary of  S, S  be the complement  of S, and  cl(S)  be

the closure  of  S. VVe deseribe translations of  polygons by
Minkowski sums.  bet x{  =  (xii,x{2) (i =  1,...,n) be a
translation yector  for Il. The  polygon obtained  by translat-
ing polygonR  by mi  is IIE exi  =: {p +xi  i p  E  R}.
Recall that L ) O is the length efthe  container  C, which  is

a decision variable  to be minimized.  Then the irregular strip

packing problem is fom]ally described as fo11ows:

mmlmlze

sllbject toLint(R(oi)  e  mi)  n  (.Ili(qi) e  xJ-)  =  to,

                   1(i<j'  -< n,
                                 (1)
II(oDexigC(W,L),  1sisn,

LER+,  xiER2,  lsisn,

oicOi,  1SiSn.

We  represent  a  solution  of  this problem  with  two  n-tuples

m  ==  (mi,...,xn) ando=  (oi,...,o.). Note  thatasolu-

tion (x , o)  uniquely  deterrnines the layout of  the polygons;
i.e., the minimum  length L is the x-coordinate  of  the righi-
most  point of  the polygons placed by (m, o).

3. 0verlapminimizationbasedonnoniinearpregram

  Our separation  aigorithn is based on  nonlinear  program.
We  move  al1 po!ygons simuttaneously  to minimize  the total
amount  of  overlap  and  protrusion, where  the Iength of  the

container  is fixed. in this section,  we  forrnulate the overlap
minimization  preblem as an  unconstrained  nonlinear  pro-

grarnming problem, and  gives the way  of computing  the ob-

jective function and  its gradient.

3.1 [[heoverlapminimizationproblem

  Our objectiye  is to find a feasible solution  of  the prob-
lem (1) with  u  giyen length L  of  the  container.  Ilor this

purpose, we  allow solutions  to have sorne  polygons which
overlap  a]id/brprotmde  from the containeg  and  penalize the
amounr  of  oyerlap  and  protrusion so  that a solution  with

penalty zero  gives a feasible layout for the irreglllar strip

packingproblem.
  in this section, we  fix the orientations  o  ==  (oi,...,o.)
of  al1 polygons, and  omit  writing  it explicitly for simplic-
ity, Let, m  =  (xi,...,m.) be a list of  translation yectors

of al1 polygons, fi,･ (¢ ) be a function evaluating  the amount
of overlap  of  A  and  Ili, and  gi(m } be a function evaluating
the amount  of protrusion of P: from the container.  Vati-
ous  choices  of  functions are  possible for Aj(･) and  g{(･),
and  we  will choose  sultahle functions for fij (･) and  gK･) in
Section 3,4. Now  we  formulate the  overlap  minimization

problemby

minimize  IJ'(m)- 2  Aj(¢ )+ Z  gi(x)
                19<jSn  ISiSn  (2)
subject  to x  E  R2n,

This is an  unconstrained  nonlinear  prograrnming problem.
For defining suitable functions fi,･ (･) and gi (･), we  introduce

seme  notions  such  as the no-fit polygon and  the penetration
depth in the next  subsections.  Our separation  algorithm in-
vokes  the quasi-Newton method  to compute  a locally opti-

mal  solutien  to probiem (2) by using  the current  layout as
an  initial solution.

  wnen  we  need  to clarify the orientation  o  explicitly  as  in

Section 4, we  writethe  objective  function F(x) as  F(x, o).

3.2 Theno-fitpolygen

  The no:i7t polygon  (NFP) is u data structure that is often
used  in algorithrns forthe irregular suip  packing problem. It
is also used  for otherproblems  such  as robotics, in which  the

no-fitpolygoniscalledconfiguration-spaceobstacle.Practi-

cal algorithms to calculate  an  NFP  of  two non-convex  poly-
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gons haye been proposed, e.g., by Bennell, et aL  (2oo1) and
Ramkurnar(1996).

