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DEFORMATION ANALYSIS AND BEARING CAPACITY
OF A TWO-LAYERED SOIL DEPOSIT WITH A SURFACE CRUST
CONSIDERING COUPLE STRESSES

AKIRA MURAKAME), MAsaTO Fukur) and TAKASHI HASEGAWATD

ABSTRACT

This paper provides a numerical analysis of the bearing capacity of a two-layered soil deposit: a crust on saturated
soft clay. The surface crust is modeled as a Cosserat medium, considering couple stresses for the bending deforma-
tion, and the underlying clay layer is treated as an elasto-plastic material. The formulation of the Cosserat-FE for the
two phase media is presented briefly, and a numerical comparison between the Cosserat and an ordinary continuum,
for the example of a simple beam, demonstrates the effect of couple stresses. Asaoka’s method allows us to predict the
bearing capacity of such two-layered deposits by considering the settlement or horizontal deformation beneath the em-

bankment. The numerical results are then discussed.
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INTRODUCTION

A surface crust often forms on soft clay and its exist-
ence may have an important impact on the bearing

capacity of two-layered deposits. Several researchers.

have investigated this subject experimentally (Brown and
Meyerhof, 1969) and numerically (Button, 1953; Reddy
and Srinivasan, 1967; Purushothamaraj et al., 1974,
Takemura, 1993). They have provided an upper bound
solution for the value of the bearing capacity.

From an analytical viewpoint, some difficulties can be
pointed out in the adoption of a failure mechanism, in-
cluding a certain thickness of the surface crust. We are
also confronted with lacking much potential for an FE
modeling of the surface crust in the framework of an or-
dinary continuum. A very large value must be adopted
for the elastic modulus in the modeling.

In order to overcome these difficulties, a Cosserat con-
tinuum is introduced herein to model the surface crust by
considering couple stresses. The consideration of couple
stresses can provide a bending effect for the layer as a
beam.

An increased interest in the use of a Cosserat continu-
um (Cosserat, E. and F., 1909) has been shown. It takes
into account the so-called couple stresses for analyzing
localization and bifurcation problems (for example, see
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Miihlhaus, 1986, 1987a, 1987b; de Borst, 1991a, 1991b;
and Tejchman, 1989, 1992). In applying such a continu-
um to various problems in the field of geomechanics, it is
necessary to find an appropriate example where couple
stresses play an important role. Considerations of couple
stresses for a layer, for example, can provide the bending
effect as a beam. Such a bending effect on the deforma-
tional behavior and the bearing capacity of a layered soil
deposit is reviewed and discussed.

To begin with, the formulation of FEM for a soil-
water mixture is derived. Its numerical performance will
be examined through a comparison with the exact solu-
tion for the problem of an infinite shear layer. The
influence of the couple stresses on the deformation and
pore pressure behavior will then be pointed out.

A numerical profile of the deformation in the problem
of a simple beam is also examined through a comparison
with a solution based on an ordinary continuum, and the
influence of couple stresses on the deformation is dis-
cussed. The bearing capacity of a layered deposit and the
effect of couple stresses on that of a layered deposit with
a surface crust is discussed.

In what follows, second section refers to the formula-
tion of the finite elements based on Cosserat media for a
soil-water mixture. Third section demonstrates a numeri-
cal solution comparing a closed solution, in the case of

Associate Professor, Department of Agricultural Engineering, Kyoto University, Kyoto 606-01.

Professor, Department of Agricultural Engineering, Kyoto University, Kyoto 606-01.

Written discussions on this paper should be submitted before April 1, 1997 to the Japanese Geotechnical Society, Sugayama Bldg. 4 F,
Kanda Awaji-cho 2-23, Chiyoda-ku, Tokyo 101, Japan. Upon request the closing date may be extended one month.

133

NI | -El ectronic Library Service



The Japanese Geot echni cal

Soci ety

134 MURAKAMI ET AL.

an infinite shear layer, and points out the bending effect,
in the case of a simple beam, based on the consideration
of couple stresses. In the fourth section, the procedure
proposed by Asaoka and Ohtsuka (1986) for estimating
the undrained bearing capacity by observing the deterio-
ration of the stiffness factor is presented. Fifth section
provides an estimate of the bearing capacity of a two-
layered deposit by the strategy presented in the preceding
sections. Finally, the last section concludes with the
results.

FORMULATION OF FINITE ELEMENTS BASED
ON COSSERAT MEDIA FOR A SOIL-WATER
MIXTURE

This section refers to the finite element formulation.
Figure 1 describes a set of governing equations to be
solved under the boundary conditions shown in Fig. 2.

