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A MODEL FOR CLAY USING MODIFIED STRESS
UNDER VARIOUS LOADING CONDITIONS
WITH THE APPLICATION OF SUBLOADING CONCEPT
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MaAsAYUKI TAWADAID and SHOTARO YAMADAIY

ABSTRACT

In the conventional approach of elastoplastic modeling, using the invariants of ordinary stresses and strain incre-
ments can not properly consider the effect of intermediate principal stress on the strength and dilatancy of soils. A
previously introduced modeling approach using modified stress (#;;) can express the strength and dilatancy behavior of
normally consolidated clay under generalized three-dimensional stress conditions. It has been verified that this
modified stress approach closely simulates soil behavior under monotonic loading conditions. To express stress in-
duced anisotropy, a kinematic hardening (in the stress ratio space) model for clay using modified stress has been
proposed, which over predicts volumetric strain and does not show stabilization of strain during cyclic loading. To rec-
tify those problems the evolution rule of the rotational variable has been modified and a subloading surface has been
introduced in the model proposed in this paper. The applicability of the proposed model on normally or overconsoli-
dated clay under monotonic or cyclic loading conditions is verified using triaxial, true triaxial and torsional shear
tests.
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cipal values (a;;) as follows:

aij = Qim an a’\mn (2)

INTRODUCTION

Conventional elastoplastic models use the invariants

of ordinary stress tensor (o) as stress parameters, for ex-
ample, p and q or g, and 7, (Roscoe et al., 1963, 1968)
where p is the mean and g is the deviator stress respec-
tively, and g, and 7, are the normal and shearing stress-
es on the octahedral plane. Use of these stress-parameters
leads to the extended Mises strength criterion, which
gives very high strength under triaxial extension and true
triaxial stress conditions. Nakai and Mihara (1984)
proposed a modified stress tensor (¢;), which is a non-
linear function of ordinary stress tensor (g;;) and its in-
variants. Equations (1)-(4) show how the modified stress
tensor (#;) can be obtained from an ordinary stress ten-
sor. Here, it is noted that the principal directions of
modified stresses are coaxial with the principal directions
of ordinary stresses.

1ij =ik Ok; 1)

In the above equation, a; is a dimensionless symmetric
tensor obtained by reverse transformation from its prin-

where, Qy; is an orthogonal transformation that trans-
forms ordinary stresses (g;;) to their principal values (;).

&ij= Qmi an Omn (3)

The principal values of a;; are given by the following equa-
tion, which are also the direction cosines of the ‘Spatial
Mobilized Plane (SMP)’ (Matsuoka and Nakai, 1974;
Nakai and Matsuoka 1983).

ay;=vL/(La6y) if, i=j

&ij=0

C))
else
After forming the modified stress tensor (#;), the scalars
that represent the normal (#y) and the parallel (£5) compo-
nents of stresses to the ‘“SMP’ are given by the Egs. (5),
(6). The stress ratio tensor x; and scalar stress ratio are
given by Egs. (7) and (8) respectively (Nakai et al.,
1989(b), 1991, 1993).

In= tij a;j (5)
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te= A (ti—Inay)(ly—In ;) © will be presenting in the next section will also use a
5 T NG IN T similar description of anisotropy only its evolution rule is
xy=(ty—tnay)/ tn (7)  slightly different. In Eq. (12), ny; is the tensor that deter-
X=ts/tn= Vx;x; (8) mines the position of the central axis of the yield surface

Use of the stress parameters ¢y and 75 leads to Matsuoka-
Nakai strength criterion (Matsuoka and Nakai, 1974,
1977) as in Eq. (9), which circumscribes the Mobhr-
Coulomb pyramid and gives strength close to the ob-
served ones.

X=constant or I,I,/L,=constant 9

In the above equations All, L, and I; are the first, second
and the third invariants of the ordinary stress tensor (g;;).

Since the principal directions of the modified stress #;
and according to classical plasticity theory, principal
directions of the plastic strain increments coincide with
the principal directions of ordinary stresses, strain incre-
ment components conjugate to the stresses £y and s are
given by the following two equations respectively.

d&'gMp:d&‘jaij (10)
d}’?MP: \/(dgij_da;MPaij)(deij—dgngPaij) (11)

Using the above mentioned stress and strain increment
parameters, isotropic hardening clay and sand models
have been proposed and verified by many triaxial and
true triaxial tests (Nakai et al., 1984, 1986(a), 1986(b);
Nakai, 1989(a)). These models were too simple and were
not intended to express inherent or stress induced
anisotropy of soils during cyclic loading.

