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   A  MODEL  FOR  CLAY  USING  MODIFIED  STRESS

      UNDER  VARIOUS  LOADING  CONDITIONS
WITH  THE  APPLICATION  OF  SUBLOADING  CONCEPT
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                                       ABSTRACT

  In the conventional  approach  of  elastoplastic  modeling,  using  the invariants of  ordinary  stresses  and  strain  incre-
ments

 can  not  properly consider  the effect of  intermediate principal stress on  the strength  and  dilatancy of  soils. A
previously introduced modeling  approach  using  modified  stress  (tij) can  express  the strength  arid dilatancy behavior of
normally  consolidated  clay  under  generalized three-dimensional stress conditions.  It has been  verified  that this
modified  stress approach  closely  simulates  soil behavior under  monotonic  loading conditions.  To  express  stress in-
duced anisotropy,  a  kinematic  hardening  (in the stress ratio  space)  model  for clay  using  modified  stress has been
proposed,  which  over  predicts volumetric  strain and  does not  show  stabilization  of  strain during cyclic  loading. To  rec-

tify those  problems  the evolution  rule  of  the  rotational  variable  has been modified  and  a  subloading  surface  has been
introduced in the model  proposed in this paper. The  applicability  of  the proposed model  on  normally  or  overconsoli-
dated clay  under  monotonic  or  cyclic  loading conditions  is verified  using  triaxial, true  triaxial and  torsional shear
tests.
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INTRODUCTION

  Conventional elastoplastic  models  use  the invariants
of  ordinary  stress tensor (oi,･) as  stress parameters, for ex-
ample,p  and  q or  a..t and  T.,t  (Roscoe et  al.,  1963, l968)

where  p  is the mean  and  q is the  deviator stress respec-
tively, and  aoct and  Te.t are  the normal  and  shearing  stress-

es  en  the  octahedral  plane. Use of  these stress-parameters
leads to the extended  Mises strength  criterion,  which

gives very  high strength  under  triaxial extension  and  true
triaxial stress  conditions.  Nakai  and  Mihara (1984)
proposed  a  modified  stress tensor (tij), which  is a non-
linear function of  ordinary  stress  tensor  (uij) and  its in-
variants.  Equations (1)-(4) show  how  the modified  stress

tensor (ti,･) can  be obtained  from an  ordinary  stress ten-
sor.  Here, it is noted  that the principal directions of

modified  stresses  are  coaxial  with  the principal directions

of  ordinary  stresses.

                 tij=athalv･ (1)
In the above  equation,  aiv is a  dimensionless symmetric
tensor obtained  by reverse  transformation  from  its prin-

cipal  values  (ai,･) as follows:

               ai]･= 9i. g･. a.. (2)

where,  ei,･ is an  orthogonal  transformation  that trans-
forms ordinary  stresses  (cri,･) to their principal values  (6i,･).

               8iJ･=e.i enj a..  (3)

The  principal values  of  aij are  given by the following equa-
tion, which  are  also  the direction cosines  of  the  

`spatial

Mobilized  Plane rsMIFI)' (Matsuoka and  Nakai, 1974;
Nakai  and  Matsuoka  1983).

          :.II:tt,(hJ)2(lg
'=jl

 (,)

After forming the  modified  stress tensor (tij), the scalars

that represent  the normal  ( ly) and  the parallel ( ts) compo-
nents  of  stresses  to the ``SMP'

 are  given by the Eqs. (5),
(6). The  stress ratio  tensor  xi,･ and  scalar  stress ratio  are

given by Eqs.  (7) and  (8) respectively  (Nakai et al.,

1989(b), 1991, 1993).

tN 
=

 tiJ' aij (5)
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          tS= (ttJ-tNau)(ttJ-tNatJ) (6)

         xij=(tij-(NaiJ･)1tN  (7)

         X=  tsltN =  VI"J;MiJ v (8)

Use of  the stress  parameters  ly and  ts leads to Matsuoka-
Nakai  strength  criterion  (Matsuoka and  Nakai, l974,

l977) as in Eq. (9), which  circumscribes  the Mohr-

Coulomb  pyramid and  gives strength  close  to the  ob-

served  ones.

      X=constant  or  lihlk=constant  (9)

In the above  equations'Ii,  h  and  k are  the  first, second

and  the third invariants of  the ordinary  stress tensor (ai,･).
  Since the principal directions of  the modified  stress tiJ･

and  according  to classical  plasticity theory, principal

directions of  the plastic strain  increments coincide  with

the principal directions of  ordinary  stresses, strain  incre-

ment  components  conjugate  to the stresses  tN and  ts are

given by the following two  equations  respectively.

    dEs'ne=dsivaiv (10)

    dl,geMp= (dsij-dEs*]dpa,D(de,J-das"Mpau) (11)

Using  the above  mentioned  stress  and  strain  increment

parameters, isotropic hardening  clay  and  sand  models

have been proposed and  verified  by many  triaxial and

true triaxial tests (Nakai et  al.,  1984, 1986(a), 1986(b);

Nakai, 1989(a)). These  models  were  too simple  and  were

not  intended  to express  inherent or stress  induced

anisotropy  of  soils  during cyclic  loading.
  Kinematic hardening models  are  usually  used  to simu-

late the behavior of  stress induced anisotropy  during
cyclic  loading. Generally, in the kinematic hardening
models,  it is assumed  that  the yield surface  translates in

the stress-space.  The  amount  of  translation of  the origin

of  the yield surface  relative  to the origin  of  the  stress-

space  is expressed  by a  tensor that possesses the  dimen-

sion  of  stress  and  is known  as  back-stress. On  the other

hand, a few kinematic models  allow  the yield surface

only  to rotate  in the stress-space  by  fixing the origin  of

the yield surface  at the origin  of  the stress-space.  The  ro-

tation of  the yield surface  can  be viewed  as the transla-

tion  of  the center  of  the yield surface  on  a deviator plane
and  can  be expressed  by a  dimensionless tensor as the

stress  ratio  tensor. The  dimensionless tensor that  express-

es the center  of  the  yield surface  relative  to the  center  of

isotropic yield surface  is called  back-stress-ratio (Nakai
et al. 1989(b), 1991, 1993).

