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                                         ABSTRACT

  During  a self-boring  pressuremeter test (SBPMT) a  cylindrical  cavity  is expanded  from a finite radius.  To determine

undrained  shear  strength,  c., of  a  saturated  clay, SBPMT  data is analyzed  using  the cylindrical  cavity  expansion  theo-

ry,  and  curve  fitting methods.  At  present, there  is no  completely  consistent  and  reliable  method  to estimate  the value

of  modulus  of  elasticity. In this paper, an  alternative method  has been presented to first estimate  c. and  limit pressure,
pL, using  a  logarithmic model  and  then determine initial tangent modulus,  Ei, secant modulus  at failure, Esif, and

secant  modulus  at  half the value  of  (oi-a3", Eso, using  a  hyperbolic-model. Values  of  c. determined from this

method  compare  well  with  those determined from  other  methods.  The  predicted values  of  Ei and  Ego compare  well

with those determined from the triaxial tests. The values  of Eso also compare  well  with  the values  of  modulus  deter-
mined  from  unload-reload  cycle  of  SBPMT.
                                                                  .
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INTRODUCTION

  The  theory of  exparision  of  cavities  in a  semi-infinite

soil mass  (Gibson and  Anderson, 1961; Vesic, 1972;
Baguelin et al., 1978; Ladanyi, 1972; Palmer, 1972) is
being widely  used  for the solution  of  a  number  of  ge-
otechnical  problems such  as (i) the arialysis of  the pres-
suremeter  tests, (ii) estimating  excess  pore  pressure
distribution around  cone  penetrometers (Baligh and

Levadoux, 1980; Gupta  and  Davidson, 1986), and  (iii)
the bearing capacity  of  deep foundations (Vesic, 1972). A
self-boring  pressuremeter is introduced into a  soil deposit
with  minimal  disturbance. When  it is expanded,  it simu-
lates a  cylindrical  cavity  expansion  starting  from a  finite
radius.  It is generally agreed  that  the  existing  methods  for

the analysis  of  the SBPMT  data provide a  reasonable  esti-

mate  of  the undrained  shear  strength,  e.,  and  the

coeMcient  of  lateral earth  pressure at rest, Kh. However,
these methods  do not  provide a  reasonable  estimate  of

the modulus  of  elasticity, E. Seme  researchers  (Wroth,
1984) use  the value  of  E  obtained  from unload-reload

loops, but others  (Huang et al., 1991) have found that

the determination of  the loop slope  or gradient as a

secant  is sensitive  to 
``noise"

 in the data, especially  when

the  hysteresis is large. Considering al1 the uncertainties  in-
volved  in the determination of  E, Chameau  et al. 1987
has suggested  not  to use  the SBPMT  to determine this
soil parameter. An  alternative  method  to provide a

reasonable  estimate  of  initial tangent modulus,  E･, secant
modulus  at  failure, Ekf, and  seeant  modulus  at half the
 i)

   Manuscript  was  received  fer review  on  November 20, 1998.

value  of  (ai-o3", Eso, is presented in this paper.

CYLINDRICAL  CAVITY  EXPANSION

  When  the internal cavity  pressure is increased, a  cylin-

drical zone  around  the cavity  passes into the state of
equilibrium.  The  plastic zone  expands  until  the pressure
reaches  an  ultimate  value.  In SBPMT,  the expansion  test

is stopped  prior to reaching  ultimate  state to prevent
bursting the membrane  of  the device. For  the analysis,  it
is assumed  that the cavity  expansion  occurs  under  radial

plane strain  and  undrained  conditions.  A  brief summary

of  the theory  is given below  (For details, see  Gibson  and

Pmderson,  1961; Baguelin  et  al., 1978).

(Zij EIZxsticZone: Considertheexpansionofacylindri-
cal cavity  of  initial radius  Ro in an  elastic, homogeneous
and  Ssotropic medium  defined by an  undrained  modulus,

E, Poisson's ratio, v, and  undrained  shear  strength,  c..