Kinematic hardening models are usually used to simu-
late the behavior of stress induced anisotropy during
cyclic loading. Generally, in the kinematic hardening
models, it is assumed that the yield surface translates in
the stress-space. The amount of translation of the origin
of the yield surface relative to the origin of the stress-
space is expressed by a tensor that possesses the dimen-
sion of stress and is known as back-stress. On the other
hand, a few kinematic models allow the yield surface
only to rotate in the stress-space by fixing the origin of
the yield surface at the origin of the stress-space. The ro-
tation of the yield surface can be viewed as the transla-
tion of the center of the yield surface on a deviator plane
and can be expressed by a dimensionless tensor as the
stress ratio tensor. The dimensionless tensor that express-
es the center of the yield surface relative to the center of
isotropic yield surface is called back-stress-ratio (Nakai
et al. 1989(b), 1991, 1993).

Sekiguchi and Otha (1977) introduced anisotropy due
to anisotropic consolidation in their model by allowing
the yield surface to rotate a certain amount in the stress
space. But they did not allow the yield surface to rotate
further during shear. On the other hand Nakai et al.
(1989(b), 1991, 1993) and Chowdhury and Nakai (1997)
proposed models by allowing the yield surface to rotate
continuously during loading process around the origin of
the modified stress space to express the stress induced
anisotropy during shear. They also formulated evolution
rules for the central axis of the yield surface. The model

in the stress ratio space (x;;). Nakai called tensor n; the
back stress ratio tensor. Hashiguchi and Chen (1998) on
the other hand linked n;; with hardening and called it the
rotational hardening variable.

Xy=x,—n; (12)
X*=xix} 13)
n=«n;n; (14)

The original kinematic #;-clay (Nakai and Hoshikawa,
1991), more strictly a rotational model, did not link n;
with hardening. Thus, the predicted volumetric strains
were too high under cyclic loading. Also, it has been as-
sumed that the interior of the yield surface is completely
elastic as the conventional model. Thus, a smooth transi-
tion from elastic to elastic-fully-plastic state could not be
obtained. In this paper #; is linked with hardening and a
subloading surface is assumed for the smooth transition
from elastic to elastic-fully-plastic state as the subloading
surface model (Hashiguchi and Chen, 1998; Hashiguchi,
1980). In the next section we will formulate a model using
the modified stress and strain increment parameters de-
scribed in this section.

SUBLOADING AND ROTATIONAL HARDENING
MODEL BASED ON THE ¢;

First of all we will define two yield surfaces named nor-
mal yield surface and subloading surface (Hashiguchi
and Chen, 1998; Hashiguchi, 1980). In the conventional
models the yield surface defines the region in which stress
changes cause a completely elastic response and it
remains stationary during elastic stress changes. But the
interior of the normal yield surface is not completely elas-
tic; elastoplastic response can be obtained due to loading
within the normal yield surface but plastic strains are
smaller in magnitude than the elastic-fully-plastic state.
When the stress condition lies on the normal yield sur-
face, an elastic-fully-plastic response is mobilized during
loading. On the other hand the subloading surface al-
ways expands or contracts such that the current stress
point lies on it but can never go beyond the normal yield
surface. An elastic-fully-plastic response is obtained due
to loading when the subloading surface coincides with
the normal yield surface. Hashiguchi and Chen (1998) as-
sumed that both the normal yield surface and the sub-
loading surface translate and rotate in the stress space
keeping similarity in their shapes. On the other hand,
Asaoka et al. (1997) applied the subloading concept in
the Cam clay model. But, they did not allow rotation or
translation of the yield surfaces. We will assume that
both the normal yield surface and the subloading surface
pass through the origin and rotate, but do not translate
in the modified stress space such that their central axes al-
ways coincide with each other. Both the yield surfaces al-
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Fig. 1. Plane view of normal yield surface and subloading surface

ways keep similarity in their shapes.

Figure 1 is a simplified two-dimensional representation
of a normal yield surface and a subloading surface. The
similarity center of the yield surfaces always lie at the ori-
gin. Since, both of them pass through the origin, their
central axes are coincident and are similar in shape. Ac-
cording to the definition of the similarity center, a
straight line from the similarity center in any direction in-
tersects both the surfaces at their conjugate points. In
this figure current stress condition is at #(Zy, ¢s) and its
conjugate stress condition on the normal yield surface is
t(fn, ts). Actually, we would never calculate a point on
the normal yield surface, which is conjugate to the cur-
rent stress. This is because, we only need to know the size
of the normal yield surface, which will be given in a few
moments.