  The  no-fit polygon NFP(R,  I}) for an ordered pair of
two polygons R  and  Ili is defined by

 NFP(e,  I}) -=  int(PZ) o  int(-I})

           =:  {v -w  j v  E int(i'}), w  E  int(t3)},

[he NEP  have the fo11owing important properties:

  .  H  exi  and  t} e  mj  overlap  if and  only  if xj  
-
 mi E

   NFP(R,I}),

  .  R  G  mi  touches  Ili o  mj  if and  only  if mj  
-

 xi  E

   eNFP(R,e).

  .  R  e  mi  and  Ri O  xj  are separated  if and  only  if x,･ -

   xi  ¢  cl(NFP(R,  Ri))･
Hence the problem of  checking  whether  two  polygons oyer-
lap or  not  becomes an  easier  problem of  checking  whether  a

point is in a polygon or not, Figure 1 shows  an example  of

NFP(R,  l}) oftwo  polygons R  and  lli.
  We  can  also check  whether  a  polygon R  protrudes frorn
the container  C  or  not by

  NFP(C,B)  ==  int(C) ¢  int(-R)

           ==  {v -  tv  I v  E R2 X C, tv  E int(R)},

which  is the complement  of  a  rectangle  whose  boundary is
the trajectory of the reference  point of ll when  we  slide  P:

inside the container  C.

mi

@ - <･

 xj

 lx

 yx-!txsl

 tS
 tN-NtsNt

   '

NFP(R,  i}･)

Fig. 1 Illustration of NFP(PZ,  l})

33  Tliepenetrstiondepth

  The penetration depth (also known  as the intersection
depth) is a  function usod  for robotics, computer  vision and

so on  (Agarwal, et al., 2000; Dobkin, et  at., 1993), Tlie

penetration depth 6(R, I ]f) oftwo  oyerlapping  polygons l}
and  tti is defined to be the minimum  translational distance
to separate  them, If two  polygons do not  overlap,  their pene-
tration depth is zero. Iiormally, the penetration depth of  two

polygons R  and  I} is defined by

6(R, PIi') =  min{11zIl  1 int(R) n  (1 li ez)  =  e, z  E  R2},

where  il ･ Ii (lenotes the Euclidean norm.
  We  can  separate  two  polygons P; ar}d l{) by translat-
ing the refeirence point of  I!i to a point on  aNFP(R,  Ili).
Hence  6(R  e  mi,  Pb e  mj)  is the minimum  distance from

xj  -  ¢ i to ONFP(f},  &).

3.4 Theamountofoverlap

  We  define functions fij (･) and  gi (･) using  the penetration
depth. [b represent  the  amount  of  overlap  between A  and

e, Aj' (･) is defined by

f;j(x) =-  6(R  o  m`,  fli o  mj)M,  1 s i <  s' <- n,

where  m  =:,  (mi,...,x.) and  m  is a positive parameter.
Similarly gi(m) is clefined by

     gi(x)=6(cl(U),Ro ¢ DM, 1SiSn,

where  c](C)  is the exterior region  ofC  and  its boundary.

  ln order  to apply  evacient  algorithms for solving  the non-

linear prograrn to the  overlap  minimization problem, we

need  to compute  the  values  of  A,･(m) and  gKx)  and  their

gradients for a given solution  (m,o), We  explain  below
how  we  realize  such  cornputation,  where  mi  and  ¢ j are the
translation vectors  of  Il and  I} respeetiyely  and  we  denote

v  =  mj･ -  mi  for convenience.  IMe considet  how  to compute

Aj (x) andits  gradient. VVzae compute  gi(m) andVgi(m)  sim-

ilarly as in the  case  of  A,･ (m) and  Vft,･ (x). Ihere are  three

cases  for the computation  of  A,･ (¢  ) and  VA,･ (x).
  Case 1: the case  in which  the two  polygons R  and  I li do
not  overlap.  This case  is easy; we  just return  fLj(m) =  O

and  Vfigj (m) =  O,

  Case 2: the case  in which  the two  polygons overlap  (i.e.,
flj (x) >  O) and  the nearest  point on  eNFP(tk  , lt) from  v