For the elastic phase  of  the test, the constitutive  equa-

tions are  as follows:

               1

           
err=[g[(arr-V(aew+a4z)],

                1

           
eee=E[(Oee-V(arr+azt)],

                1

           
azz 

=Iiil
 [(azz-V(Orr+aee)l=O. (la)

Where  at any  instant of  time, arr, eee, ezz, arr, aea, and  azz

are  the radial  displacement, principle radial,  circumferen-
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tial, and  axial  strains  and  stresses, respectively.  At  any

instant of  time, R(t), r(t), e,, and  4,. are  radius  of  the
cavity,  radial  distance of  a  particle from the axis  of  the
cavity,  radial  displacement of  the particle at radial  dis-
tance r(t), and  radial  displacement at the face of  cavity,

respectively.  Substituting for a,, in expressions  for a,.

and  oee,  the compatibility  equations  for plane strain  are:

             der
                 =(1-v2)a,,-v(1+v)cree,    Eerr=-E
             dr(t)

              e,
                =(1-v2)aee-v(1+v)a.  (lb)    Eeee=-E
             r(t)

    arr=am+ZLarr,

    aee==om+Aaee+  (lc)

The  equations  of  equilibrium  are

             darr arrrmeee

             dr(t)+  r(t)  
=O'

 (ld)

  If stresses  are eliminated  using  the above  equations,

the elastic equation  satisfies the'following.

              d24r                        d6r
         r2(t)                  +r(t)                            

-g,=O
 (le)

             dr2(t)                       dr(t)

General solutions of  this equation  are:  e, =  r"(t), where  n

must  satisfy  (n+1)(n-1)= O, and  therefore has roots  of

n=  
-1

 or  n==  1. Then  e.=Ar(t)+Brni(t); for r(t)=a,
4r=O, thereforeA =O;  at the cavity  face, r(t)=R(t),  and

4.= 4., therefore  B=C.R(t).  Then,

                4reR(t)
             4r= r(t) 

'

                  d4r ercR(t)
             

err=dr(t)=-
 r2(t)  

'

                  4r 4rcR(t)

             
eee==r(t)=

 r2(t)  
'

Similarly, it can  be shown  (Beguelin et al.,

                            R2(t)

           
a,.=

 
am+[P(t)-am]

 r2(t)  '

                            R2(t)

           
Oee=

 
am-[P(t)-am]

 r2(t)  '

               (1+v)R(t)
           4rc= E  [p(t)-am]･

Where

1978):

(lf)

(lg)

(a) ant==oh=K6oS+7.h.=KbaS+u.;  (lh)

(b) prior to the expansion  of  the cavity,  ah  ==  a.=mean

horizontal stress, Ko=coeMcient of  lateral earth  pressure
at  rest,  aS  

=effective
 venical  stress, 7.=unit  weight  of

water,  h.=:depth of  water  below  water  table, and

uw  :pore  water  pressure due to ground  water  table,

v=Poisson's  ratio  (O.5 for saturated  clay); and  (c) at any

instant of  time  (t), p(t)==internal cavity  pressure.
(Zij PltLstic Zone:  In the plastic zone,  at any  instant of
time, o?.-aee  is equal  to 2c.. Then  Eq.  (ld) reduces  to

da,.ldr(t)+2cL,/r(t)=O. Using  the  condition  that
ar. =p(t)  when  r(t)=R(t),  the  solution  of  the differential
equation  is

            crr=p(t)  re 2cn ln (flltt))) (2)

            aee==arr-2cu,  (3a)
                arr+aua

                                          (3b)            amp==
                   2

where  at time  t, a..  is the mean  horizontal stress in plas-
tic zone.  From  (2), at r(t)=lh==radius  of  plastic zone  at

time  4 orr=o.=a.+c.=p(t)-2cu  ln IiblR(t)], then

          fp
             ..,e(p{t)7ammqu)I2cu,  (4a)
         R(t)

         4rc=R(t)- R2(t)-r;+(,},-4.)2. (4b)

The equation  for no  volume  change  in the plastic zone
and  the radial  displacement at the interface of  plastic and
elastic zones,  4., are  given by

          R2(t)-R3=rB-(,z,-C,,)2, (5a)
where

                (1+v)tl,ca t)

            4rp= E  
=iii･

 (sb)

Where, rigidSty  index

                      E

              
(L)=2(1+v)c.'