  Sekiguchi and  Otha (1977) introduced anisotropy  due

to anisotropic  consolidation  in their model  by allowing
the  yield surface  to rotate  a certain  amount  in the stress
space.  But  they did not  allow  the  yield surface  to rotate

further during shear.  On  the other  hand  Nakai  et  al.

(1989(b), 1991, 1993) and  Chowdhury  and  Nakai  (1997)
proposed  models  by allowing  the yield surface  to rotate

continuously  during loading process around  the origin  of

the  modified  stress space  to express  the stress induced
anisotropy  during shear.  They also formulated evolution
Tules  for the central  axis  of  the yield surface.  The  model

we  will  be presenting in the  next  section  will also  use  a

similar  description of  anisotropy  only  its evolution  rule  is

slightly  different. In Eq.  (12), nij is the tensor that deter-

mines  the position of  the central  axis  of  the yield surface

in the stress ratio  space  (x}･j). Nakai calIed  tensor  ni,･ the

back stress ratio  tensor. Hashiguchi and  Chen  (1998) on

the other  hand  Iinked nij with  hardening and  called  it the

rotational  harciening variabte.

               x."･･=xi,･-nij (12)

               X'=  VliJfl 
'v
 (1 3)

                n=  VJi;.;Jill, (14)

The  original  kinematic  ti,･-clay (Nakai and  Hoshikawa,

1991), more  strictly a  rotational  model,  did not  link ni,･

with  hardening. Thus,  the predicted volumetric  strains

were  too high  under  cyclic  loading. Also, it has been as-

sumed  that the  interior of  the yield surface  is completely

elastic as the conventional  model.  Thus,  a smeoth  transi-

tion  from elastic to elastic-fully-plastic  state could  not  be

obtained.  In this paper  nij is Iinked with  hardening and  a

subloading  surface  is assumed  for the smooth  transition

from  elastic to elastic-fully-plastic  state as the subloading

sudece  model  (Hashiguchi and  Chen, 1998; Hashiguchi,
1980). In the  next  section  we  will formulate a  model  using

the modified  stress  and  strain increment parameters  de-

scribed  in this section.

SUBLOADING  AND  ROTATIONAL  HARDENING
MODEL  BASED  ON  THE  tiJ-

  First of  al1 we  will  define two  yield surfaces  named  nor-

mal  yield sudece  and  subloading  suofbce  (Hashiguchi
and  Chen, 1998; Hashiguchi,  1980). In the conventional

models  the  yietd suijLice  defines the region  in which  stress

changes  cause  a  completely  elastic  response  and  it
remains  stationary  during elastic stress  changes.  But the

interior of  the normal  yield sut:ttice  is not  completely  elas-

tic; elastoplastic  response  can  be obtained  due to loading

within  the normal  yield sut:fZice but plastic strains  are

smaller  in magnitude  than the elastic-fully-plastic  state.

When  the stress condition  lies on  the normal  yield sur-

foce, an  elastic-fully-plastic  response  is mobilized  during

loading. On  the other  hand  the subtoading  sut:face  al-

ways  expands  or  contracts  such  that the  current  stress

point lies on  it but can  never  go  beyond the not:mal  yield
suJ:fZice. An  elastic-fu11y-plastic  response  is obtained  due

to  loading when  the subioading  sut:fiice coincides  with

the  normalyield  sut:flice. Hashiguchi  and  Chen  (1998) as-
sumed  that both  the  normal  yield sui:face  and  the sub-

loading sui:face  translate  and  rotate  in the stress  space

keeping similarity  in their shapes.  On  the other  hand,
                                         ,
Asaoka  et  al.  (1997) applied  the subloading  concept  m

the Cam  clay  model.  But, they did not  allow rotation  or

translation of  the yield surfaces.  We  will  assume  that

both  the nonmal  yieid sut:face  and  the subloading  suijLice

pass through  the origin  and  rotate,  but do not  translate
in the modified  stress space  such  that their central  axes  al-

ways  coincide  with  each  other.  Both  the  yield surfaces  al-
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         f== ln tN+4(X")-ln  tse=O. (17)
If the ratio  of  the sizes between the subloading  suijbce

and  the  normalyield  sui:face  is denoted by G  (OsG< 1),
then  the  following relations  hold:

Ext,

ut

fig. 1. Plane yiew  of  nonual  yield  sunyfbce  and  subloading  suifbce

ways  keep similarity  in their shapes.
  Figure 1 is a  simplified  two-dimensional  representation

of  a  normal  yield sui:face  and  a  subloading  sut:tZice. The
similarity  center  of  the yield surfaces  always  lie at the ori-

gin. Since, both of  them  pass through  the origin,  their

central  axes  are  coincident  and  are  similar  in shape.  Ac-
cording  to  the  definition of  the similarity  center,  a

straight  line from the similarity  center  in any  direction in-
tersects both the surfaces  at their conjugate  points. In
this figure current  stress  condition  is at t(tN, ts) and  its
conjugate  stress  condition  on  the normal  yield sudece  is
t(tN, ts). Actually, we  would  never  calculate  a  point on

the normal  yield surface,  which  is conjugate  to  the  cur-

rent  stress. This is because, we  only  need  to know  the  size

of  the normal  yietd sui  ftice, which  will  be given in a few
moments.

  Let the following function give the general shape  of

the nonual  yieid sut:fLTce.

         f--- ln t-N+4(R')-  ln tnN" =O  (15)
In the above  equation  a superposed  bar (`-') indicates
stress conditions  on  the  normal  yield surface.  On  the
other  hand, stress conditions  on  the  subloading  surface

(and the current  stress condition)  is given without  a super-

posed  bar. In Eq. (15), g(X") is a  monotonically  increas-
ing function of  stress ratio, which  will be defined explicit-
ly in a  later section.  tre is the size of  the normal  yield
sui:face  (Fig. 1) which  is linked with  the isotropic harden-
ing variable  ee  lplastic volumetric  strain) by assuming  a

linear relationship  between e:  vs,  ln tN as  in the  following
    -equatlon.