is unique.  See un  exarnple  in Figure 2. Let tt, be the  nearest

point and  let z  =  ut -  v. Because the variable  x  is a list of
n  2-dimensional vectors,  Vfij･ (x) is also such  a  list; hence

we  denote Vf;j(x) == (Vifij(x),,..,V.f:j(x)), where

Vle -=  (elexki,OIOxk2) for al1 1 s  k s  n.  Then, A,･(¢ )
and  Vfi,･ (x) for 1 S i <  j' <- n  are giyen by

  ftj (m) =  IlxllM,
Vifij (x) =  -Vj  fij(m) ==  mllzllMm2z,

vk  A,- (m) ==  o, le E {1,.,., n}  X {i, o' }.(3)

Every VkA,･ (x) except  ViAti(m) and  V,･ ftj (m) is zero  be-

cause  only  }l and  i-Ii have influence on  their overlap.

mj･
   mi

.
  w

Fig. 2 The  computation  of  fij(m) and  VAj  (x)

  Case 3: the case  in which  fi,･(al) >  O and  the nearest

point from  v  ro ONFP(}"2, t}) is not unique.  In this c;ase,
VAj  (･) is not  differentiable at  x;  however, we  choose  one

of  the nearest points arbitrarily as w  and  calculate  Vfij (m)
with  (3) as in Case  2. Then  this is one  of  the subgradients
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of  nj (pt). Note  that Case 3 can  occur  only  when  v  is on  the

medial  axis  of  NFP(t}, i"}).
  The  poshiye pararneter m  determines the differentiability
of  ftj (x) and  gi(x). When  v  is on  ONFP(R,e),  Aj (x)
is differentiable for m  >  1, while  it is indifferentiable for
m  S 1, It is preferred that the objectiye  function is differ-

entiable  for the quasi-Newton method.  Moreover, Vfij(x)
in (3) becomes simpler  for m  =  2 because HzllM-2 disap-
pears. [[he situation is the same  for gi (m), and  hence we  let

m  !t  2 in our  experiments.

4. Iteratedlocalsearch

  [[his section proposes an  iterated local search  algorithrn
for the overlap  minimization  problem (2) defined in the  pre-
vious  section. Iterated local search  is one  of the representa-

tive metaheuristic  algorithrns that repeats  local search  many

times, where  initial solutions  for local search  are  generated
by perturbing promising solutions  obtainedby  then, Ehe lo-
cal  search  of  our  algorithm, which  can  be  regarded  as  a  sep-

aration aigorithm, rnoves  all polygons (usually) slightly to
reduce  overlap.  Fer this purpose, we  use  the  quasi-Newton
method  for the oyerlap  minimization  problem, Iior the per-
turbation in the iterated local search,  we  adopt the operation
of  swapping  two  polygons described in the next  section.

4.1 [fheoperationofswappingtwopolygons

  VVle swap  two  polygons in our  iterated local search  algo-

rithrn to perturb locally optimal  solutions. im stead  ofjust  ex-  -

changing  two  polygons R  and  Fli in their roference  points,
we  attempt  to find their positions with  the least oyerlap.
FINDBESTPoslTIoN(R)  is a heuristic algorithn to find a
mmimum  overlap  poshion of a polygon P;, without  chang-

ing the positions of  the other  polygons, while  considering

al1 possible orientations  o  G  Oi of  R. For each  point v
of  al1 vertices  and  intersections of  O NFP(Bt  o  mk,  R(o))
le E {1, . . . ,

 n}  X {i} and  aNFP(C,  lt (o)), the heuristics

computes  the overlap  of  fk(o) o  v  with  the other  poly-
gons, and  finds the position with  the least overlap,  where
m  =  (xi,...,x.) is a  list of  the translation vectors  ef

polygons, o  =  (oi,...,o.) is a  list of  the orientations

of  polygons, aisd the arnount  of  overlap  is computed  by
the objective  function F(m  , o)  of the overlap  rninimization

pfoblem (2). It repeats  these operations  for ai] orientations
o  E Oi  of  ll and  seelcs  the  best position and  orientation.