Let the following function give the general shape of
the normal yield surface.

f=Inty+¢(X*)~Int5=0 15)

In the above equation a superposed bar (‘—’) indicates
stress conditions on the normal yield surface. On the
other hand, stress conditions on the subloading surface
(and the current stress condition) is given without a super-
posed bar. In Eq. (15), {(X*) is a monotonically increas-
ing function of stress ratio, which will be defined explicit-
ly in a later section. 77 is the size of the normal yield
surface (Fig. 1) which is linked with the isotropic harden-
ing variable &% (plastic volumetric strain) by assuming a
linear relationship between &5 vs. In #y as in the following
equation.

p
16
c— Ce> (16)
where #3%, is the initial size of the normal yield surface,
Ci=A/(1+e) and C.=k/(1+e,) are soil parameters.
The compression and swelling indices on an e vs In p plot
are denoted as A and k respectively and e, is the reference
void ratio.
The subloading surface is given by a similar function
as the normal yield surface (Eq. (15)) as follows

FE=Tto exp (

S=Inty+{(X*)—In tf= 17)

If the ratio of the sizes between the subloading surface
and the normal yield surface is denoted by G (0=G< 1),
then the following relations hold:

=Gt}
tN=GfN
tS=G;s
X* =X_'*
Equation (17) can be rewritten using Eqgs. (16), (18) as
follows:

(18)

P

- &€y
S=In ty+{(X*)—In G—In t;’Go—C =0.

t e

19)

The differential form of the above equation is given by
Eq. (20), which can be used as a consistency condition
for the subloading surface by formulating proper evolu-
tion rules for n; and G.
af a f dG d&b
d ———"dO'i' d”l,“———'

/= g, ' ony ' G C—C,
It is assumed that the total strain increment is given by
the following equation.

de;= (21)

The elastic constitutive equation follows the generalized
Hooke’s law for isotropic material.

=0 (20)

desi+del;

deii=Eudou (22)
where,
Eji= 1;” S S —e:a,-jak, (23)
or,
Eijklziétkéﬂ L%&d (24)
1+v, 1+v)1—-2v,)

In the above equations, Poisson’s ratio v. is a soil
parameter and E, is the modulus of elasticity, which can
be obtained from the slope (k) of the unloading curve of
isotropic consolidation test as:

3p(1—2v.)(1+e) 3p(1—2v.)
K B C. ’
Though the original ¢;-clay model further decomposes
the plastic strain increment to express the influence of
loading direction. But for simplicity we assume here that

the plastic strain is governed only by the flow rule in the
t;j-space:

E.= (25)

defi=A A

3 ti ij

Scalar mtiltiplier A can be evaluated from the consisten-
cy condition of Eq. (20). But before that we need to
define explicitly the evolution rules for the rotational
hardening variable (n;;) and the ratio between the normal

A>0). (26)
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yield surface and the subloading surface (G).

Evolution Rule for ‘n’

CHOWDHURY ET AL.

Evolution Rule for ‘G’
Hashiguchi and Chen (1998) and Hashiguchi (1980)
proposed that the subloading surface approaches the nor-

Simple evolution rules for the rotational variable using
stress rates have been formulated previously (Nakai et
al., 1989(b), 1991, 1993; Chowdhury and Nakai, 1997),
but they can not express the change in anisotropy due to
proportional loading. Inclusion of the deviator plastic
strain increment in the evolution rule seems to obviate
this defect. Also, paying attention to the evolution rule
proposed by Hashiguchi and Chen (1998) following
evolution rule for the rotational hardening variable is as-

sumed:
dn;=k,def p;.

The proportionality constant &, is a soil parameter and
the plastic deviator strain is given by

de?= J(det—dels,/3)des—debd;/3). (28)

The direction of movement of the yield surface in the
stress ratio space is denoted by p;; (Fig. 2), which is as-
sumed as follows:

@7

mal yield surface monotonically during plastic loading
process (det;#0) as Eq. (31), which must satisfy the con-

ditions of Eq. (33).

dG=Ud¢e* (31
de?=debdey (32)
dG=+x if G=0
dGgG>0 if 1>G>0

. (33)
dGg=0 if G=1
dg<0 if G>1

U in Eq. (31) should be such that it satisfy Eq. (33).
Thus, U should have the following properties:

U=+ if G=0
U>0 if 1>G>0
. 34
U=0 if G=1
U<o0 if G>1

*
Xij
Py =Xr <~ Mij

Though many functions could be assumed satisfying Eq.
(34), we have adopted the following one, which is a con-
tinuous and monotonically decreasing function of G

X, is the size of the rotational limit surface and its geomet-
ric axis is coincident with the normal direction of the
‘SMP’. The central axis of the yield surface can not go be-
yond this surface. The central axis of the yield surface
rotates in the modified stress space and approaches the
conjugate line on the rotational limit surface as shear con-
tinues. For proportional loading with X=const.
(anisotropic consolidation), the central axis of the yield
surface approaches the loading path. Also, the above evo-
lution rule can express diminishing of anisotropy of an
anisotropically consolidated clay if consolidated isotropi-
cally to much higher confining pressure as observed in
the triaxial tests. Substituting Eq. (29) in Eq. (27) we
finally get the rotational evolution rule.

x*
S (30)

dn;=k.de¥ (

Fig. 2. Rotational Limit Surface and direction of movement of cen-
tral axis of Subloading Surface in stress ratio space

(Fig. 3).