            Zse= ireo exp  (qeeq) (1 6)

where  treo is the initial size of  the normal  yieid sut:fbce,
Ct=2/(1+eo)  and  CLm  rc!(1+en)  are  soil parameters.
The compression  and  swelling  indices on  an  e  vs  lnp  plot
are denoted as 1 and  K  respectively  and  eo  is the reference
void  ratio.

  The  subloading  suJ fbce is given by a similar  function
as  the  normal  yieid sudece  eq. (15)) as follows

tscm Gtk

t.=Gt.ts==GtsX*=X*.
(18)

Equation  (17) can  be rewritten  using  Eqs. (16), (18) as

follows:

   f= ln tN+((X")-ln  G-ln  iN'o- c,eiq=O.  (19)

The differential form of  the  above  equation  is given by
Eq. (20), which  can  be used  as a  consistency  condition

for the subloading  sui:face  by formulating proper  evolu-

tion rules  for ni,･ and  G.

                       dG  der,        af                af

    
Cif=eaijdUij+onijdniJ'-'[iT-c,-q=O

 (20)

It is assumed  that the total strain  increment is given by
the following equation.

              dei,･=dsf･v+dee･,･ (21)
The  elastic constitutive  equation  follows the  generalized
Hooke's law for isotropic materiaL.

              deZ･=EiMvk}doki (22)
where,

         E,-,i 
--IZVe

 6,,i,-Iil:'- 6,, ti,, (23)

or,

     EZjkt =  i 3v, tiire ii + (i + v,Viliem 2v,) 
au tikb (24)

In the above  equations,  Poisson's ratio  v. is a  soil

parameter  and  E, is the modulus  of  elasticity, which  can

be obtained  from the slope  (K) of  the unloading  curve  of

isotropic consolidation  test as:

         3p(1-2ve)(1+eo) 3P(1-2ve)
      4                                       (25)
               K q

'

Though  the original  ti,･-clay model  further decomposes
the  plastic strain  increment to express  the influence of

loading direction. But  for simplicity  we  assume  here that
the plastic strain  is governed  only  by the flow rule  in the
tiJ･-space:

                  af

           
dePi･==As}t;.

 (A>O). (26)

Scalar mtiltiplier  A  can  be evaluated  from the consisten-

cy  condition  of  Eq.  (20). But  before that we  need  to
define explicitly  the  evolution  rules  for the rotational

hardening variable  (ni,･) and  the ratio  between the normal
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yield sui:fkece and  the subloading  sut:fbce  (G).

Evolution Rule  for be'
  Simple evolution  rules  for the rotational  variable  using

stress  rates  have been formulated previously (Nakai et

al.,  1989(b), 1991, 1993; Chowdhury  and  Nakai, 1997),
but they can  not  express  the change  in anisotropy  due to

proportional loading. Inclusion of  the  deviator plastic
strain increment in the evolution  rule  seems  to obviate

this defect. Also, paying  attention  to the evolution  rule

proposed  by  Hashiguchi  and  Chen  (1998) following
evolution  rule  for the  rotational  hardening variable  is as-
sumed:

              dniy= k.deepi,･. (27)

The  proportionality constant  k. is a soil parameter  and

the plastic deviator strain  is given by

    dae== (de7,-dsea,13)(dee,･-dsg6ij13). (28)

The direction of  rnovement  of  the  yield surface  in the
stress ratio  space  is denoted by pi,･ (Fig. 2), which  is as-
sumed  as  follows:
                     *

              p.=X;tr/-ni,-  (29)

.)L is the size of  the rotational  limit surface  and  its geomet-
ric axis  is ceincident  with  the normal  direction of  the
`SMP

 
'

 . The  central  axis  of  the yield surface  can  not  go be-

yond  this surface.  The central  axis of  the yield surface
rotates  in the modified  stress space  and  approaches  the

conjugate  line on  the rotational  limit surface  as shear  con-

tinues,  For proportional  Ioading with  X=const.

(anisotropic consolidation),  the central  axis  of  the  yield
surface  approaches  the loading path. Also, the  above  evo-

lution rule  can  express  diminishing of  anisotropy  of  an

anisotropically  consolidated  clay  if consolidated  isotropi-
cally to much  higher confining  pressure as  observed  in
the triaxial tests. Substituting Eq.  (29) in Eq. (27) we

finally get the  rotational  evolution  rule.

          dn,J ==  k,deg(xl iill -n,J) (3o)

Evolution Rule for 
`G'

  Hashiguchi and  Chen  (1998) and  Hashiguchi (1980)
proposed  that  the  subleading  surface  approaches  the nor-

mal  yield surface  monotonically  during plastic loading

process (dE{v #O)  as  Eq. (31), which  must  satisfy the  con-

ditions of  Eq. (33),

         dG=  UdeP  (31)

         de"=  deSdE7,  (32)

U  inThus,

dG=+oo

dG>OdG=OdG<O

if G=O

if 1>G>O

if G=1

if 6>1

Eq. It satisfy

 U  should  have the following properties:

Xl

U=+co

u>ou=oU<o

if G=O

if 1>G>O

if G=1

if G>1

Fig. 2. Rotationat Limtr  Suifbce  and  direction of  moyement  ef  cen-

   tral axis  of  Subloading  Suiface in stress  ratio  space

-

(33)

Eq. (33),

(34)

Though  many  functions could  be assumed  satisfying  Eq,

(34), we  have  adopted  the following one,  which  is a con-
tinuous  and  menotonically  decreasing function of  G

(Fig. 3).

               U=-alnG  (35)

Substituting Eq. (35) in Eq. (31) we  get the evolution  rule

for G.

             dG=-ade"  lnG  (36)

Substituting evolution  rules  (Eqs. (30) and  (36)) and  flow
rule  (Eq. (26)) in Eq. (20), and  after simplification,  one

can  get:

                 of

           A=  
oas,f

E"k'dekSf

 (37)

               
h
 
+
 aob, 

Ebqrs 5Zt g
Where

   h=c,lc.  oOt:-kr  oe.l, (x) t/il/l/-n.) 
aoft"

        alnG  af
                                       (38)
              ot         G

    af
    i'=
    efd

     ot

The loading

of  ofat.atu

           
           

          criterion  can  then  be  given
more  simply  by Eq. (42).

         dee)･lo if A>o

                . of
         dE7vfO if                      EijkidEkl>O
                   Oail･

by  Eq.