  FINDBEsTPoslTIoN  has an  important property:
FINDBEsTPoslTION(R)  always findsapointV E  R2 and

an  ortentation  o'  E  Oi of polygon tk suchthat  l2(ode) o  v'

neither overlaps  with  the other  polygons nor  protrudes from
the container  C  if there exists  such  a  pair of  a  point and

an  orientation. However, FINDBtis'rPoslTloN may  miss

the  globally optimal  position if there is llo position whose

overlap  is Lero.

  SwnpTwoPol:yGoNs(R,Ri)  is an  aigorithm to swap
two  polygons P: and  4  by using  FINDBus'rPosl'1'loN,
VVle first remove  a polygon tl frorn the container  C, which

results  in making  a  hole in the layout. We  next  place a
new  polygoll P'(qi) e  xj,  where  1" =  tti, to prevent 1"}i
from staying  at the  same  place. Then  we  moye  a  polygon
I}i to a  position computed  by FINDBEsTPOslTIoN(Ri),
and  remoye  P', where  we  expect  that Il･ moyes  into

the hole, Finally, we  place the removed  polygon A  by
FINDBESTPOslTION(R).

4.2 Iterated lecal seareh  for the  overlap  minimization

    problem

  lm this section, we  formally deseribe the frarnework ofour
iterated loeal search  algorithm cal1ed  MINIMIZEOVERLAP

for the overlap  minimization  problem (2).
  IM: cheose  the first solution  that minimizes  the objective

function of (2) among  those searched  by then as the incum-
bent solurion  that will  be used  for generating the next  initial
solution, MINIMtzEOvERLAp  perturbsthe incumbent solu-

tion by SwApTwoPouyGoNs(R,  Fli), where  polygons I):
and  I} are randomly  chosen,  then calls the quasi-Newton
method  starting ftom the perturbed solution, and  obtains  a

locally optimai  solution. If the locally optirnal solution  has
less oyerlap  than the incumbent solution  does, the locally
optimal  sQlution  updates  the incumbent  solution, MINI-

MIzEOVERLAp  stops  these operations  after failing to update

the incumbent solution  iVli. (a parameteO consecutiye  calls

to local search.  

'

4.3 Initialsolution

  VVie generate an initial feasible layout ofour  algorirhm for

the irregtt1ar strip  packing problem as follows. We  assume

that the length L of the container  is long enough  to plaee al1
polygons. We  prepare a  sequence  of  polygons in deseending
order  of  area  and  place polygonsone  by one  in the order  of

the sequence,  where  the position of  each  polygon Ple is de-
cided  by FINDBEs'rPosl'rlorv . if there are  seyeral  positions
with  ne  overlap,  we  choose  the bottom-left position (i.e., the

position with  the  minimum  xii,  breaking ties with the  min-

imum  ¢ i2, where  mi  =  (xii,xi2) is the translation yector
of  polygon R). After placing al1 polygons, we  let L  be the

x-coordinate  of  the right most  point of  the resulting layout,

Gomes  and  Oliveira (2006) also generated initial solutions

in a  similar  way  using  a  different sequence  ofpolygons.

4.4 Theentirealgoritlmforthestrippackingproblem

  In this section, we  describe the entire algorithm for the
irregular strip packing problern, which  we  cal1 ILSQN.  It

consists oftwo  layers of cornputations.  The inner layer is to
find a  feasible layoui for a tentatively fixed length L of  the

container.  which  corresponds  to MINIM[zEOyERLAP.  The
outer layer is to search  the minimum  feasible length L  by

shrinking  er extending  its left andlor  right sides. "fet control
the outer  layer using  parameters rdcc,ri.  E  (O,1), where

rdec and  eqne are the ratio we  shrink  or extend  the length L of

the container, respectively.
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  ILSQN  first generates an  initial solution, sets  the length
L  of  the container  so that it contains  al1 polygons and  the
both sides  touch some  polygons. and  then shorten  L  by
L :== (1-rd.)L. [[hen, ILSQN  repeats the following
two operations  until a  time lirnit is reached.  ILSQN  tries
to reduce  the overlap  of  the current solution  (xcur,oeur)
by MINIMIzEOvERLAp.  if ILSQN  obtains  a layout with
no  everlap,  it shortens  the length L  of  the container  by
L :== (1 -  rdee)L;  otherwise,  ILSQN  extends  the length by
L  :=  (1 +  nne)L. The  entire algorithrn of ILSQN  is for-
mally  described in Algorithrn 1.

