⊷⊷⊷ 報

豪雨時の盛土斜面の崩壊機構に関する遠心力場散水シミュレーション

Centrifuge Model Tests on Failure Mechanism of Embankments due to Heavy Rain

小林 睦(こばやし まこと) 豊田工業高等専門学校講師 環境都市工学科 **廣 岡 明 彦**(ひろおか あきひこ) 九州工業大学大学院工学研究院准教授 建設社会工学研究系

西 垣 見歩子(にしがき みほこ) 豊田工業高等専門学校 環境都市工学科

1. はじめに

我が国では、梅雨や台風襲来期のような豪雨期にしば しば斜面災害が発生している。特に、昨今では、局所的 な豪雨に見舞われる機会が多くなり、時間雨量100 mm を超えるような豪雨の10年間平均発生回数が30年前の 約2倍に達し¹⁾、斜面災害の危険は増すばかりである。 平成13年に施行された「土砂災害警戒区域等における 土砂災害防止対策の推進に関する法律」を受けて、各自 治体においては危険区域の選定等、土砂災害危険箇所マ ップの作成に取り組んでいるところであり、我々研究者 においても、ハザードマップの有効活用に資する研究成 果の社会還元が急務であると指摘されている²¹。

ところで、降雨パターンは、盛土内に浸透流が発生す るタイプ(継続型)と表層の飽和度が上昇するタイプ (衝撃型)に分類され³⁾、筆者らは、前者についてジオ テキスタイル補強盛土の崩壊メカニズムを調べるための 一連の遠心模型実験を実施してきた⁴⁾。

遠心模型実験では、小型模型においても土の自重効果 を適切に再現でき、現象の発展過程の観察が容易である ことから、災害発生メカニズムの解明に関しては有効な ツールであるといわれている⁵⁾。この種の模型実験の結 果の妥当性は、適切なモデリングにより実施されたか否 かが指標となる。その中でも、透水に関する時間の相似 則においては、重力加速度のN倍の遠心力場において 散水シミュレーションを実施する場合、浸透現象に関す る時間の相似則を考慮して、降雨強度を対象とする実規 模降雨強度のN倍に設定する必要がある^{6),7)}。これに対 して、筆者らは、これらの相似則を考慮するために、間 隙流体の粘性を調節して^{8),9)}、豪雨時におけるジオテキ スタイル補強盛土の安定性を調べてきた¹⁰⁾。

本研究では,降雨強度が盛土の崩壊現象に与える影響 を調べるとともに,盛土の作製時の飽和度を変化させた ところ,降雨浸透現象および変形挙動が異なってきたの で以下に報告する。

2. 遠心模型実験

2.1 間隙流体の粘性

本研究では, 縮尺 1/50の小型模型に50 g の遠心加速 度を付与して散水実験を実施する。そこで, 間隙流体を 水の50倍に増粘するためにメチルセルロースを使用す ることとした。メチルセルロース濃度と透水係数の関係 を求めたところ,水の1/50の透水係数を与えるメチル セルロース濃度が2.25%であることが分かり,一連の遠 心模型実験にはこれを用いることとした。

2.2 遠心力場散水システム

散水実験中の盛土表面の異常な水食を防ぐために,散 水ノズルには,噴霧孔付近で流体に圧搾空気を当てて流 体を微粒化(平均粒子径50μm以下:メーカー公表 値¹¹⁾)させることのできる2流体式ノズルを採用した。 また,図-1に示すように,遠心力載荷装置配管におい て,遠心力載荷中(回転中)に,散水流体が自由落下す ることを防ぐために,内部給水タンクと降雨装置とを連 結するチューブは,一旦シャフトの反対方向に配した。 内部給水タンクには0.04 MPa 程度の圧力をあらかじめ 与えておき,降雨装置との間に設置したソレノイドバル ブの開閉時間をタイマー制御にて調節することで,散水 量をコントロールした。

2.3 実験システム

盛土材料には,豊田市内で採取したまさ土(細粒分混 じり砂:S-F)を用いた。図-2に実験システムを示す。 模型縮尺は1/50であり,実規模斜面高:5m,法面勾 配:45度,締固め度:80%である。本報告においては, 地盤の初期飽和度および降雨強度を幾つか変化させて実 施した降雨散水シミュレーションについて紹介する。

模型地盤を作製するにあたって,所定の含水比に調節

地盤工学会誌, 56--10 (609)

2.4 遠心力場散水シミュレーション

表―1に実験条件を示す。ただし、カッコ内の散水時

図―2 実験システム図

表一1 実験条件

実験コード	飽和度	降雨強度	散水時間
	(%)	(mm/Hr)	(min)
Sr45R30	45	30	60 (50Hr)
Sr45R70	45	70	60 (50Hr)
Sr80R40	80	40	180 (150Hr)