By integrating both Egs. (1) and (3), multiplied by an
arbitrary function, which is prescribed to be zero on the
geometric boundary, over volume ¥V, and by adopting
the Gauss theorem, we obtain a weak form of the
equilibrium equation based on the boundary conditions,
as seen in Fig. 3(a).

On the other hand, the continuity equation for pore
water is discretized in the same manner as that proposed
by Akai and Tamura (1978). The resultant equation is
shown in Fig. 3(b).

As a result, we summarize the flow of the coupled FE
formulation of the Cosserat media in Fig. 4. The pro-
gram, DACSAR, was developed by lizuka and Ohta
(1987) and is herein extended to perform the above
strategy. The revised program therefore has common fea-
tures with DACSAR in its numerical schemes.

Balance equation of momentum

o5 +bi=0 inV, (1)

Principle of effective stress

oij = ol; + pubij, (2)

Balance equation of angular momentum

mij; + Vi — eijrojr =0 iV, 3)

Kinematics
i = uiy + eiikdh  Kij = 655 4)

Constitutive equations

ai; = Dijriers, mij = ulZeis, (5)
Continuity condition
Ekk = Vi, (6)
Darcy’s law
v = ~khi, h=pe/ret [©)
Initial conditions
oy =0kl MV, h=hjmo nV, (8)

where o;;: Cauchy stress tensor, of;: effective stress tensor, b;: body force, p,: pore
water pressure, 6;;: Kronecker's delta, 7ni;: couple stress tensor, v;: body couple,
e;;5: permutation symbol, ;;: strain temsor, ¢§: Cosserat rotation, q;: curvature,
e Cosserat shear modulus, Djji: elastic moduli, l,: characteristic length, 7, unit
weight of water, k: permeability, h: total head, Q: head, n;: normal vector.

Fig. 1. Governing equations

Stress boundary
oyni =1 on S, CS
min; =1; on S, CS
Soil
Geometric boundary
u; = U on S, CS
gi=¢f on SyCS
Head boundary
h=nh on S5,CS
Water
Velocity boundary
v = T on S,CS

So’+su:Snl+S¢=S/x+Su:S

Fig. 2. Boundary conditions

NUMERICAL PERFORMANCE

To check the performance of the procedure described
in the preceding section, the example of an infinite shear
layer as described in the reference (Choi and Miuhlhaus,
1991) is initially analyzed. A description of the problem
is found in Fig. 5. For this problem, we have an exact so-
lution and a numerical solution by FEM that can be com-
pared.

Problem-1: Infinite Shear Layer

We deal with the case of an infinite shear layer
represented in Fig. 5 where a shear layer is treated as an
elastic solid (Murakami and Oda, 1992). At the boundary
of lx;| =h/2, it is assumed that ¢;=0 to suppress grain
rotations and that traction &, acts on the boundary
surface. We have an exact solution for this problem
(Schaefer, 1962) and in Fig. 6 details of the solution
procedure according to Schaefer (1962) are shown. This
solution, however, is only for solids and pore water is not
considered in this example.

Dealing with the case of horizontal infinity, it is
sufficient for us to incorporate a one-dimensional
differentiation into the equation. Therefore, a set of
governing equations is reduced to a set of ordinary
differential equations, as seen in Fig. 6, after substituting
the constitutive relation into the balance equations. This
set of equations can easily be solved under the boundary
conditions and we obtain the solution for deformations
and stresses in the same figure.