  1}Ve set  rd..  =  O.04, ri..  =  O.Ol ar}d  IV.. =  200 for
the computational  experiments  of  al1'benchnark instances
in Section 5,2.

Algerithm 1 : ILSQN(1), O, W] rdee,  rinc)

Generate an initial selution  (m,o) by the algorithm in
Section4.3.
het L be the minimum  feasible length of the container  for
the initial solution  (x , o).
Let IJbest :=: IJ aTld (XbestJ Obest)  :=  (M, O)･
Let L  :=:  (1 -  rdec)L  and  (meur, ocur)  :==  (m,o).
while  within a time lirnit do  

'

  bet (mcur, oeur) :== MINIMIZEOVERLA?(mcur, ocur).

  if b"(¢ ,,,,  o,.)  ==  O then

    Let Lbest :=:, L and  (¢ best, obest)  :=  (mcur, qeur)･

    het L :== (1 - rdec)L･

  else

    Let L :== (1 +  rinc)L.

    if L  >  Lbest then

     Let L  ::=  (1 - rdee)Lbest.

     Let (Mcur, Oeur) :=  (Xbest, Obest)･

    end  if

  end  if
end  while

Return Lbest and  (xbesti Obest)･

5. Computatiomalresults

5.1 Environment

  Benchmark instances for the irregular strip packing prob-
lern are asTailable online  at EURO  Special lnterest Group on
Cutting and  Packing (ESICUP) websitei.

  VVi: implemented our  algorithm in the C++  language,
compiled  it by GCC  4.0.2 and  conducted  computatienal  ex-

periments on  a  PC  with a  Pentium4  2,8GHz  processor and
1GB  memory.  We  adopt  a  quasi-Newton method  package L-
BFGS  by liu and  Nocedal (1989) for the overlap  minimiza-

tion problem. L-BFGS  has a parameter mBF(]s  that is the
number  ofBrcS  corrections  in L-BFGS.  We  set mBFGs  =  6
because 3 S mBFGs  S 7 is recomrnended  by Liu and No-
ceda3  (1989),
  A  layout is judged to have no  overlap  when  the objeetive
funetion of (2) is less thanE  =  10LiOW2  due ro limited
precision. Thas, our  algorithm may  generate layouts that
have slight overlap.

iESICUP:
 http:1/wuu.apdie.ptlstcup/

5.2 Results

  in this section,  we  show  the  computational  results  of  our

algorithm ILSQN  and  cornpare  it with  other  existing al-
gorithms. We  run  algorithm ILSQN  ten times for each
instance and  compare  our  results  with  those reported  by
Gemes and  Oliveira (2006), Burke, et al. (2ooS) and  Ege-
blad, et  aL  (2006). [(hble 1 shows  the best and  ayerage

length and  ernciency  in %  or ILSQN  and  the best efficiency
in %  of  the other  algorithns, ILSQN  is our  algorithrn,
SAHA  is the algorithm of Gomes and Oliveira (2006), BLF
is the algorithrn of  Burke, et  al. (2oo5), and  2DNest is the
algorithm of  Egeblad, et  at. (2006). Tlie column  EF  shows

the eMciency  in %. 1[he best re$ults arnong  these algorithms
are  written  in bold typeface. [lable 2 shows  the computation
time (in seconds)  ofthe  algorithms.

  Gomes  and  Oliveira (2oo6) did nor use  time limit but stop
their algorithrn by other  criteria. [[1iey conducted  20 runs  for
each  instanoe and  the best results of  the 20 runs  are  shown
in lrhble 1, while  their computation  times in [Ibble 2 are the
average  oomputation  time  of  the 20 runs.