遠心加速度(50G)付与:散水実験前

50時間(60分)経過(表層崩壞開始)

写真-1 散水実験中の盛土の状況(Sr80R40)

100時間(120分)経過(盛土全体の変形)

間は実規模換算値を表す。飽和度80%の実験ケースに おいては、模型地盤作製時に含水比調整のために加水し たところ、材料が団粒化し、これを締め固めると地盤の 随所に局所的にマクロ・ポロシティと呼ばれる間隙の大 きな領域が見られ、不均一な間隙構造が形成された。

作製した模型地盤に50Gの遠心加速度を付与し、散 水実験を実施する。遠心力載荷中は、模型土槽に搭載し た CCD カメラによる映像を受信し、模型地盤の挙動を 観察、記録している。

実験結果および考察 3.

散水シミュレーションの結果、いずれのケースにおい ても盛土表層の異常な水食は観察されなかった。このこ とは, 遠心力場において, 適切な雨滴サイズを表現でき たこと示唆している。写真―1に代表的な実験ケースに おける散水実験中の写真を示す。ここで、模型斜面がゆ がんでいるのは、CCD カメラに広角レンズを搭載して いることによるものである。写真-2には、遠心力載荷 後の崩壊状況(Sr40R70)を示す。図中の■は散水実験 前の盛土形状であり、表層が崩壊した箇所は白塗で示し ている。

3.1 降雨強度の影響

降雨強度の違いが盛土の崩壊挙動に及ぼす影響につい て, Sr45R30および Sr45R70における崩壊挙動を比較 すると,両ケースともに降雨の進行に伴う表層崩壊が観 察された(写真--2)。Sr45R30は,散水開始から,実 規模換算で23分後(実験値:28秒後,以降,時間につ いては実規模換算値を用いることとする)に盛土が表層 崩壊を起こし始めたことが観察された。Sr45R70につい ては受信映像が乱れたため正確な崩壊開始時期は記録で きていないが、Sr45R30よりも若干早く、散水開始から

> 18分までには崩壊が発生してい た。これらのケースにおいて、散 水実験中に観察されたのは表層崩 壊のみであり,盛土内部の顕著な 変形は確認できなかった。このよ うな表層崩壊の発生機構は、極め て表層部の飽和度が上昇すること によるせん断抵抗力の低下と、土 塊重量の増加に起因すると考えら れる。

> 図-3,4にそれぞれ Sr45R30 とSr45R70における散水実験終 了後の模型地盤内の含水比分布を 示す。図中の■は斜面形状を表し ている。含水比測定箇所は、模型 地盤の表層に加えて,表層から2 cm 程度深部である。ここで、初 期間隙比が変化していなければ, 飽和時含水比は w_{sat} = 21.9% であ る。図より盛土表層部においても 完全に飽和していないことから、

報告

図-4 地盤内含水比分布 (Sr45R70)

雨水は盛土内へ浸透するよりも表層部の崩壊土塊ととも に流下していったことが推察される。ここで,降雨強度 が大きくなっているにもかかわらず,崩壊後の盛土表層 部の含水比は必ずしも大きくなっていないことも指摘で きる。

また,降雨強度が崩壊土量に与える影響を比較すると (図-5,6参照),両者に大きな違いは見られない。一 般に,同一の地盤材料においては,含水比が低いとマト リックポテンシャルが高く,浸透性能は高くなることが 知られているが,降雨強度が,地盤へ雨水が浸潤する速

度,すなわち浸潤強度を上回るような豪雨であれば表層 崩壊の危険性を考慮しなければならない。この種の崩壊 現象は降雨直後に発生するために,災害対策事業が完了 していない地域の被害を軽減するには,あらかじめ周辺 住民に災害形態および時期を知らせておき,避難勧告を 待たずに自らで避難行動をとるように心がけてもらうこ とが肝要であろう。

3.2 地盤の初期状態の影響

図一7にSr80R40における散水実験前および50時間 後の盛土形状の比較を示す。これより,Sr45R30におい ては,盛土の表面の土砂が下流に流下していることに対 して,地盤の飽和度が大きく,不均一な間隙を持つ盛土 (実験ケース:Sr80R40)は,降雨の進行に伴って,盛 土内部の飽和度が増加したために,盛土全体が沈下して いることがうかがえる。このケースでは,散水時間50

地盤工学会誌, 56-10 (609)

図-8 変位ベクトル図 (Sr80R30)

時間あたりから,ようやく表層崩壊が観察され始めた。 このように,盛土の初期飽和度の違いおよび間隙の不均 一性によって崩壊挙動が異なってきたのは,降雨の浸透 状況の違いに起因するものであると考えられる。すなわ ち,締固め時の飽和度が異なれば,透水係数は場合によ って100倍も異なっていることが指摘されているよう に¹²⁾, Sr80R40においては,マクロ・ポロシティに起因 して地盤の透水能力が高くなったことが考えられる。