Figure 7 compares numerical deformations by FEM
with theoretical ones based on the above equations.
Figure 8 also describes a comparison between numerical
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Balance equation of momentum Balance equation of angular momentum Equation of equilibrium  o%; ; + pyi+bi =0
0%+ Pui+ b =0 Myt vi = eroge =10
Balance equation of my; i+ v~ er o =0
X bu; X 6¢; angular momentum —
/v 8u; (0,5 + pw,i + fi)dV + ./v 8i(mjj +vi—eijrop)dV =0 Coustitutive equation o = Dy ey
mij = ulf Kij
the Gauss theorem g
Kinematics Eij = U;,j + eijk Pf :g
Weak form —— Ki; = ¢¢ . 3
" hd 1) =
J, olibeydV + [ misxidV + [, pubewdv 3 D 1 — 3
5 = ° arcy’s law v = —kijh ;
= [, bbwidV + [ vibpidV + [ EbuidS+ [ Fib64idS ;‘a: I
bz 1 Virtual value L Continuity of pore water &, = v;;
Shape function Al Apy Head Backward difference Weak form
Aw=NAu ) e = % +8 Aey = €y 1ear — &t /v ojibei; dV + /Vm,-,-ﬁx,, dv + prtfskk v
=-At ki}'vzh\ (+AL = /V b; bu; dV + /v v; 6 AV + /S, t; bu; dS
«T T . T N _ .\ _ _ = f b
Su {( /,B™DB dv) Aut+ ( J, BIN, dv) (rwh*|eear = Twh ™)) AF} =0 e PR— + [Sm 7 6¢:dS
where h=pu/re+0
Jo, N7 tas N, o
Ah=N,AR* , AF = /" NT#as | N = o N Spatial discretization
Sm m m
. B Aut Shape function A u=NAv*
Ae = BAu’, IAE" = Seou u* : Nodal displacement
KAw 4 Koy b ya = OF + Koy by, [, BoAW AV e par — Donpuhl s =0 | | KAU Kl
" =AF+ Ky by
where | T
K=[BDBav, K,= [ BN,V . !
*: Nodal displacement K K, Aut AF + Koy,
u da. 1 ac! =
. P K? A '7wh"|t+m Ag+(1— g)A"/wh‘]z
h*: head in element
( a) Fig. 4. Formulation of coupled FE
1Strain Darcy’s law Continuity of water
2
€ = 5 (uij+uj) vi=—kih; €y = Ui ’ _
012
| - $3=0
1 . :
Aeij=§(Aui,j+Auj,,-) ' /;/EvdVZ/SUinz’dS 7
- , L A2
Governing equation of pore water
J,&dV ==k [[h;nidS @
Shape function Backward difference
h/2
Awe NAu f,BevdV = =Atki; [ hjjepanidS
I / / /L
Spatial discretization Spatial discretization of pore water flow $3=20
of volumetric strain 12 3
Ae, = B,Au* At k'ij -/S h,j[H—At n; dS
_ Aty B eeae = Wit b, Fig. 5. Description of the problem
n lr,.
h* — h
ba, + ALY kyy ( 'HAtl‘ nH+At) b,
hy - Zy " stresses by FEM and theoretical ones. There is an excel-
=Y, AL T 2, OnYwllyj14A .
__ u AL T T Tualtent lent agreement between the analytical and the FEM
" h, & X X results, as seen in these figures.
a= At (Zkulﬂ-l— kaz’")
y n ‘T n Yn .
" b " Problem-2: Simple Beam
= O 2 .
a  om=AOt (’“ i, T ly"> In order to demonstrate the present formulation,
another typical example is solved. As carried out by Oka,
1 t Yashima and Hirata (1994), a simple beam loaded at the
} ]VB,,Au* AV + b’ = 2 onohijerar = 0 center is analyzed to capture the bending effect of an elas-
tic Cosserat material. For this problem, we have a numeri-
(b) cal solution which does not consider couple stresses and a
Fig. 3. Discretization of soil skeleton and pore water flow solution by the current FE which can be compared to
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Balance equation of momentum Balance equation of angular momentum
o +bi=0 myjj+ Vi — eijpojr =0
(wi, #3) is Constitutive (ui, ¢3) is Constitutive
independent on z equation independent on 2 equation
plt_ o gl ldu
dx} 3= 28 da 2 day
where where
1 1\D 8% = D/dp.

f=|-+= —,D:/,tlf
Boope) 4

Boundary condition

g1z : Traction at the boundary

Solution of stresses

2u¢  cosh ay/6
K+ pe cosh hf26

Oy — 013 =012

2pc  sinh 29/6

mgy =19 6
s ® 1+ pie cosh h/26

$3=0 at |agf=h/2
Solution of deformations
te  sinh 29/6
up=—lay— 6 — ———
I 1+ e cosh h/26
¢3=_é12 1 cosh 23/6
21 cosh h/26

Fig. 6. Solution procedure

Z9
= k=0
A=2u
M= e
l/h=1
l.=6
Al
¢
Rotation
-1x107° ~1.5x107

0 -5x107*

Non-dimensional depth (502 / h)
<}
W

=)
Non—dimen:\ional depth (.7)2 / h)