U=—alnG

(35)

Substituting Eq. (35) in Eq. (31) we get the evolution rule

for G.

dG=—ade?In G

(36)

Substituting evolution rules (Egs. (30) and (36)) and flow
rule (Eq. (26)) in Eq. (20), and after simplification, one

can get:
af
_a?Eijkldgkl
_ ij
A—h+ afE af (37
36,5 "% Oty
Where
1 af af [ xi > af’
= X,—*—n,-j -
C"‘C atkk Bn,-j X at
alnG i}
f“ (38)
af 6
H x/ o9
6 d d af o;\/ 0 of oy
at;j atkk 3 6t,-,- atkk 3

The loading criterion can then be given by Eq. (41) or

more simply by Eq. (42).
deh#0

of
P, if —
deli#0 1 b0y

if A4>0

Eijk1d8k1>0

(41)

(42)
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U= -aIn(G)

Fig. 3. Variation of U with G

The scalar A could have been evaluated using stress rate
as Eq. (43). But it can not distinguish unloading from
loading in the softening state. Thus, if Eq. (43) is used to
evaluate A, then Eq. (41) can not be used as a generalized
loading criterion but Eq. (42) still holds.

43)

Finally stress increments can be related to strain incre-
ments as

af af
0t 00,4
af af

h + 80’ ab Eﬂde a tcd
Equations (33) and (34) look awkward, but they make
sense if they are examined in conjunction with Eq. (37)
or (43). If we unload to the similarity center (null stress
for our model, G=0), the denominator of A is infinitely
large. Thus, the magnitude of plastic strain is zero. That
is, the response is elastic. If we continue shearing,
magnitude of plastic strain increases monotonically until
elastic-fully-plastic response is mobilized (subloading sur-
face coincides with the normal yield surface, G=1).
Hence, a smooth transition from elastic to elastic-fully-
plastic state is possible.

Eijrs

qukl

dG’,’j= E,'jkz— d{;‘k/. (44)

Yield and Plastic Potential Functions

The yield and plastic potential functions of the conven-
tional isotropic hardening ¢#;-clay model (Nakai et al.,
1986(a)) was given on the basis of a linear stress-dilatancy
relation. The following equation is a further simplifica-
tion by letting the slope of the stress-dilatancy curve to
one as the original Cam-clay model.

gE_f=lIl v+ —In tN1=0 (45)

X
M*

To include the rotational hardening variable in the model-
ing, the above equation has been modified as Egs. (46)
and (47) to give the normal yield surface and subloading
surface respectively. Here, we recall that X*=X"* and
M} =M}.

D S
g=f=Iln tN+"1\—7[——1n t¥ =0

*
r
k

(46)

X *
g=f=In tN+M*—1n th=

r

“4n

Comparing Eqs. (46) and (47) with Egs. (15) and (17) re-
spectively, one gets ((X*)=(X*/M}) and ((X™*)
=(X*/M}). In the above equations, M* and M;* are the
strength parameters corresponding to conventional
isotropic and rotational hardening models respectively,
which are functions of angle of internal friction (¢). In
the next section we find a co-relation between M* and
M. The above functions are quite simple and one can
avoid introducing new parameters. On the other hand,
they have the demerit of having a singularity point at the

tip.

EFFECT OF ROTATIONAL HARDENING
VARIABLE ON THE STRENGTH

In the conventional isotropic hardening models, for ex-
ample Cam-clay and ¢;;-clay models, strength parameters
M and M* respectively are calculated using the angle of
internal friction (¢) at critical state under triaxial com-
pression condition.

_ 6 sin ¢ 48)
" 3—sin 10) (
M*=Xf+ Yf (49)

Where, Xy and Yy are the values of stress ratio (X') and
dilatancy (Y=desfr/dyifp) respectively at failure un-
der triaxial compression condition, which can be ob-
tained from the following equations:

V2 1
Xf—T( &_——E> (50)

_ 1 a- VR)
Yr= V2 (VR +0.5) 1
_o_ 1+sin ¢ 52)

g; l—sing’
For the t;-clay model, the explicit form of M* depends
on the shape of the plastic potential. In the above-men-
tioned models, shapes of the plastic potentials remain the
same during shear. On the other hand, plastic potentials
of the rotational hardening models, such as the one
proposed in the last section change their shapes continu-
ously as their central axes rotate. Thus, to fit the critical
state predicted by the proposed model under monotonic
loading (for example triaxial compression) to that of
isotropic hardening conventional model, the strength
parameter should be adjusted. This could also be
achieved by adjusting the friction angle. But in that case
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the friction angle loses its usual meaning. In this section
we will find a co-relation between the strength parameters
of ordinary and rotational hardening models.