  Butke, et al. (2oo5) conducted  four variations of their al-
gorithms, and  conducted  10 runs  for each  yariation,  Their

resglts in lhble 1 are  the best results of  the 40  runs, which

are taken frorn [lable 8 in Burke, et al. (2005). They limited
the number  of  iterations for each  run, and  their eomputation

time in Tlable 2 is the time spent  ro find the best solution  re-

ported in [[hble 1 in the  run  that found it (i.e., the  time  for

only  one  run  is reported). Since they conducted  experiments

for instances ALBANO,  DIGHE1  and  DIGHE2  with  differ-

ent orientations  from the other  papers, we  do not  include the

results.

  leeblad, et  at. (2oo6) and  we  conducted  experiments  us-

ing the time lirnits for each  run  shown  in [[hble 2. Although
our  total computation  time of  al1 runs  for each  instance is
not  so long compared  with SAHA  and  2DNest, ILSQN  ob-

tained the best results for 5 installces out  of  the 15 instances
in eraeiency  of  the  resulting  layouts and  also obtained  the
results with  almost equivalent  efficiency  to the best results
for some  instances. [[he computation  time of  BLF  is much
shorter  than that of ILSQN, and  IL.SQN obtained  better re-

sults  in eMciency  than those BLF  obtained  for al1 instances,

6. Conclusions

  We  proposed an  iterated local search  algorithm for over-
lap minimization  based on  nonlinear  program and  the op-

eration of  swapping  two  polygons in a  sophisticated  way,

and  incorporated it in eur  algorithm for the  irregular strip

packing problem. We  showed  through computational  exper-

iments that our  algorithm is competitive  with  existing  algo-
rithms, updating  the best known solutions  for seyeral bench-
mark  instances.
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[Ehble 1 [[be best efficiency in %  ef  the four algerithms

instanceILSQN  SAHA  BLF  2DNest
ALBANO
DAGLIDIGHEI

DIGHE2
ruSAKOBSI

JAKOBS2
MAOMARQUES

SHAPESO
SHAPms1
SHAPms2
SHIRTSswnc'r}tousERs

87.7685.6299.83.80.5290.83so.w80.6884.6089.0967.6273."82.8686.1874.0288.73 87.43 -  87.44
 87.15 83.7 85.98
10e.oo -  99.86

100.oo -  99.95

 90.96 86.9 91.84
t*78.89 82,6 89.cr7
 77.28 74.8 80.41
 82.54 79,5 85.15
 88.14 86.5 89.17
 66.50 60.5 67.09
 71,25 66,5 73.84
 83.60 77.7 81.21
tS6.79 84,6 86.33

 74S7  68,4 71.53
 S9.9(; 88.5 89.84

'

 The  value  has been  corrected  according  to the in-

 forrnation sent  from Gomes  and  Oliyeira (2006).
t Better results  were  obtained  by a  simpler  greedy
 approach  (GLSHA)  (Gornes and  Oliveira,
 2006): 81.67% for JAKOBSI  and  86.80% for
 SHIRTS.

Thble 2 The  computation  time in se¢ onds  of the four al-

    gorithms
instaiioe 

'ILSQN

 SAHA  BLF'2DNest

      S2.8GHzS2.4GHz  S2.0C}Hz g3.0GHz

       10runs 20runs  40runs  20runs

ALBANO
I]be,LGLIDIGHEI

DIGHE2
FUJAKOBSI

JAKOBS2
MAOMARQUES

SHAPESO
SHAPESI
SHAPES2
SHIRTSSWIMTROUSERS

120012006006006oo60060012001200120012001200'12001200120022575110

  83
  22
 296
 332
 4548245750739141031421361039169378588

188.80

20.7843,4981.4129.744.8721.33

 2.1921.oo58.36607,37756,15

amamam6ooam6006ooamam6oo6oo6oo600amam

'
 Computation time is the tirne limit.
t Computation  time is the ayerage  computation

 time.iComputation
 time is the time spent  to find the

 best solution  in the run  that found it.
g1[he experiments  are  conducted  on  a  PC  with a

 Pentiurn4processoz
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