 (5C)

Substituting values  of  fp 1R(t) and  4. from (4a) and  (5b),
respectively,  in (5a) and  re-arranging  terms, we  get

         i-.{l(3,)=:.;i,)-(.z,)-irp,))2

                 :.:,,[i-(i-,lt)

2

]
                   r2 r4L-ih
                  R2(t)k 4I; /
or

 rBR2(t)(

 i -R{l(3t))(4itt i)= 
e(p(t)-amrcN)/cu

or

   p(t) ==  o.+ctr+cu  in [( i-RIII(it))(41tt i)]'
   For  a.>a..  (6)
Where a.=the  radial  stress at a  radial  distance equal  to
rb. The  expression  4I;1  (4L- 1) can  be  expressed  as  11(1 1
L-114II). The  value  of  the term  114I,2 is a  very  small

and  can  be neglected,  then  (6) reduces  to the following
well-known  Gibson and  Anderson (1961) formula.

  p(t) =  om  + cu + cu In [( 1 -  R{lit))( 2(1 +E,) c. )]
   For  a,>a..  (7)
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Fig. 2. During  expansion  of  cylimdrical  cayity  in saturated  clay,

   relationships  between  (a) normalized  maximum  shear  stress and

   radial  strairt, fo) normalized  rfidial stress alld radial  straill, and  {c)
   llormalined  circumferential  stress snd  circumferential strain

Gibson  and  Anderson  formula has been used  extensively

to determine the soil properties of  clayey  soils using  the

pressuremeter  or  self-boring  pressuremeter data. The
value  of  c.  is determined by selecting  two  points on  the

curve,  say,  using  internal cavity  pressure values  at A VI
V==O.1  and  O.3.

  Figures 1 and  2 show  the  stress-strain  relationship  at

various  stages  of  expansion  (i.e. at p(t)=a.+O.5c.  to

am  +O.5c.), when  values  of  aI,  u., c. 1aS, Kb and  L  of  the

saturated  clay  are  50 kPa, 75 kPa, O.4, O.5 and  100, re-
spectively.  At various  normalized  radial  distances, r(t)1

R(t), values  of  (orr-am)lc., (oee'am)lc", amplam,

(arr- eee)/cu,  and  (arr- om)/c.  are  calculated  using  (lg)
for the elastic zone,  and  using  (2), (3a), and  (3b) for the
plastic zone,  respectively.  Values  of  Err and  eee are calcu-

lated using  (lf) for the elastic  zone  around  the cavity,

and  using  (8b) for the plastic zone  around  the cavity.  As

shown  in Fig. 1(b), for each  stage  of  expansion,  the  value

of  (eee 
-

 am)1c.  begins to decrease from the face of  cavity

and  decreases to -  1 at the interface of  plastic and  elastic

zones;  thereafter it begins to increase in the elastic  zone.

In Fig. 2, the normalized  stress-strain  relationships  that

may  develop at various  radial  distances have  been shown.
For  this purpose, horizontal axis  has been used  both for
e.. and  eee and  for r(t)/R(t).  At distances of  r(t)  <  fp, the

value  of  (a..-aee)1c. increases linearly unti!  it reaches  a

peak value  of  1, indicating that a  state of  equilibrium  has
reached,  thereafter, e,. increases at the peak  value.  Prior

to reaching  a state  of  equilibrium,  the  increase in the
value  of  a.. is equal  to the decrease in the yalue  of  aeo,

however, both the a,, and  aee increase after  the state of

equilibrium  has been  reached.  Therefore, prior to reach-
ing a  state  of  equilibrium,  values  of  (a..-crm)leu and

((aae- am)/q  vary  linearly to 1 and  
-

 1, respectively,  there-

after, a.. and  eee  increase rapidly  with  increase in the
values  of  (a,.-a.)lc. and  (err-o.)lc., respectively.