For the conventional isotropic hardening ¢#;-clay
model, the direction of plastic flow can be obtained from
Eq. (45) as follows:

dg g 9ty 39 90X OxXu
3ty dtwdtly 0X dxa 3ty
09 ay 09 Xw0Xu
Aty tv XX ot

(53)

(54

For the proposed rotational hardening model, the nor-
mal to the plastic potential (Eq. (47)) is:

99 dg oty dg IX* dxi (55)
aty; dtydty X* dxiy 9ty
dg _ay, 99 xi 0xu (56)

at; tv OX*X* oty

In deriving Eq. (56) we considered the fact that (dn/
at;)=0. Because n;; is not a function of current stress,

axi‘,_ (X—Np) aikl

aty at; at;
For the monotonic loading paths (xu/X)=(xx/X*)
and hence Eq. (54) and Eq. (56) become equivalent if the
following equation holds, which is the required condi-

tion to reach the critical state at the same stress condition
as the isotropic hardening conventional models:

dg 99
aX aXx*’

(57)

(5%

Using the above relation from Egs. (45) and (47) we can
get

MF=M*. (59

Equation (59) implies that there is no effect of rotational
hardening variable on the strength parameter for the plas-
tic potential like Eq. (47). But, for other plastic poten-
tials, the above relation may not be true. If the rotational
hardening concept is introduced into the original and
modified Cam-clay models, it can be shown that their
strength parameters should be adjusted as Eq. (60) and
Eq. (61) respectively:

M,=M (60)
M,= VYM2>— 2. (61)

In the above equations, M, is the adjusted strength
parameter and M is the usual strength parameter given by
Eq. (48). For the plastic potential of the original Cam-
clay there is no need to modify the strength parameter.
On the other hand, strength parameter of the modified
Camb-clay should be adjusted as Eq. (61). In this equa-
tion, #, is the size of the rotational limit surface. In deriv-
ing the above co-relations between the strength
parameters, we assume that the central axis of the plastic
potential (yield surface) reaches its critical value (rotation-
al limit surface) while stress condition reaches the critical

state.

EXPERIMENTAL OBSERVATIONS AND
NUMERICAL SIMULATIONS

To verify the proposed model triaxial, true triaxial and
torsional shear tests on saturated and remolded
Fujinomori clay are analyzed in this section. Analyses by
the original kinematic ¢;-clay model (Nakai and
Hoshikawa, 1991) are also presented where necessary for
comparison. The following table shows the parameters
of Fujinomori clay. The original kinematic ¢;-clay model
has six parameters and the proposed model needs seven
parameters, four of which are common to both models.

Parameter C; for both the models is determined from
the slope of the normal consolidation line on a semi
logarithmic plot (g, vs. Inp). Slope of the unloading
curve C, for the proposed model is also determined from
the experimental observations. But, the original #;-clay
and the kinematic ¢;-clay model use an empirical ap-
proach (1—x/A=M/1.75, Karube, 1975) to determine
C.. Thus, the value of parameter C, varies for the two
models. Friction angle is calculated from triaxial com-
pression tests. Poisson’s ratio v, is assumed to be zero,
though other reasonable values could be assumed for it
because, in the case of soils, plastic strains are
predominant and overall stress-strain response is not
much affected by a slight variation in Poisson’s ratio. A
value for v, close to zero increases the value of coefficient
of earth pressure at rest (K,) under elastic unloading. In
addition, it is usually believed that elastic shear strains
are much lower than elastic volumetric strains and hence
a higher value of shear modulus is desirable. The
proposed model does not use parameters o and ¢&.
Methods for the determination of « and £ have been de-
scribed by Nakai and Matsuoka (1986a) and Nakai and
Hoshikawa (1991) respectively. On the contrary, the
proposed model uses new parameters a, k, and X,.

Parameter X, (< Xy) determines the maximum rotation
of the central axis of the yield surface. In addition, larger
values of X, will give lesser final plastic volumetric strain
in monotonic tests (for example triaxial compression) on
normally consolidated clay. Thus, it should be so chosen
that the desired final plastic volumetric strain be obtained
in the analysis of a triaxial compression test. This
parameter is independent of parameters ¢ and k,. Thus

Table 1. Soil parameters of Fujinomori clay for various models

Parameter Original model Proposed model
Ci=A/(1+¢) 5.08x 1072 5.08x1072
C,=x/(1+ey) 1.12x 1072 0.47%1072

@ comp 33.7° 33.7°
Ve 0.0 0.0
a 0.7 X
¢ 0.2 X
a X 0.20
k, X 0.30
X, X 0.30
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X, should be determined before ¢ and %,.

Parameter k&, controls the overall stress-strain
response. Larger values of k, cause the central axis to
rotate at a faster rate towards its limiting value; thus the
initial response is very sensitive to it. It should be adjust-
ed by trial analyses of triaxial compression tests on nor-
mally consolidated clay until a good fit to the stress-
strain curve is obtained.

Parameter a controls the peak stress ratio and stiffness
of the stress-strain curve of overconsolidated clay. The
larger the value of «, the higher will be the peak stress ra-
tio and the stiffer will be the initial response of overcon-
solidated clay. But this parameter has no effect on the
normally consolidated clay, so it should be determined af-
ter determining X, and k, by trial analyses of monotonic
triaxial test on overconsolidated clay or from cyclic triaxi-
al tests.

