1301 ショットピーニング SUS316SENB 試験片のき裂進展と形状解析

Crack extension and dimension analysis of Shot Peened SUS316 SENB Specimen

○ 飯島隆彰(小山高専 専攻科) 正 伊澤悟(小山高専)

Takaaki IIJIMA, Satoru IZAWA

Oyama National College of Technology, Nakakuki771, Oyama, Tochigi

Key Words: Fatigue, Shotpeening, Crack extension, Crack Tip Opening Angle

1. 緒論

経年圧力設備の寿命延伸と安全性の確保を両立させるた め、プラント機器構造物に用いられる高延性材料であるオー ステナイト系ステンレス鋼における疲労寿命評価の確立が 重要課題となってきている.この場合、実際のプラントで発 見される応力腐食割れに代表される欠陥を有した状態での 疲労強度を精度良く求めることが要求される.

本研究では,SUS316 鋼の疲労寿命とき裂進展および形状 評価を精度良く解析することを目的として,実験力学手法を 用いている.本報告では,材料表面に圧縮残留応力を与えて 疲労強度向上を図るショットピーニング加工の疲労き裂へ の影響について考察を行う.

2. 実験方法

2.1 供試材料

実験に用いた SENB(Single-Edged Notch three-point Bend)試験片の形状を Fig.1 に示す. 試験片は, 板厚 16mm の SUS316 帯板から, 切欠を圧延方向に対して垂直に L·T 方向にサンプリングして, 機械加工を施した. ASTM 規格 E813-J 積分試験準拠試験片の幅は 25.4mm, 切欠深さ $a_0 = 10.67$ mm, $a_0/W = 0.42$ である.

ショットピーニングを施さない試験片の表面はき裂観察 用にエメリーペーパーとアルミナ粉末を用いて鏡面に研磨 した.

Fig.1 SUS316 stainless steel SENB specimen.

2.2 試験方法

疲労試験は、10kN型油圧式疲労試験機(Shimadzu 製)を用 いて3点曲げ試験で行った.試験条件は、周波数 10Hz,応 力比 R=0.01の正弦波負荷で実験を行った.疲労き裂進展は Mitutoyo 製の顕微鏡を使用して観察した.

残留応力の存在がき裂発生とき裂成長に及ぼす影響を調 査するためショットピーニングにより残留応力を与えた SENB 試験片に対しても疲労試験を行った.ショットピーニ ングは切欠に影響を与えると予想される面,4面の全体に施 した.ショットピーニング条件はショット材の材料 Zr,シ ョット圧力 0.5MPa,試験片と噴射ノズルの距離 100mm, ノズルの直径 9mm である. き裂長さが 2, 3.5, 5, 6.5, 8mm に達した時点で試験機 を止め,顕微鏡でき裂の形状観察を行い,き裂の発生とき裂 の進展を評価した.

また,各試験片に対する疲労荷重も,き裂進展およびき裂 形状への影響についても実験した.

2.3 CTOA 計測

CTOA(Crack Tip Opening Angle)は以下の3種類の手法 によって評価した. Fig.2 で仮定したき裂形状に対して, CTOA φの定義は Eq.(1)で与える.

Fig.2 Definition of CTOA.

$$\phi = 2 \tan^{-1} \left(\frac{\delta/2}{d} \right) \qquad \cdots \qquad (1)$$

ここで、

- Moiré 干渉法・・・き裂先端から 2mm の位置でのき裂 開口変位 COD を算出しφを求める.
- (2) 顕微鏡観察・・・き裂先端から 2mm 位置でのき裂開口 変位 COD を観察し, Eq.(1)によりφを求める.
- (3) き裂口開口変位(CMOD)・・・クリップゲージを用い て測定したき裂口での CMOD 値よりき裂形状を線形補 間して, Eq.(1)によりφを求める.

3. 実験結果および考察

3.1 CTOA の計測結果

Table1 に最大荷重 4.8kN での3手法によって算出した COD の測定結果の比較を示す.また,Moiré 干渉法により 観察した無負荷および負荷時の干渉縞写真も併せて示す.