(39)

(40)

(41) or

(41)

(42)
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fig. 3. Variation of  Uwith  G

1.5

The scalar  A  could  have been evaluated  using  stress rate

as  Eq. (43). But  it can  not  distinguish unloading  from

loading in the  softening  state.  Thus,  if Eq. (43) is used  to

evaluate  vl,  then Eq.  (41) can  not  be used  as  a generalized
loading criterion  but Eq.  (42) still holds.

                 of
                    daiJ･
                 Oaij･
                                       (43)
                   h

Finally stress  increments  can  be  related  to strain  incre-

ments  as

daij= EiJ･kt-Eij.ef

 afa

 t. aobqEhqkt

   ofh+

  aa.b

    afEbbcd

    Otcd

dEkt. (44)

Equations (33) and  (34) awkward,  but they make

sense  if they are  examined  in conjunction  with  Eq. (37)
or  (43). If we  unload  to the similarity  center  (null stress
for our  model,  G=O),  the denominator ofA  is infinitely
large. Thus, the magnitude  of  plastic strain  is zero.  That

is, the response  is elastic. If we  continue  shearing,

magnitude  of  plastic strain  increases monotonically  until

elastic-fully-plasticresponseismobilized(subloadingsur-

foce coincides  with  the not:mal  yieid sui:fZice, G==1).
Hence,  a  smooth  transition from  elastic to elastic-fully-
plastic state  is possible.

Yield and  Pltzstic Potential Rtnctions

  The yield and  plastic potential functions ofthe  conven-

tional isotropic hardening tij-clay model  (Nakai et al.,
1986(a)) was  given on  the  basis of  a  linear stress-dilatancy
relation.  The  following equation  is a  further simplifica-
tion by letting the slope  of  the stress-dilatancy  curve  to
one  as the original  Cam-clay  model.

                    X

         giif=  
ln

 tN+M,  
-ln

 tNi=O (45)

To  include the rotational  hardening variable  in the model-

ing, the above  equation  has been modified  as Eqs. (46)
and  (47) to give the  not:mal  yield sudece  and  subloading

suJ:fbce  respectively.  Here, we  recal1  that  X"=X"  and

MY--Mf.

            --  X*  -

         g!f= 
ln
 tN+M,.  

-ln
 
tsc=O

 (46)

                   X*

         g!Ef=  
ln

 tN+M,,-ln  
tre=O

 (47)

Comparing  Eqs. (46) and  (47) with  Eqs. (15) and  (17) re-
spectively,  one  gets g(X')=(X*/M.") and  4(X')
=(X"IM.').  In the  above  equations,  M'  and  M," are  the
strength  parameters  corresponding  to conventional

isotropic and  rotational  hardening models  respeetively,

which  are  functions of  angle  of  internal friction (¢ ). In
the next  section  we  find a co-relation  between M*  and

M.". The  above  functions are quite simple  and  one  can

avoid  introducing new  parameters. On  the other  hand,
they have the demerit of  having a  singularity  point at the
tip.

EFFECT  OF  ROTATIONAL  HARDENING
YARIABLE  ON  THE  STRENGTH

  In the conventional  isotropic hardening models,  for ex-
ample  Cam-clay and  tirclay models,  strength  parameters
M  and  M"  respectively  are  calculated  using  the angle  of

internal friction (th) at  critical  state  under  triaxial com-

pression condition.

                   6 sin ¢
               M=                                       (48)
                  3-sin  di

               M*  ==  X)+ ny (49)
Where, )(? and  }1･ are the values  of  stress ratio  (X) and
dilatancy (Y=deer'li,ld7ge'tfp) respectively  at failure un-
der triaxial compression  condition,  which  can  be ob-

tained  from  the  following equations:

           M=  g( vft- tt) (so)

                1 (1-Vlii)
           }7-                                        (51)
               V-i- ( V[k- +  o.s)

                  1 +'sin ip              Ol

           
Rii;=1-,i.

 ip' 
(52)

FoT  the tii-clay model,  the explicit  form  of  M'  depends

on  the shape  of  the  plastic potential. In the above-men-

tioned models,  shapes  of  the plastic potentials remain  the
same  during shear.  On  the other  hand, plastic potentials
of  the rotational  hardening models,  such  as  the one

proposed  in the last section  change  their shapes  continu-

ously  as  ,their central  axes  rotate,  Thus, to fit the critical
state predicted by the proposed  model  under  monotonic

loading (for example  triaxial compression)  to  that  of

isotropic hardening conventional  model,  the  strength

parameter should  be adjusted.  This  could  also  be
achieved  by adjusting  the friction angle.  But in that case
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the friction angle  loses its usual  meaning.  In this section

we  will find a co-relation  between the  strength  parameters
of  ordinary  and  rotational  hardening models.

  For the conventional  isotropic hardening  tij-clay

model,  the direction of  plastic fiow can  be obtained  from
Eq.  (45) as  follows:

                 etAr Og OXaxkt          ag              ag
                                       (S3)          

-=mr+

          otiv atNati,- oxoxktatij

              aiy Og xkl  axkl          ag
                         , (54)          

-=-+--
          atij (N axxati,･

For the proposed  rotational  hardening  model,  the nor-

mal  to  the  plastic potential (Eq. (47)) is:

                at. ag ax*ox,",         Og             ag

         57tl]･･= 5}t:. 
wuo
 tij 

+
 ax*  axk", ot,,. 