Clos

O FE-solution

----- Closed solution (Rotation)

ed solution (Displacement)

| s 1 L

0 ——? . L . I . I
0

4x107 6x107

Non-dimensional displacement

Fig. 7. Comparison of deformations

x
S =0
A=2u
B= He
l/h=1
m1 l.=§6
¢
Non-dimensional couple stress
0 0.5 1
T T T T T T
1L
o] FE-solution
~~ Closed solution (Stress) —_
i M----- Closed solution (Couple stress) S
Al [
£ &
= O/l g
o r ; =}
3 i / 3
= I m3z / T126 S =
£ , =
'E /, .2
@ 05 [o} 5@
g / g
£ E
Tl / 3
= / =
2 B /$j — Zo
i /(02 —012) /012
I
,/
or I ! I ! r | L 1 1 1 1
0 0.5 1
Non-dimensional stress
Fig. 8. Comparison of stresses
Table 1. Parameters adopted in the Problem-2
4 (kPa) -u (kPa) v I, (m)
Cosserat 9800 2450 0.4 1.0
Classical 9800 2450 0.4 0.0

that one. Material properties for both cases are listed in

Table 1.

In Fig. 9, the deformed meshes for cases of (a) ordi-
nary continuum (without considering couple stresses)
and (b) Cosserat continuum (considering couple stresses)
are presented. As shown in Fig. 9, the profiles of defor-
mation are quite different from each other. As expected,
displacements in the case of the Cosserat continuum
have smaller values than those in the case of an ordinary
continuum, and therefore, will transfer a lighter load to-
ward the subsurface.

BEARING CAPACITY OF A TWO-LAYERED

DEPOSIT

It is assumed that a crust layer exists which has a great-
er strength than that of the underlying saturated soil
deposit. In such a case, the crust behaves like a beam and
may influence the undrained bearing capacity of the en-
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(b)

Deformed profile for simple beam

00 18 30 yign

Fig. 9.

tire deposit. Several researchers have provided solutions
for the undrained bearing capacity of soft clay deposits
with a surface crust both numerically (Button, 1953;
Reddy and Srinivasan, 1967; Purushothamaraj et al.,
1974; Takemura, 1993) and experimentally (Brown and
Meyerhof, 1969).

The strategy adopted herein is as follows:

(i) The influence of a surface crust on the undrained
bearing capacity of an entire soil deposit is evaluated by
considering the surface crust as a Cosserat material
which behaves like a beam on a soft foundation.

(ii) The undrained bearing capacity of an entire

137

deposit is estimated through the method proposed by
Asaoka and Ohtsuka (1986). It involves monitoring the
deterioration of the tangential stiffness factor of the foun-
dation based on the settlement under the embankment or
the horizontal deformation below the toe of the embank-
ment. Asaoka and Ohtsuka introduced the stiffness fac-
tor of clay foundation in terms of effective stresses from
which the definition of total failure of clay foundation is
made (Asaoka and Ohtsuka, 1986). They proposed a
procedure to predict the ultimate load intensity from ob-
servations of elasto-plastic consolidation behavior in the
early loading stages. They identified the deterioration of
the tangential stiffness factors of the clay foundation, K,
K;, and estimated the bearing capacity of clay founda-
tion by extrapolating the deterioration curve. A proce-
dure of prediction, for example, is shown in Fig. 10.

NUMERICAL ANALYSIS AND DISCUSSION

Hypothetical Soil Deposit

To illustrate the analysis discussed above, the example
problem shown in Fig. 11 is solved. It deals with the be-
havior of the deformation and the pore water pressure of
a saturated soil deposit, which has a surface crust or sur-
face sand, under the external action of continuous em-
bankment loading, and it compares the undrained bear-

¢

T

Crust/Sand (k= 9.0 x 10~%m/s)

Clay (k=1.0x10"*m/s)

i

121m

Fig. 11. Two-layered soil deposit

O o I
10 10 |
E 3 =K, £ i |
zZ z L .
z % I
o o |
0 1 0 1 | 1
6.5 50 l 100
§ (m) 19 (kN/m?)
100
£ |
| 9=4t¢ [
i - = !
! (horizontal H=16 Z 50 |
| displacement) " - N
! w |ag=72kN/m?
| B/2=12m = X
[ N
t .

50 100

q (kN/m?)

Fig. 10. Prediction procedure for bearing capacity of saturated soil deposit (Asaoka and Ohtsuka, 1986)
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Table 2. Parameters adopted in the numerical analysis

A (kPa) u(kPa) D r M v l. (m)
1 9800 2450  — — — 0.4 3.0
II 9800 2450 - — — 0.4 0.0
III 1900 950 0.02 0.7 1.4 0.333 —

I: Crust, II: Sand, III: Clay

ing capacities among them. Table 2 lists the set of
parameters adopted in the analysis of this hypothetical
ground.