Stress paths followed in the monotonic triaxial and
true thaxial tests (Nakai et al., 1986b) at constant mean
stress are shown in Fig. 4. In this figure § indicates the an-
gle between the o,-axis and the corresponding radial
stress path on the deviator plane. The angle §=0° and
6=180° denote the stress paths of thaxial compression
and extension respectively. Other stress paths (§=15°,
0=30° and 6=45°) denote three different principal
stresses.

Figures 5-9 show the observed and predicted responses
in the triaxial and true triaxial tests. In these figures, prin-
cipal strains are plotted against the stress ratio (g/p) and
the volumetric strain (g,) is plotted against the major prin-
cipal strain. Moreover, solid curves in these figures are
the predicted responses by the proposed model, and
broken curves are those by the original kinematic #;-clay
model. Figures 5 and 6 correspond to the triaxial com-
pression and extension tests respectively and Figs. 7-9 are
those of the true triaxial tests. From these figures it can
be seen that the original model overpredicts, but the
proposed model closely predicts volumetric strains. This
is achieved by linking rotational variable in the harden-
ing process. Both the models predict strengths well but
show relatively flexible stress-strain responses at low
stress ratio because of the shape of the plastic potential,

0=180"

Fig. 4. Stress paths of triaxial and true triaxial tests on the octahedral
plane

109

which is similar in shape to the original Cam-clay model.
Two simple cyclic triaxial tests at constant mean stress
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'''''' Original Model v
———  ProposedModel | | 1 TTTeeedeall . .
i i
-10 -5 0 5 10 15

£, (%)

Fig. 5. Observed and predicted stress-strain relations for triaxial com-
pression test
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i I i
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Fig. 6. Observed and predicted stress-strain relations for triaxial ex-
tension test
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i i |
-10 5 0 5 0 s
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Fig. 7. Observed and predicted stress-strain relations for true triaxial

test (#=15°)
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(CY-1 and CY-2) are performed and corresponding ana-
lyses are shown in Figs. 10, 11. In these tests, soil samples
are first sheared along compression and extension sides re-
spectively to principal stress ratio of three (g,/03=3),
and then sheared in the reverse directions. Both the
models show stress-induced anisotropy by predicting elas-
tic responses at the initial part of reverse loading fol-
lowed by elastoplastic responses. In case of the original
model, stiffness falls drastically as soon as plastic loading
occurs and hence gives very soft responses (Figs. 10(a),
11(a)). On the other hand, the proposed model shows a
gradual drop in stiffness due to the consideration of a sub-
loading surface. Also, it shows substantial reduction in
volumetric strains (Figs. 10(b), 11(b)) during the reverse
loading process but the original model shows excessive ac-

a/p

Dots Observed R T . e € (%)
------ Original Model RS ’
———  Proposed Model . - 4

| I .
10 5 0 s 10 »
e, (%)

Fig. 8. Observed and predicted stress-strain relations for true triaxial
test-(6=30°)
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0.50 et L g .
: o : . T
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p=196 kPa s J ’i,'
ap o : ; 4
050 b ,
Extension!
Observed
----- Original Model
~—=— Proposed Model
-1.50 ' L L '
4 2 0 2 4 6 8
£, (%)
(a)

Fig. 10(a) Observed and predicted stress ratio vs. deviator strain rela-
tions of simple cyclic triaxial test (CY-1)

CHOWDHURY ET AL.

cumulation of volumetric strains. Two other features,
softening and increase of strength due to cyclic loading,
though not very prominent in these two tests, can be seen
at the final stage of shearing. The proposed model shows
a similar trend but the original model does not show such
behavior.

Figure 12 shows the stress-strain diagrams of a con-
stant amplitude (¢;/a3=3, both in compression and ex-
tension) cyclic triaxial test at constant mean stress. As ob-
served in the test, the proposed model shows stiffer
responses in the successive loading loops. In other words,
the magnitude of strains decreases and hence the area en-
closed by each successive loop (Fig. 12(a)) decreases.
Though the proposed model shows stabilization of volu-
metric strains (Fig. 12(b)), the rate is not as fast as it is ob-

15 T T
1 -—\ P =
<a o
T ~o e 3
3 N 24/ Y 1 faxi;
" i - Ve True Triaxial |
w Mol :
. / H 6=45°
05 - o SRS S
‘ 5 : 0=0.732 |
" ;
\ : p=196 kPa
0 ; 0
N H
» { ;
¢ N €V :
Dots  Observed AR - W e (%)
______ Original Model ~ 'k Y
.
———  Proposed Model S~ o - 4
i 1 1
10 s 0 s 10 B
£, (%)

Fig. 9. Observed and predicted stress-strain relations for true triaxial
test (=45°)

e e e
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Original Model [
— Proposed Model

a/p

R e RO SR A R

150 i | 1 i i i L
0 1 2 3 4 5 6 7 8
e, (%)
(b)