き裂先端から 2mmの位置で測定した, Moiré 法と顕微鏡 による COD の値は良く一致し,算出した CTOA は同様の値 を示す.また, CMOD から算出した CTOA は Moiré 干渉法 や顕微鏡を用いて,光学的に求めた値の約 1/2 となった. CMOD によって評価した CTOA を,更に正確な光学的手法 により測定した CTOA に変換するために Fig.3 に校正線図 を作成し両者の関係を調査した.

この結果, SENB 試験片の CMOD から算出した CTOA は, 無負荷時および負荷時の両方で光学的に算出した CTOA に 線形関係を示すことから, CMOD から CTOA を容易に置換 することが出来る.

日本機械学会関東支部 ブロック合同講演会―2008 おやま―講演論文集〔2008・9.19~20,小山〕

	Unloaded	4.8kN	
Δa=5.00mm	Zoon		
COD(Moire')	0.55mm 0.75mm		
COD(Microscope)	0.52mm		
CMOD(Clip gauge)	2.28mm	3.31mm	

Table1 CMOD, COD in two SENB specimens.

Fig.3 CTOA calibration curve.

3.2 ショットピーニング加工と機械的特性

ショットピーニング加工の有無による機械的特性の比較 を Table2 に示す.ショットピーニング加工により発生する 残留応力の強さと密接な関係を持つアークハイト値は、ショ ット材の大きさにほぼ比例して大きくなるが、表面粗さは逆 に粗くなってしまう.また加工によりビッカース硬度はそれ ぞれ上昇する.

	Bead	Archeight	Vickers	Surface
Specimen	diameter	Astrip	hardness	roughness
	[µm]	[mmA]	[100g]	[µm]
Non-P(NP)	—	-	369.9	0.12
Shot A	180	0.113	498.2	2.45
Shot B	363	0.232	545.1	2.60
Shot C	725	0.393	514.3	3.54

Table2 Mechanical properties of specimen.

3.3 疲労試験

疲労試験は8種類の異なる応力振幅を持つ疲労負荷に対し て実施した.また、3種類のショットピーニング 加工を施 した SENB 試験片についても実験を実施した.その結果を Fig.4 に示す.

この結果, 圧縮残留応力の影響によるき裂先端域の鈍化が, き裂の発生を遅延させていることが分かった.

Fig.4 Crack extension versus Number of cycles.

3.3 き裂進展

き裂進展速度 da/dN は疲労サイクルと疲労き裂進展量の データから算出した.また、CTOA の偏差 Δ CTOA は、負荷 時と無負荷時の CTOA の変化を、疲労負荷時の最大および 最小疲労荷重時の CTOA 変化として算出した.両者の関係 を相関するマスターカーブを Fig.5 に示す.

マスターカーブは、SUS316 鋼 SENB 試験片の疲労破壊 特性を顕著に表わし、 Δ CTOA の発生境界が 0.007rad また は 0.4°であること、また、 Δ CTOA が 0.1rad または 5.7°で 最大き裂成長速度が 10⁵m/cycle であることを示す.

4. 結論

SUS316 鋼 SENB 試験片の疲労き裂発生および疲労き裂 進展評価を実験力学的に考察した. 結論は以下の通り. (1) SUS316 ステンレス鋼の疲労き裂成長について, da/ d N-ΔCTOA の関係から Paris 則に類似して評価できる. (2) SUS316 ステンレス鋼の残留応力は, き裂発生サイク ルの増加に効果的であるが, き裂進展速度や CTOA につい てもわずかながら影響を及ぼす.

参考文献

 (1) 伊澤悟, Albert S. Kobayashi: SUS316SENB 試験片の CTOA 解析,日本実験力学会講演論文集 2005 年度年次講演 会,No.5 (2005), 27-30

(2) 野澤勇樹: SUS316SENB 試験片の疲労特性,日本機機械
学会関東支部ブロック合同講演会 2007 さいたま 講演論文
集 135-136