In this example, a comparative analysis is performed
for the following two cases: 1) a surface layer is consid-
ered as a sand which is modeled by an elastic material
without considering couple stresses; 2) a surface layer is
treated as a crust which complies with an elastic Cosserat
material characterized by the characteristic length as the
thickness of the layer.

In the case of the layered material, Miihlhaus (Miihl-
haus, 1992) stated that the Cosserat theory can be used to
model the influence of the bending stiffness for each layer
on the material response by introducing the internal
length of the layer thickness; the bending stiffness, Bs, is
defined as B,=GI? seen in Mindlin (Mindlin, 1963). A
layered material is modeled as a conventional orthotrop-
ic continuum only when the layer thickness is zero.
However, the characteristic length can hardly be deter-
mined in general and the effect of couples stress becomes
to be negligibly small in this example, if ds, is adopted as
the characteristic length.

The subsoil is a soft clay foundation modeled by
Sekiguchi-Ohta’s constitutive equation. After obtaining
FE solutions for both cases, we point out the bending
effect on the lateral deformation below the toe of the em-
bankment. This is done by comparing the responses of
different materials where the settlements under the em-
bankment are similar to each other.

Undrained Bearing Capacity of a Two-Layered Deposit

The thickness of a crust, [,=H, is assumed to vary with
the width of the embankment, B. Figure 12 compares
each deformation profile based on different modeling of
a surface layer. Figure 13 depicts a profile of the deterio-
ration of the tangential stiffness factors, K,, of the entire
foundation by monitoring the settlement beneath the em-
bankment. Figure 13 also describes the estimation of un-

//‘ &
.4?" ,/i’/
7
o
——— Crust 00 1.0 20 g0
————— Sand
Fig. 12. Deformation profiles based on different modeling of surface
layer

drained bearing capacity based on different modeling of
a surface layer. In this figure, it can be seen that the soil
deposit with a stiff surface carries a higher capacity
against surface load within a range of smaller value of
H/B. When the thickness of a surface layer shrinks, esti-
mated bearing capacity based on both modeling cor-
responds to each other. It reveals that the crust layer pro-
vides a higher bearing capacity than the surface sand lay-
er for the case of lateral displacement observations. This
is due to its flexural deformation profile.

Figure 14 summarizes an estimated curve for the bear-
ing capacity based on the relative thickness of the layer,
H/ B, obtained by Asaoka-Ohtsuka’s procedure. It can
be seen that the estimated bearing capacity decreases
when the width of the embankment, B, increases or the
thickness of the crust, H, decreases. It should also be
pointed out that the estimated bearing capacity, when

800
700 1
: &~ Sand
600 r
é; O0—0 Crust
£ 500 ¢
=
.§ 400 |
300 | 807(kN/m?)
. 1075(kN/m?)
200 N
100 N A
0 : . . N \,\\ , \
0 200 400 600 800 1000 1200
qu(kN/mz)
Fig. 13. Deterioration of tangential stiffness factors
1500
O Crust
A Sand
|
& F i
I
£ L
2 .
= 1000 :
S |
L A
|
L 1
!
L ! |
I i
|
5001 | a
| !
~ ! !
| |
I |
0 ! el L r|111!|l
0.1 0.5 1 2 3 5

Fig. 14. Estimated bearing capacity
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modeled as a Cosserat beam, is quite a bit larger than
that based on an ordinary continuum for a smaller value
of H/B. Estimated bearing capacities by both modeling
are almost the same when H/ B has a larger value as seen
in Fig. 14.

CONCLUSIONS

The analysis of a two-layered ground, under the em-
bankment-like loading presented above, can provide an
estimate of the undrained bearing capacity of a saturated
soil deposit below a surface crust. These calculations re-
quire two steps: a deformation analysis of the layered
deposit by FEM incorporating a Cosserat beam and an es-
timation of the bearing capacity by observing the deterio-
ration of the stiffness factor of the entire foundation. It
has been shown that the bending effect of a stiff layer,
i.e., a surface crust, has a significant influence on the un-
drained bearing capacity of a two-layered saturated
deposit. The numerical results indicate that the estimated
value of the undrained bearing capacity of such a deposit
is related to the relative thickness of the layer, H/B. The
use of such modeling may produce accurate estimates of
the effect of a stiff layer within a surface on the bearing
capacity of an overall soil stratum.
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