Fig. 10(b) Observed and predicted stress ratio vs. volumetric strain re-
lations of simple cyclic triaxial test (CY-1)
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T .
Cyclic Triaxial (CY-2)

p=196kPa
100 oo

q/p

i Compression

: Extension

* Observed 1
: e : Original Model
¥ i| — Proposed Model

o0 i i i i i
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(@

Fig. 11(a) Observed and predicted stress ratio vs. deviator strain rela-
tions of simple cyclic triaxial test (CY-2)

2.00 I I ! !
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----- Original Model :
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-0.50
-1.00 | |
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Fig. 12(a) Observed and predicted stress ratio vs. deviator strain rela-

tions of constant amplitude cyclic triaxial test (CY-3)

served in the experiment. On the contrary, the original
model repeats the same loop in both the figures. Also, the
proposed model predicts substantial increase of strength
at the final stage of shearing and shows softening. Ex-
perimental data also show increase in strength (compare
to monotonic test) but softening could not be observed
since it is a stress-controlled test. It is worth mentioning
that performing strain controlled cyclic triaxial tests'is
very difficult especially under triaxial extension condi-
tions. Thus the cyclic tests presented in these paper are

! | T ] T T
N e e S R e o -
. . Observed
Cych:c Tnaxzsal (CY?Z) _____ Original Model
1.00 [~ s —— Proposed Model | —
p=196 kPa
050 froveo e ,,,,,,,,,, Y A -
a/p
0.00 ; ‘ ”
Exténsion
-0.50 -
100 i I i i L I L
0 1 2 3 4 5 6 7 8
e, (%)
(®)
Fig. 11(b) Observed and predicted stress ratio vs. volumetric strain re-

lations of simple cyelic triaxial test (CY-2)
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™
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4P oso |- Pobli
0.00
050 oy
: :
s AN i .
. ‘I Cyclic Triaxial (CY-3)
-1.00 L |
0 5 10 15 20
e, (%)
®)

Fig. 12(b) Observed and predicted stress ratio vs. volumetric strain re-
lations of constant amplitude cyclic triaxial test (CY-3)

carried out under stress controlled conditions.

Figure 13 shows the results of a variable amplitude
cyclic triaxial test at constant mean stress. In these figures
(Figs. 13(a), 13(b)) too, it can be seen that the proposed
model predictions are quite representative of the ex-
perimental observations.

Figure 14 shows stress strain curves calculated by the
proposed model for isotropically over consolidated clay
under thaxial compression (Fig. 14(a)) and extension
(Fig. 14(b)) with varying initial over consolidation ratio.
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Fig. 13(a) Observed and predicted stress ratio vs. deviator strain rela-
tions of variable amplitude cyclic triaxial test (CY-4)
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Fig. 14(a) Predicted stress-strain relations for overconsolidated clay
with varying initial overconsolidation ratios under triaxial com-
pression

These analyses are carried out using the same set of
parameters as shown in Table 1. Since we have not
sufficient data of triaxial tests at constant mean stress on
overconsolidated Fujinomori clay samples, only analyses
are shown in these figures. This has been done to empha-
size the fact that the proposed model qualitatively simu-
lates the characteristic features of overconsolidated
clays. It can be observed from these figures that

CHOWDHURY ET AL.
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q/p

Cyclic 'i"riaxial (CY-4j
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I
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i j
0 5 10 15 20
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Fig. 13(b)

Observed and predicted stress ratio vs. volumetric strain re-

lations of variable amplitude cyclic triaxial test (CY-4)
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Fig. 14(b) Predicted stress-strain relations for overconsolidated clay
with varying initial overconsolidation ratios under triaxial exten-

sion

elastoplastic responses are obtained from the start of
shearing but the conventional models give completely
elastic response up to the peak. It is also observed that
the strength increases with the increase of initial over con-
solidation ratio and stress-strain relations become stiffer.
It is clear in these figures that the strength predicted un-
der triaxial extension for a particular value of initial
OCR is much less than the strength obtained in triaxial
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compression for the same initial OCR, which is achieved
through the use of modified stress ¢;. With the increase of
initial OCR, clay samples become less contractive at the
initial stage of shearing and more dilative as shear con-
tinues. After reaching the peaks, clay elements soften
and eventually reach the critical state at large shear
stains. The predicted trend qualitatively fits the observed
trend reported before (Chowdhury and Nakai, 1997).
Conventional models (for example Cam clay and ¢;-
clay model) are based on the assumption that there is no
effect of stress path on the amount of hardening (plastic

Sl S N S A A A B
D' (x 98 kPa) ‘ { 1

Point q(x 98 kPa)
1 A 2.0 0.0
B 2.0 15
811 ¢ 45 0.0
D 6.0 0.0
'l E 8.0 0.0 1
F 6.0 45 : ; ;
6 |- G 6.0 9.0 [t .......... ........ —

q (x 98 kPa)

p' (x 98 kPa)