  In the cavity  expansion  theory  for undrained  condi-

tions, it is assumed  that  the finite plastic zone  is incom-

pressible and  semi-infinite  zone  around  the plastic zone  is
elastic. Another case  can  be considered  where  the infinite-
ly long  cylindrical  cavity  expansion  occurs  from finite
radius  in an  infinite, incompressible and  homogeneous
medium;  the cavity  has a radius  R  at  time  zero,  and

radius  R(t) at time  t. At any  time t, a  soil element  located

at radial  distance r(t), is related  to its initial position r  at

time t=O  by a  simple  expression  (8a), and  the radial  and

the circumferential  strains with  respect  to the  displaced

position of  the particle are  defined by Eq. (8b), (Gupta,
 1991).r(t)=[r2+R2(t)-Ri]i12,

4.=r(t)-r=r(t)-[r2(t)+R
    d4r r(t)
Srr=
   dr(t)

    er

=1-

3-R2(t)]it2,

eee=: '
    r(t)

[r2(t)+R3-R2(t)]V2e.r'

(8a)

(8b)

For the incompressible finite plastic zone  surrounded  by
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semi-infinite  elastic zone,  R2(t)-R2  is equal  to

rS 
-(rb-

 4.)2. Equations  (8a) and  (8b) wi11 also  work  for
incompressibie finite plastic zone,  if R2(t)-R2  is
replaced  by rS-(b-4.)2.  It may  be noticed  that the cir-
cumferential  strain  in the infinite incompressible medium

is equal  to the ratio  4.lr(t), while  the  radial  strain is
equal  to the ratio 

-e.lr.
 On  the contrary,  the absolute

values  of  both the radial  and  circumferential  strains  with

respect  to the displaced position of  the particle in the  elas-

tic zone  are the same,  i.e. equal  to 4,lr(t), see  (lf). Dis-
placements, strains, and  stresses  in the  semi-infinite

elastic zone  around  the plastic zone  can  be calculated
assuming  that (i) the interface of  the plastic-elastic zones

is the  face of  the cavity, (ii) the radius  of  the cavity  is fp,
and  (lii) displacement at the face of  the cavity  is 4.. Thus
the analysis  is based  on  the continuity  of  the displace-
ment  at  the interface of  the elastic-ptastic zones.  Strains
in the ptastic zone  for distances less than  fp are calculated

from (8b). Strains in the  elastic zone  for distances equal
to or  greater than  fp are calculated  after replacing  erc by
4rp in (lf). Thus  to maintain  continuity,  the interface of

elastic-plastic  zones  is considered  to be a  part of  elastic

zone.

ANALYSIS  OF  PRESSUREMETER  TEST  DATA

  Several methods  are  in use  for the analysis  and  the in-
terpretation of  the pressuremeter test data. For the
Gibson and  Anderson  method,  either  (1) an  iterative
procedure (Ladd et  al., 1980; Benoit and  Clough, 1986),
or (2) a  procedure based on  matching  the  relationship  ob-

tained from measurements  both during  loading and  un-

loading with  that computed  from the assumed  values  of

G,  c., ah  (Jefferies, 1988), is used.  More  advanced  and  su-

perior methods  which  have  provided  useful  results are

those proposed  by Baguelin  et al. 1978, Ladanyi, 1972,
Palmer, 1972 and  Prevost and  Hoeg,  1975. Several curve

fitting techniques have also been developed such  as  those

proposed  by Wroth and  Hughes, 1973, Denby, 1978,
Ladd  et al., 1980, Arnold,  1981, and  Huang  et al., 1991.