(55)

         ag aij ag  xk",axkt

         at,,=III+ox* r. at,, 
･
 (s6)

In deriving Eq. (56) we  considered  the fact that (Onkt/
OtiJ･)= O. Because  niJ･ is not  a  function of  current  stress,

           Oxk't a(xkt-nkt) Oxkt

           ot.･= ot,, 
=at,,'

 
(57)

For  the monotonic  loading paths (xkilX)=(xk'tlX')
and  hence Eq. (54) and  Eq. (56) become equivalent  if the
following equation  holds, which  is the required  condi-

tion to reach  the critical state at the same  stress condition

as the isotropic hardening conventional  models:

               ag ag

               ex=ax*'  (58)

Using the above  relation  from Eqs. (45) and  (47) we  can

get

                M  
r'
 
--

 M"･  (59)

Equation  (59) implies that there is no  effect ef  rotational

hardening variable  on  the strength  parameter  for the plas-
tic potential like Eq.  (47), But, for other  plastic poten-
tials, the above  relation  may  not  be true. If the  rotational

hardening concept  is introduced  into the original  and

modified  Cam-clay  models,  it can  be shown  that their

strength  parameters  should  be adjusteci  as Eq. (60) and
Eq.  (61) respectively:

               Mr==M  (60)

               Mr=  VM['inR. (61)

In the above  equations,  M,  is the adjusted  strength

parameter and  M  is the usual  strength  parameter  given by
Eq.  (48). For  the  plastic potential of  the original  Cam-
clay  there  is no  need  to modify  the strength  parameter.
On  the other  hand, strength  parameter of  the modified

Cam-clay  should  be adjusted  as Eq. (61). In this equa-
tion, n. is the size of  the rotational  limit surface.  In deriv-
ing the above  co-relations  between  the  strength

parameters,  we  assume  that  the  central  axis  of  the plastic
potential (yield surface)  reaches  its critical  value  (rotation-
al limit surface)  while  stress  condition  reaches  the critical

state.

EXPERIMENTAL  OBSERVATIONS  AND
NUMERICAL  SIMULATIONS

  To verify  the proposed  model  triaxial, true triaxial and

torsional shear  tests on  saturated  and  remolded

Fujinomori clay  are  analyzed  in this section.  Analyses  by
the original  kinematic tirclay model  (Nakai and

Hoshikawa, l991) are  also  presented where  necessary  for

comparison.  The following table shows  the parameters
of  Fujinomori  clay.  The  original  kinematic ti,･-clay model

has six  parameters  and  the proposed  model  needs  seven

parameters, four of  which  are  common  to both models.
  Parameter  Ct for both the models  is determined from
the slope  of  the normal  consolidation  line on  a  semi

Iogarithmic plot (e. vs.  Inp). Slope of  the unloading

curve  q  for the proposed model  is also  determined from
the experimental  observations.  But, the originai  ti,･-clay

and  the kinematic ti,･-clay model  use  an  empirical  ap-

proach  (1-KIA= Ml1.75,  Karube,  l975) to determine
C,. Thus,  the  value  of  parameter  C. varies  for the  two

models.  Friction angle  is calculated  from  triaxial com-

pression tests. Poisson's ratio  ve  is assurned  to be zero,

though  other  reasonable  values  could  be assumed  for it
because, in the case  of  soils, plastic strains  are

predominant  and  overall  stress-strain  response  is not

much  affected  by a  slight variation  in Poisson's ratio. A
value  for v,  close  to zero  increases the  value  of  coeMcient

of  earth  pressure at  rest  (Kb) under  elastic  unloading.  In
addition,  it is usually  believed that elastic  shear  strains

are  much  Iower than  elastic volumetric  strains  and  hence
a higher value  of  shear  modulus  is desirable. The

pToposed  model  does not  use  parameters or and  4.
Methods  for the determination of  or and  4 have been de-
scribed  by Nakai and  Matsuoka  (1986a) and  Nakai and

Hoshikawa  (1991) respectively.  On  the  contrary,  the

proposed  model  uses  new  parameters  a,  k. and  X).

  Parameter  X]  ( <  J\)･) determines the maximum  rotation

of  the central  axis  of  the yield surface.  In addition,  Iarger
values  of  JY; will  give Iesser final plastic volumetric  strain

in monotonic  tests (for example  triaxial compression)  on

normally  consolidated  clay. Thus, it should  be so chosen

that the desired final plastic volumetric  st'rain be obtained

in the analysis  of  a triaxial compression  test, This

parameter  is independent  of  parameters  a  and  k,. Thus

Table  1. Soil parameters  of  Fajinomori  clay  for yarious  models

Parameter OriginalmodelProposedmodel'

Cr==Al(1+eo) 5.08xlo-2 S.08xlo-2
C.=rc/(1+eo) 1.12xlo'2 O.47× lo-2

'qcomp 33ne 33.7o

Ve o.o o.o

a O.7 x

4 02 x

a x O.20
kr x o,3e
Xrtt x O.30
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.\1 should  be determined  before a  and  k,.
  Parameter k, controls  the oyeral1  stress-strain

response.  Larger values  of  k. cause  the central  axis  to
rotate  at a faster rate  towards  its limiting value;  thus the
initial response  is very  sensitive  to  it. It should  be adjust-
ed  by  trial analyses  of  triaxial compression  tests on  nor-

mally  consolidated  clay  until  a  good  fit to the  stress-

strain  curve  is obtained.

  Parameter  a  controls  the peak stress ratio  and  stiffiiess

of  the stress-strain  curve  of  overconsolidated  clay.  The
larger the value  of  a, the higher will  be the peak stress  ra-

tio and  the stiffer will  be  the  initial response  of  overcon-

solidated  clay.  But this parameter  has no  effect on  the
normally  consolidated  clay,  so  it should  be determined af-
ter determining J\) and  k. by  trial analyses  of  monotonic

triaxial test on  overconsolidated  clay  or  from cyclic triaxi-
al  tests.

  Stress paths followed in the monotonic  triaxial  and

true thaxial tests (Nakai et al., 1986b) at  constant  mean

stress are  shown  in Fig. 4. In this figure e indicates the an-

gle between  the a.-axis  and  the corresponding  radial

stress  path  on  the deviator plane. The angle  e==Oe and

e=1800  denote the stress  paths of  thaxial compression
and  extension  respectively.  Other  stress paths (e=15e,
e==300 and  e==450) denote three different principal
stresses.