散水時間150時間における盛土の変位ベクトル図 (Sr80R40)は図-8のとおりである。図中の■は盛土 の初期形状である。これより、盛土内部にせん断変形を 起こしている領域を確認することができる。このケース においては、雨水浸透による飽和度の上昇に加えて、盛 土内に浸透流が発生したために、このことによるせん断 抵抗力の低下と土塊重量の増加によって盛土の安定性が 低下したことが推察される。

このように、豪雨時においては、盛土築造時の飽和度 の違いにかかわらず表層崩壊が発生するが、その発生時 期や盛土の変形挙動に大きな違いが見られた。初期飽和 度が小さい場合は、降雨開始から直ちに表層崩壊が発生 することに対して、締固め時の飽和度によって地盤の透 水能力が大きくなると、豪雨時においても雨水が地盤内 へ浸透するために、やがて浸透流が発生し、斜面全体の 安定性が低下することが分かった。このように同一の地 盤材料においても締固め施工時の飽和度によっては豪雨 時の盛土の変形・崩壊挙動は異なるために、土砂災害ハ ザードマップを作成する際には適切な地盤調査が求めら れる。

4. おわりに

本研究においては,豪雨時の斜面崩壊機構を調べるこ とを目的として,浸透現象を適切に再現するために間隙 流体に粘性流体を用いた遠心力場散水シミュレーション を実施した。その結果,透水能力が高いはずの乾燥地盤 においても,豪雨時には斜面のごく表層部の飽和度が上 昇し,降雨開始後の早い時期に盛土表層部での崩壊が観 察された。一方,同じ土質材料を用いた盛土においても 締固め施工時の飽和度により,マクロ・ポロシティが形 成される場合もあり,このとき雨水は表層から地盤内へ 浸透し,やがて盛土内には浸透流が発生して,斜面全体 の変形が観察された。

最後に,防災・減災のためには一般市民レベルの防災 教育も重要であり,そのツールとして視覚的に災害の発 生過程を知ることのできるこの種の模型実験は有用であ るといえる。本報告における一連の模型実験では,災害 発生メカニズムを完全に解明したとはいい難い。しかし ながら,一般市民に対する防災教育におけるツールとし ての道筋が示せたことから,速報的に紹介させていただ いた。

謝辞:本研究は,科研費(課題番号:19760332)の助 成を受けて行ったものである。ここに感謝の意を表しま す。

参考文献

- 1) 国土交通省:自然災害の頻発,国土交通白書, pp. 3~ 19, 2006.
- 中筋章人:なぜ「土砂災害ハザードマップ」はできないのか,応用地質,第46巻,第5号,pp.250~255,2005.
- 山本美博・大南正克・館山 勝・村石 尚:盛土のり面 保護工の評価に関する研究,土質工学研究発表会,pp. 1811~1814,1994.
- 4) 小林 睦・廣岡明彦・永瀬英生・清水恵助・藤原浩幸: 浸透流を受ける補強盛土の崩壊機構について,応用力学 論文集, Vol. 3, pp. 405~414, 2000.
- 5) 岡村未対・竹村次朗・上野勝利:講座 遠心模型実験一 実験技術と実務への適用一 2.遠心模型の相似則,実験 技術一利点と限界,土と基礎, Vol. 52, No. 10, pp. 37~ 44, 2004.
- T. Kimura, J. Takemura, N. Suemasa & A. Hiro-oka: Failure of fills due to rain fall, Centrifuge 91, Balkema, pp. 509~516, 1991.
- 7) 伊藤直幸・手島昴一郎・片田敏行・末政直晃・玉手 聡:遠心場降雨実験による斜面表層崩壊シミュレーショ ン,第42回地盤工学研究発表会,pp.1977~1978, 2007.
- R. Butterfield: Scale-modeling of fluid flow in geotechnical centrifuge, Soils and Foundations, Vol. 40, No. 6, pp. 39~45, 2000.
- 9) 小林 睦・廣岡明彦・永瀬英生・清水恵助・片山 亮・ 織掛晴広:法先排水工とジオテキスタイル補強工が盛土 の降雨時安定性に及ぼす影響について、土木構造・材料 論文集、第17号、pp. 97~104, 2001.
- 10) 片山 亮・廣岡明彦・清水恵助・永瀬英生・小林 睦・ 大原幹雄:豪雨時におけるジオテキスタイル補強盛土の 安定性に関する遠心模型実験,第37回地盤工学研究発表 会,pp.2189~2190,2002.
- 71) 霧のいけうち: 微霧発生ノズル BIM シリーズ/小噴量 形,二流体ノズル製品カタログ, pp. 17~18.
- 12) 不飽和地盤の挙動と評価編集員会:締固め土の解釈,不 飽和土の挙動と評価, pp. 143~147, 2004.

(原稿受理 2008.4.9)

37