ALTERNATIVE  METHOD  FOR  ANALYSIS  OF
SBPMT  TESTS

  Expressing  (6) in the following form can  develop an  al-

ternative  method  for the analysis  of  the SBPMT  data

p(t) ==  am+cu+c.  In (4itt i)+c. 
In ( i-R{l(it))

    =ai+a2  ln (i-R5(3t))
   =ai+a2  ln (AvV)
   =ai+a21nsv.  For ar>arp  (9)

ai ==pL  == a.  + c. +  c. In (4itt 1), (1Oa)

a2=cu.  (10b)

Where  V=volume  of  cavity  at time t,
AV=  V-  P6=change  in yolume  of  the cavity  =n[R2(t)

-Ri],
 Vh=initial volume  of  cavity=rrR3,  e.=AVI

V=n[R2(t)-R3]lnR2(t)  =1-RglR2(t),  and  pL=  limit
pressure when  the value  of  A VI Vis equal  to 1. It may  be
noted  that  A  VI  Vbecomes  1, when  A  Vis equal  to Vb; this
condition  is almost impractical to achieve  in a  test.

Mathematically, the importance ofpL  is simiIar  to a  y-in-
tercept of  a straight  line, signifying  that when  x=O,  the
value  of  the y-coordinate is equal  to y-intercept. Similar-

ly, pL  is a  y-intercept ofp(t)  versus  ln (A VIV)  linear
relationship,  when  the value  of  x=  ln (A VI  V)  is equal  to

zero.  Therefore, using  this property, the value  ofpL  is al-
ways  theoretically calculated  from p(t) versus  ln (A VI
V)  relationship.  As  shown  by (10a), the value  of  pL is a
property of  clay  and  has a  specific value  which  depends
upon  am,  crt and  L.

  Equation (9) can  be transfbrmed  as a  straight  line, by
substituting  as  x=ln  (e,) andy=p(t).  Using the method
of  least squares  for a straight line, values  of  ai and  a2 are

given by (1la) and  (1lb), respectively  (Harr, 1977).

                 xx2Xy-XxZxy

             
al=

 nzx2-(xx)2  
'

or

nXcy-XxXy

a2=:

    nXx2-(zx)2

X  (ln e.)2Xp(t)  
-E

 in e.Xp(t)  ln a.
al=
        nX  (ln e,)2 -(X  ln e.)2

   nX  ln e.p(t)  
-X

 In e,Xp(t)

,

(11a)

                                         (11b)    a2=
          nX(lne.)2-(Xlne.)2  

'

Where  n  
=number

 of  pressure increments at which  meas-

urements  of  pressure and  volume  are  made  during  the
test, and  p(t) and  e. are  the  measured  readings  at each
       ,
pressure mcrement.

  The  value  of  a2 is equal  to the value  of  the undrained

shear  strength,  c. (Wroth, 1984). When  the value  of  c. is
substituted  in (10a), the sum  of  terms containing  L  and

a.  is obtained.  Values of  L, a.  ==  ah, and  Kb can  be deter-
mined  from any  of  the following three procedures.
@  Aocedure  1: If the clay  behaves as aperfectly

linear elastic  material  in an  unloading-reloading  cycle  per-
formed in a  SBPMT  test, the slope  of  the straight  Iine
relationship  between  p(t) and  circumferential  strain  will

be  equal  to twice  the value  of  shear  modulus,  G,  see

Wroth  (1984). Using Eq. (lg), this is also  illustrated
below:

               4rc (1+v)(P(t)-om)
          

aee
 
=R(t)=

 E  
'

                p(t)-a.  E

          
Siope=

 eee 
=i+v=2G'

L is equal  to G1  c. and  G  is equal  to El  2(1 +  v). The  value

of  L  is substituted  in (1Oa) to determine values  of  ah  and

k.(Zij
 Procedure2:  Atthestartoftheexpansiontestthe
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membrane  fits tightly over  the instrument  and  has the
same  diameter as the cutting  shoe.  In theory no  expan-

sion  of  the membrane  should  be detected until  the ap-

plied pressure is equal  to the in situ total lateral stress  in
the ground in contact  with  the pressuremeter. In reality

there will  be some  small  compliance  of  the instrument it-
self, until  at a point, known  as the lift-off pressure on  the

expansion  curve,  the soil starts to deform under  increas-
ing lateral stress. The lift-off pressure is in situ  total later-
al stress,  for details see  Ghionna,  Jamiolkowski  and