  Figures 5-9 show  the observed  and  predicted responses
in the triaxial and  true triaxial tests. In these figures, prin-
cipal  strains  are  plotted against  the stress ratio  (qfp) and
the  volumetric  strain  (e,) is plotted against  the major  prin-
cipal  strain. Moreover, solid  curves  in these figures are
the predicted responses  by the proposed model,  and

broken curves  are  those by the oTiginal  kinematic ti,･-clay
model.  Figures 5 and  6 correspond  to the triaxial com-

pression and  extension  tests respectively  and  Figs. 7-9 are

those of  the true triaxial tests. From  these figures it can
be seen  that the original  model  overpredicts,  but the
proposed  model  closely  predicts volumetric  strains.  This
is achieved  by linking rotational  variable  in the  harden-
ing process. Both  the models  predict strengths  well  but
show  relatively  fiexible stress-strain  responses  at low
stress  ratio  because of  the shape  of  the plastic potential,

which  is similar  in shape  to the original  Cam-clay  model.

  Two  simple  cyclic triaxial tests at constant  mean  stress

qlp

1.S

t

-5

o

i"li

 ' .  'E..1
 t'-:････-'i

 '

 ,
 4
 ･l･//

 -  'tt
 t. ..t.dt
 '

-sttt:,･･t!j:'lt'e

  ..L..p-

 t-

U

TriaxialOompressio
   /

   
ip=196kPa

''x.''''eY
o

2

4Ev

 (%)

.10 -s uE,

 (%)s

10 IS

Fig. 5. 0bserved and  predicted stress-strain  relatiolls  for triaxial  com-
      ,
   presslon test

qlp

1.S

1.

      i

o.s

o

  E  3''-i'

  i' '''   i

   i-.i

 r･..!.t.t.t/tttt
'li

    E

 - 
t,tlr--

-/-

TtiaxialExtension
   /
   

ip=196kPa

'''',,:r,s･,'lEv..!....-.

 ..-....1-..

o

2

-.+'"....."....
 4Ev

 (%)

U a1

Fig. 4. Stress paths of  triaxial and  true trlaxial tests on  the octahedral

   plane

10 5 oei

 (%)-s

.10 -IS

Fig. 6. 0bserved  and  predicted stress-straill  relations  for triaxial  ex-

   tension test

qlp

1.S

1

O.5

o

.10 -s oEi

 (%)s

10 IS

o

2

4Ev

 (%)

Flg. 7. 0bsevved  and  predicted stress-strain  relations  for true triatrial

   test (e=lso)



The Japanese Geotechnical Society

NII-Electronic Library Service

The  JapaneseGeotechnical  Society

110 CHOWDHURY  ET  AL.

(CY-1 and  CY-2) are  perfermed  and  corresponding  ana-

lyses are  shown  in Figs. 10, 11. In these tests, soil samples
are  first sheared  along  compression  and  extension  sides  re-

spectively  to principal stress  ratio  of  three (ailo3==3),
and  then  sheared  in the  reverse  directions. Both  the

models  show  stress-induced  anisotropy  by predicting elas-
tic responses  at  the initial part of  reverse  loading fol-

lowed by elastoplastic  responses.  In case  of  the original

model,  stiffhess falls drastically as  soon  as  plastic loading
occuTs  and  hence gives very  soft  responses  (Figs. 10(a),
11(a)). On  the other  hand, the preposed model  shows  a

gradual drop in stiffiiess due to the consideration  of  a  sub-

loading surface.  Also, it shows  substantial  reduction  in
volumetric  strains  (Figs. 10(b), 11(b)) during the reverse

loading process but the original  model  shows  excessive  ac-

cumulation  of  volumetric  strains. Two  other  features,
softening  and  increase of  strength  due  to cyclic  loading,

though  not  very  prominent  in these two  tests, can  be seen
at  the final stage  of  shearing.  The  proposed  model  shows

a  similar  trend but the original  model  does not  show  such

behavior.

  Figure 12 shows  the stress-strain  diagrams of  a con-

stant  amplitude  (ai1ff3=3, both in compression  and  ex-

tension) cyclic triaxial test at constant  mean  stress. As  ob-

served  in the test, the propesed model  shows  stiffer

responses  in the successive  loading loops. In other  words,

the magnitude  of  strains  decreases and  hence the area  en-

closed  by  each  successive  loop  (Fig. 12(a)) decreases.
Though  the  proposed  model  shows  stabirization  of  volu-

metric  strains  (Fig. 12(b)), the rate  is not  as fast as  it is ob-
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Fig. 12(b) Observed  and  predicted stress ratio  ys.  yolumetric  strain  re-

   latiolls of  constallt  amplitude  cyclic  triarclal test (CY-3)

served  in the experiment.  On  the  contrary,  the original

model  repeats  the same  loop in both the figures. Also, the

proposed  model  predicts substantial  increase of  strength

at the final stage  of  shearing  and  shows  softening.  Ex-

perimental  data also  show  increase in strength  (compare
to monotonic  test) but softening  could  not  be observed
since  it is a stress-controlled  test. It is worth  mentioning

that performing  strain  controlled  cyclic  triaxial tests'is

very  diMcult especially  under  triaxial extension  condi-

tions.  Thus the cyclic  tests presented in these paper  are

carried  out  under  stress  controlled  conditions.

  Figure  13 shows  the results  of  a  variable  amplitude

cyclic  triaxial test at constant  mean  stress. In these figures

(Figs. 13(a), 13(b)) too, it can  be seen  that the proposed
model  predictions are  quite representative  of  the ex-

perimental observations.
  Figure 14 shows  stress strain  curves  calculated  by the

proposed  model  for isotropically over consolidated clay

under  thaxial compression  (Fig, 14(a)) and  extension

(Fig. 14(b)) with  varying  initial over  consolidation  ratio.
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These analyses  are carried  out  using  the same  set ef

parameters  as  shown  in Table  1. Since we  have not

suMcient  data of  triaxial tests at constant  mean  stress on

overconsolidated  Fujinemori clay  samples,  only  analyses

are  shown  in these figures. This  has been  done  to empha-

size the fact that the proposed  model  qualitatively simu-

lates the characteristic  features of  overconsolidated

clays.  It can  be observed  from  these figures that

elastoplastic  responses  are  obtained  from  the  start  of

shearing  but the conventional  models  give completely

elastic response  up  to the peak. It is also  observed  that

the  strength  increases with  the increase ofinitial  over  con-

solidation  ratio  and  stress-strain  relations  become  stiffer.