Fig. 15. Stress paths followed in triaxial compression tests to check
the effect of stress paths on the stress-strain behavior
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Fig. 16(a) Stress ratio vs. volumetric strain relations for four test
paths and corresponding analyses by the proposed model
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volumetric strain) if a certain state of stress is attained by
elastoplastic loading. To be more specific, let us consider
Fig. 15 in which isotropically consolidated clay samples
(point A) are brought to the same stress condition (point
F) through various stress paths. Then, all samples are
sheared at constant mean stress. Conventional models
give the same amount of volumetric strains at point F in-
dependent of the stress paths followed. But it is ex-
perimentally observed that the amount of volumetric
strain varies depending on the stress paths followed with
a definite trend. Figure 16(a) shows volumetric strains
vary at point F in the range of three percent. It can be ob-
served that the sample that experiences larger shearing
strain shows lesser volumetric strains. In Fig. 16(a) path
ABFG shows the least volumetric strain and shows the
largest shearing strain (Fig. 16(b)). On the contrary, path
AEFG shows maximum volumetric strain and minimum
shearing strain at point F. The other two stress paths are
also arranged in the same order. Analyses by the
proposed model also show the same trend, although it
shows a larger amount of shearing strain during
anisotropic consolidation because of the shape of plastic
potential. Analyses show that finally all samples reach
the critical state and the volumetric strains are the same.
Experimental observations also show a similar trend, ex-
cept for path ABFG.

Now, we will show a few torsional shear test results on
hollow cylindrical samples to simulate rotation of prin-
cipal stress axes. Figures 17(a) and 17(b) show the stress
paths followed in the tests on (g,—a4)/2 vs. 7,6 and on p
vs. q planes respectively. In HC-1 and HC-2 samples are
first sheared under triaxial compression (6.>0s=a,,
17.6=0) and extension (0,<ds=a,, T,=0) respectively,
and then torque is applied to rotate the principal direc-
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Fig. 16(b) Stress ratio vs. deviator strain relations for four test paths
and corresponding analyses by the proposed model
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Fig. 17(a) Stress paths of the torsional shear tests on (G,—ag)/2 vs.

7,4 plane
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Fig. 18. Observed and predicted stress-strain responses of torsional
shear test HC-1

tions. On the other hand, torque is applied first in HC-3
and HC-4, and then axial and radial stresses are varied to
rotate the principal stress axes. The tests numbered HC-
1, HC-2 and HC-3 are carried out at constant mean stress
and in test HC-4, mean stress increases keeping constant
torque. In these tests, shearing stress (7,) and average
shearing strain (y,) are calculated from the applied tor-
que (T) and angular displacement (46 in degree) as
follows:

3T

=27t(r¢3,—r?) (62)

Tao

Fig. 17(b) Stress paths of the torsional shear tests on p vs. g plane
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. Torsional Shear (HC-2)
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Fig. 19. Observed and predicted stress-strain responses of torsional
shear test HC-2

n(ri—r})

T210H (rA—1Y) 46 (63)

Yao
where r, and r; are the outer and inner radius respectively
and H is the height of the sample. Figures 18-21 show the
stress-strain diagrams of these tests. Predictions by the
original and the proposed models are also shown in these
figures. It can be seen that at the start of rotation of prin-
cipal directions, there is a little increase of stiffness in the
stress-strain curve, which makes a kink in the observed
stress-strain curves. Proposed model predictions match
the observed stress strain behavior with a little soft
response, which may be due to flat plastic potential used
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Fig. 20. Observed and predicted stress-strain responses of torsional
shear test HC-3
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Fig. 21. Observed and predicted stress-strain responses of torsional
shear test HC-4

in the model. In Fig. 21, predicted shearing strain (y,) by
the original model makes an about turn when axial stress
increases while maintaining constant torque. However,
the proposed model response is consistent with the ob-
served behavior. This results from the difference of evolu-
tion rules of the central axes of the yield surfaces used in
the models.

CONCLUSIONS

The model that is proposed in this paper differs from
the original #;-clay or the kinematic #;-clay models in
being able to predict cyclic or overconsolidated clay be-
havior properly by employing a subloading surface and
modifying the hardening rule. In addition, the proposed
model gives very consistent results under monotonic load-

ing conditions. Thus, it can be considered as a model for
generalized loading conditions in the analysis of bound-
ary value problems.

Triaxial, true triaxial and torsional shear tests were per-
formed to verify the proposed model. In modeling the be-
havior of geomaterials it is very common to use the non-
associated flow rule. But, the proposed model shows very
good agreement with the experimental results even using
the associated flow rule in the #;-space. A very simple
plastic potential (vield surface) with a sharp tip is consi-
dered in this paper. Consideration of a smooth plastic
potential could increase the overall performance of the
model, which is yet to be examined.
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