1201 汎用金属材料における不均一変形挙動の ESPI 観察

ESPI Observation of Non-Uniform Deformation behavior in Metallic Materials

○ 冨永 学・茨城高専 豊岡 了・埼玉大学 門野 博史・埼玉大学

Manabu TOMINAGA, Ibaraki College of Tech. Satoru TOYOOKA, Saitama Univ. Hirofumi KADONO, Saitama Univ.

Key Words: Deformation Behavior, Electronic Speckle Pattern Interferometry, Carbon Steel, Aluminum Alloy, Stainless Steel

1. 緒論

我々は変形挙動などの動的現象にも適用できる電子スペ ックルパターン干渉法 (ESPI)を提案してきた.本手法は物体 の変形に伴って時々刻々と変化するスペックルパターンを 連続的に撮像し,差画像を時系列的に計算することによって, 変形の時間差分を縞画像として観察するものである.差分観 察であるため,光の波長程度の感度でありながら,測定レン ジに対する制約はない.このため,材料の引張試験などにお いては,弾性変形から破壊にいたるまでの変形過程が連続し て観察できる.

ところで、機械や構造物などで用いられる金属材料の力学 的性質の評価には、主に応力ひずみ曲線から求めた降伏点 (耐力)、引張強さ、伸びなどが用いられてきたが、より精 密な試験法の確立が求められている.しかし、従来手法では、 試験片全体の平均的情報しか得ることができない.例えば、 応力ひずみ曲線の変則的変化が変形挙動とどのような関係 にあるかを検討することは困難であった.

本論文では、これまでに行ってきた炭素鋼、アルミニウム 合金、そしてステンレス鋼の動的 ESPI の観察結果に基づい て、応力ひずみ曲線の変則的変化と空間的な変形挙動の関係 を考察する.

2. 緒論

2-1 供試材及び試験片形状

供試材は市販の炭素鋼, アルミニウム合金, ステンレス鋼 である. 試験片形状はいずれも板厚 5mm, 平行部の長さ 60mm, 幅 30mm, 肩部の半径 20mm の JIS Z 22017号試験片 に準じた形状ものである.

2-2 実験装置及び方法

実験には自作の引張試験機と動的 ESPI システムを用いた. 引張試験機は機械式引張部,荷重測定用のロードセル,クロ スヘッド移動量測定のためのマグネスケースから構成され ている.荷重およびクロスヘッド移動量は各センサーにつな がれたパーソナルコンピュータ(PC)でモニターされている.

動的 ESPI システムは、面内変形測定のためにレーザ光を 対称な二方向 θ = 45°から試験片を照射する配置になって いる.両光路からの散乱光が重ね合わせれば、観察面にはラ ンダムな位相場を持つ斑点模様のスペックルパターンが形 成される.この時、引張試験に伴う変形前後の変位を u とす れば、変形に伴って生じる位相差 ∂は

$$\delta(x,y) = \frac{2\pi}{\lambda} 2u(x,y)\sin\theta$$

で与えられる.ここで, λ = 532nm はレーザ光の波長である. 今,変形にともなってある点の位相 δが 2π変化したとする と,これに対応してその点の差画像強度が明,暗,明などの ように一周期変化する.従って,観察面全体ではランダムな スペックルパターン上に通常の干渉計測と同じλ/(2sinθ)を単 位とする等変位線をあらわす縞(相関縞)が現れる.

3. 実験結果

応力ひずみ曲線の変則的変化としては、炭素鋼の降伏現象 がよく知られている。その他にも、アルミニウム合金の塑性 変形前半部に現れる A-セレーションや後半部に現れる B-セ レーション、そしてオーステナイト系ステンレス鋼の変態誘 起塑性変形に関連した突起(Projection)⁽¹⁾とセレーションが 知られている。

3-1 炭素鋼

硬鋼(S50C)の降伏点近傍の応力ひずみ曲線をFig.1に示す. 同図には軟鋼と同様な上降伏点,下降伏点,そして降伏棚が 観察される.Fig.1の(1)から(4)の変形状態に対応する相関縞 をFig.2に示す.Fig.2(1)ではすべり帯(リューダース帯) の発生の前兆であるひずみの局在が始まっている.Fig.2(2) はリューダース帯発生直前のもので,変形が不安定状態であ ることを示している.Fig.2(3)はリューダース帯の発生に伴 う応力緩和の状態である.このような激しい変形時にはスペ ックルの相関が失われるため,相関縞が白色化している.降 伏棚の中央付近のFig.2(4)は,リューダース帯が伝播中であ ることを示している.

Fig.2 Magnified stress-strain curve of the S50C specimen.

Fig.2 Correlation fringe patterns of the S50C specimen.

3-2 アルミニウム合金

Fig.3 (1)はジュラルミン (A2017) の塑性変形前半部で観察 される変則的変化で, A-セレーションと呼ばれている.また, 同図(2)は後半部で観察される B-セレーションである. Fig.4

日本機械学会関東支部ブロック合同講演会-2007さいたま-講演論文集〔2007-9.21~22,さいたま市〕

の(a), (b)はそれぞれ Fig.3 の(a), (b)に対応する相関編である. A-セレーションでは,炭素鋼と同様な急峻な応力降下が観察 される.この時,すべり帯(PLC帯)では非常激しいすべり が起こっているため,すべり帯以外の部分ではこの激しい変 形を補正する圧縮変形が生じている.一方,B-セレーション では応力降下と同時にすべり帯方向の交換が始まり,降下が 終了した時点でほぼ反転する.この時のすべり帯の交換に要 する時間は,公称ひずみ量で換算すると約0.1%である.

3-3 ステンレス鋼

Fig.5 の(a)および(b)に,オーステナイト系ステンレス鋼 (SUS304)で発生する '突起' および ' ジグザグ(セレーショ ン)' と呼んでいる変則的変化⁽¹⁾を示す. Fig.6 の(a), (b)は, それぞれ Fig.5 の(a), (b)に対応する相関編である. 比較的緩 やかな応力の上昇と降下の変動である突起は, Fig.6(2)に示す ような局在変形帯の転移に対応する. この時の交換に要する 時間はひずみ量で換算すると約 1%である. Fig.6 の(b)のセレ ーションでは, Fig.6(2)に示すように,応力降下と同時に変形 帯方向の交換が始まり,降下が止まった時点でほぼ完了する. ジュラルミンのB-セレーションと同様な現象である.この 時の交換に要する時間はジュラルミンの場合と同程度で、ひ ずみ量換算で約0.1%である.

Fig.6 Correlation fringe patterns of the A2017 specimen.

4. 結言

- (1) 不均一変形の発生やその形態変化には、応力変動が伴う.
- (2) 急峻な応力降下は、シャープな局在ひずみ帯の発生に対応する。
- (3) 比較的長周期な応力変動は、局在ひずみ帯が試験片上を 伝播していること示している.
- (4) 塑性変形後半の繰り返し起る比較的なだらかに降下す る数 MPa の応力変動は、ひずみ帯方向の交換に対応す る.

参考文献

(1) 冨永他, 日本金属学会誌, 71,8(2007) 印刷中