It is clear in these figures that the strength  predicted un-

der triaxial extension  for a  particular value  of  initial

OCR  is much  less than  the  strength  obtained  in triaxial
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compression  for the same  initial OCR,  which  is achieved
through  the use  of  modified  stress  tij. With  the increase of
initial OCR,  clay  samples  become  less contractive  at the
initial stage  of  shearing  and  more  dilative as shear  con-

tinues. After reaching  the peaks, clay  elements  soften

and  eventually  reach  the critical state  at large shear

stains. The predicted trend qualitatively fits the observed
trend  reported  before (Chowdhury and  Nakai, 1997).

  Conventional models  (for example  Cam  clay  and  ti,･-

clay  model)  are  based on  the assumption  that there is no
effect  of  stress  path  on  the  amount  of  hardening (plastic

10

8

   6AdiptMcoaK4vcr

2

oo

2 4 6

p'(x98kPa)

s 10

Fig. 15. Stress paths foHowed  in triaximl compression  tests te check

   the effect of  stress  paths on  the stress-strain  behavior

volumetric  strain) if a  certain  state  of  stress is attained  by

elastoplastic  loading. To be more  specific,  let us  consider

Fig. 15 in which  isotropically consolidated  clay  samples

(peint A) are brought to the same  stress condition  (point
F) through  various  stress paths. Then, al1 samples  are

sheared  at  constant  mean  stress, Conventional models
give the same  amount  of  volumetric  strains at point F in-
dependent of  the stress  paths followed. But it is ex-

perimentally observed  that the amount  of  volumetric

strain varies  depending on  the  stress  paths followed with
a definite trend. Figure 16(a) shows  volumetric  strains

vary  at point F in the range  of  three percent. It can  be ob-

served  that the sample  that experiences  larger shearing

strain  shows  lesser volumetric  strains.  In Fig. 16(a) path
ABFG  shows  the least volumetric  strain and  shows  the
largest shearing  strain  (Fig. 16(b)). On  the contrary,  path
AEFG  shows  maximum  volumetric  strain  and  minimum

shearing  strain  at  point F. The  other  two  stress paths are
also  arranged  in the same  order.  Analyses  by the

proposed model  also  show  the same  trend, although  it

shows  a larger amount  of  shearing  strain  during
anisotropic  consolidation  because of  the shape  of  plastic
potential. Analyses show  that finally all samples  reach

the  critical  state and  the volumetric  strains  are  the same.

Experimental  observations  also  show  a similar  trend, ex-
cept  for path ABFG.

  Now,  we  will  show  a  few torsional shear  test results  on

hollow cylindrical  samples  to simulate  rotation  of  prin-
cipal  stress axes.  Figures 17(a) and  17(b) show  the stress

paths followed in the tests on  (o.- oe)12  vs.  T.e and  onp

vs.  q planes respectively.  In HC-1  and  HC-2  sarnples  are

first sheared  under  triaxial compression  (o.>ae :ar,

Tae==O)  and  extension  (aa<ae=o. T.e=  O) respectively,

and  then  torque  is applied  to rotate  the principal direc-

1.SO

1.2S

1,oo

q/p o.7s

O.50

02S

o.ooe1234sEv

 (%)
 (a)

fi7s910

Fig. 16(a) Stress ratie  ys.  volumetric  strain  relations  for four test

   paths and  correspondimg  analyses  by the preposed model
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Fig. 16(b) Stress ratio  ys.  deviator strain  relations  for four test paths

   and  corresponding  analyses  by the proposed  model

NII-Electionic  



The Japanese Geotechnical Society

NII-Electronic Library Service

TheJapaneseGeotechnical  Society

114 CHOWDHURY  ET  AL.

1.2

1.0

o.s

Tk
 

osge6

   O.4
 vePO,2

･o.o

.O.2

HC-2 HC-1

    StartingPoint

/

HC.3HC-4

.1.0.O.5o.oo.s1.0

(a,'O,)I2 (x 98 kPa)

      (a)

1.52.0

s.o

4.0

R  3.otcge6tr

   2.0

1.0

e.o

Ha4

StartingPoint

HC-1HC-2HC"3

Fig. 17(a) Stress paths of  the  torsional  shear  tests on  (o.-ae)/2 ys.
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Fig. 17(b) Stress paths of  the torsional shear  tests om  p  ys.  g plane
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Fig. 18. 0bserved  and  predicted stress-strain  respollses  of  torsional

   shear  test HC-1
Fig. 19. 0bserved  and  predicted stress-strain  Tesponses  of  torsienal

   shear  test HC-2

tions. On  the other  hand, torque is applied  first in HC-3
and  HC-4,  and  then  axial  and  radial  stresses are  varied  to

rotate  the principal stress axes.  The tests numbered  HC-

1, HC-2  and  HC-3  are  carried  out  at constant  mean  stress

and  in test HC-4, mean  stress increases keeping  constant

torque. In these tests, shearing  stress  (T.e) and  average

shearing  strain (7.e) are  calculated  from the applied  tor-

que (T) and  angular  displacement (AO in degree) as

follows:

3T
Tae

 
=2z(rg-r?･) (62)

n(r2-r?･)
7ae=27oH(rZ-r?･)Ae (63)

where  re and  ri are  the outer  and  inneT radius  respectively

and  His  the height of  the sarnple.  Figures 18-21 show  the

stress-strain  diagrams of  these tests. Predictions by the

original  and  the  proposed  rnodels  are also  shown  in these
figures. It can  be seen  that at the start of  rotation  of  prin-

cipal  directions, there is a little increase of  stiffhess in the

stress-strain  curve,  which  makes  a  kink in the  observed

stress-strain  curves.  Proposed model  predictions match

the observed  stress  strain  behavior with  a  little soft

response,  which  rnay  be due to flat plastic potential used
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ing conditions.  Thus,  it can  be  considered  as  a  model  for

generalized loading conditions  in the  analysis  of  bound-
ary  value  problems.
 Triaxial, true triaxial and  torsional shear  tests were  per-
formed to verify  the proposed model.  In modeling  the be-
havior of  geomaterials it is very  common  to use  the non-

associated  flow rule. But, the proposed  model  shows  very

good  agreement  with  the experimental  results  even  using

the  associated  fiow rule  in the  tij-space. A  very  simple

plastic potential (yield surface)  with  a  sharp  tip is consi-
dered in this paper. Consideration of  a smooth  plastic

potential could  increase the overall  performance  of  the

model,  which  is yet to be examined.
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Fig. 21, Observed  and  predicted stress-strain  responses  of  torsiollat

   shear  test HC-4

in the model.  In Fig. 21, predicted shearing  strain  (7ae) by
the original  model  makes  an  about  turn when  axial  stress

increases while  maintaining  constant  torque.  However,

the proposed  model  response  is consistent  with  the ob-

served  behavior. This  results  from  the  difference of  evolu-

tion  rules  of  the  central  axes  of  the  yield surfaces  used  in
the models.

CONCLUSIONS

 The model  that is proposed  in this paper  dilfers from
the originai  ti,･-clay or  the kinematic tij-clay models  in
being able  to predict cyclic or  overconsolidated  clay  be-
havior properly by employing  a subloading  surface  and

modifying  the hardening rule.  In addition,  the  proposed
model  gives very  consistent  results  under  monotonic  load-

REFERENCES

1) Asaoka,  A,, Nakano,  M.  and  Noda,  T. (1997): 
"Soil-water

 cou-

  pled behavior of  heavily overconsolidated  clay  nearfat  critical

  state,'' Soils and  Foundations,  Vel, 37, No,  1, pp,  13-28.

2) Chowdhury, E. Q. and  Nakai, T. (1997): 
`tA

 generalized model  for
  clay  under  monotonic  and  cyclic leading conditions,"  Numerical

  Models in Geomechanics, NUMOG  VI, Montreal, Canada, pp.
  Ill-116.

3) Hashiguchi, K.  and  Chen,  Z. P. (1998): 
"Elastoplastic

 eonstitutive

  equation  of  soils  with  the  subloading  surface  and  the rotational

  hardening,"  Int. J. Numerical  and  Analytical Methods  in Ge-

  omechanics  (in press).
4) Hashiguchi, K. (1980): 

"Constitutive
 equations  of  elastoplastic

  materials  with  elastie-plastic  transition,'' J. Appl. Mech.  ASME,

  Vol. 47, pp. 266-272.
S) Karube,  D. (1975): 

``Nonstandard
 triaxial testing method  and  its

  problems,'' Proc. 20th Symp. on  Soil Engrg., JSSMFE,  pp. 45-60

  (in Japanese),
6) Matsuoka,  H.  and  Nakai, T.  (1974): 

t`Stress-deformation
 and

  strengthcharacteristicsofsoilunderthreedifferentprincipalstress-

  es,"  Proc. JSCE,  No.  232, pp. 59-70.

7) Matsuoka,  H.  and  Nakai, T. (1977): 
"Stress-strain

 relationship  of

  soil based en  the  SMP,"  Prec, Specialty Session 9, orh Int. Conf.

  on  SMFE,  pp. 153-162.

8) Nakai, T. and  Matsuoka,  H. (1983): 
t`Shear

 behaviors of  sand  and

  clay  under  three dimensional stress condition,"  Soils and  Founda-

  tions, Vol. 23, Ne,  2, pp. 26-42.

9) Nakai, T, and  Mihara, Y. (1984): 
"A

 new  mechanical  quantity for
  soils  and  its application  to  elastoplastic  constitutive  models,"  Soils
  and  Foundations, Vol. 24, No.  2, pp. 82-94.
10) Nakai, T. and  Matsuoka, H. (1986a): 

"A
 generalized elastoplastic

  constitutive  medel  for clay  in three-dimensional  stresses,''  Soils

  and  Foundations,  Vol. 26, No.  3, pp, 81-98,

11) Nakai, T,, Matsuoka,  H., Okuno,  N.  and  Tsuzuki, K. (19g6b):
  

"True
 triaxial  tests on  normally  consolidated  clay  and  analysis  of

  the  observed  shear  behavior using  elastoplastic  constitutive

  models,"  Soils and  Foundations,  Vol, 26, No,  4, pp, 67-78.

12) Nakai,  T. (1989a): 
"An

 isotropic hardening elastoplastic  model  for
  sand  censidering  the stress path dependency  in three-dimensional

  stresses,"  Soils and  Foundations,  Vol. 29, No.  1, pp. 119-137.

13) Nakai, T., Fujii, J. and  Taki, H. (1989b}: 
"Kinematic

 extensien  of

  an  isotropic hardening  rnodel  for sand,"  Proc. NUMOG  III,

  Niagara, pp, 36-45.

NII-Electionic  



The Japanese Geotechnical Society

NII-Electronic Library Service

TheJapaneseGeotechnical  Society

116 CHOWDHURYET  AL.

14) Nakai, T, and  Hoshikawa,  T. (1991): 
"Kinematic

 hardening model

   forclayinthreedimensionalstresses,"ComputerMethodsandAd-
   vances  in Geomechanics,  Vol. 1, pp. 655-660,

15) Nakai, T., Taki, H.  and  Funada,  T, (1993): 
``Sirnple

 and  general-

   ized modeling  of  various  soil behavior in three-dimensional  stress-

   es,"  Modern  Approaches to Plasticity, Elsevier Science Pub., pp.
   561-584.

16) Rescoe, K. H., Schefield, A. N. and  Thurairajah, A.  (1963):

   
``Yielding

 of  clays  in states wetter  than  critical,''  Geotechnique,

   Vol. 13, No.  3, pp. 211-24e,

17) Roscoe, K. H. and  Burland, J. B. (1968): 
``On

 the  generalized
   stress-strain  behavior ef  

`wet'
 clay,''  Engineering Plasticity, Cam-

   bridge University Press, U.K., pp. S35-609.

18) Sekiguchi, H. and  Ohta,  H.  (1977): 
"Induced

 anisotropy  and  time

   dependency in clays,:'  Proc. Specialty Session 9, 9th Int. Conf. on

   SMFE,  Tokyo,  pp. 229-238.

NII-Electionic  