Lancellotta, 1982 and  Lacasse and  Lunne, 1982. When
the information about  the ground  water  table and  the

unit  weights  of  the subsurface  layers is available,  the

value  of  Kb can  be readily  determined from  the known
value  of  ah.  Values of  L, and  E  are  determined by  sub-

stituting  the value  of  a.==ah  in (10a). 
,

(℃) Procedure3: Theratioc./a: foranormallycon-
solidated  (NC) clay, overconsolidation  ratio  (OCR) of

overconsolidated  (OC) clay, and  Kh can  be estimated

from the following equations  (Skempton, 1957; Ladd  et

al.,  1977; Schmertmann,  1978).

           (;'1 =O.11+O.O037(PJ.),

           XavINc
                    (cu1aS)oc

           (oCR)O'8=(c./as)Nc '

           Kb=O.45(OCR)O-42. (12)

Where  P.I. =rPlasticity
 index of  clay. Using the value  of

c.  obtained  from  (10b), 1(h is determined  from  (12) and
then  values  L  and  E  are  determined from (10a).
(ZV initial 7kengent Modulus: Results of  the triaxial

tests have shown  that the stress-strain  relationship  of

both clay  and  sand  is non-linear.  It is quite diMcult to de-
termine  the  inltial tangent  modulus,  El･, accurately  from

such  tests, since  the slope  of  the stress-strain  curve

changes  rapidly  even  at very  smal1  strains. The following
hyperbolic model  (Duncan and  Chang,  1970) can  approx-

imate the  nonlinear  stress-strain  curves.

                          err

             (al-a3)==
                      1 &Srr
                     -+
                     Ei (at-a3"
             For  (ai-o3)s(ai-o3>f. (13)

Where  (cri 
-

 a3)  
==

 stress difference at any  instant of  load-
ing; (ai-a3"==2c.=compressiye strength  at  failure, or

stress dilierence at failure; and  Rf==failure ratio==

(oi-a3"IAsymptotic value  of  (ai-ai).
  As shown  in Fig. 3, initial tangent modulus,  E?, equals

the slope  of  the ai 
-

 a3 versus  normal  strain  (e) plot at the
start  of  the test. Secant modulus  at failure, Ekf, equals  the

slope  ofthe  straight  line between the origin  and  the point
ef  failure (i.e. the  first instant when  peak  shear  strength

is reached)  on  the plot of  ai  
-

 a3  yersus  E.  Secant  modu-

lus, Eso, equals  the slope  of  the straight  1ine between  the
origin  and  the point at half of  the value  of  (ai-a3b･
  The theory for expansion  of  a  cylindrical  cavity

(Gibson and  Anderson, 1961; Vesic, 1972) is based on

the assumption  that (i) Prior to the formation ofthe  plas-

tic zone,  the stress-strain  relationship  during expansion
of  the cavity  is linear in the elastic zone,  Figs. 3 and  4,

and  (ii) the  saturateq  clay  in the plastic zone  behaves as

an  incompressible plastic solid,  defined by the undrained

shear  strength,  c.,  As  shown  in Fig. 3, these assumptions
imply that the  clay  during the expansion  of  the cavity  fol-
lows  path  ACD  for Rf=O.7, or  AC'D'  for Rf =O.8,  or

AC"D"  for Rf=O.9,  in lieu ofpath  ABCC'C"E.  There-

fore, the value  of  E  used  in the analysis  of  this theory  is
the value  of  the secant  modulus  at failure, Eof, equal  to

the slope  of  secant  AC  for Rf=O.7, secant  AC'  for
Rf=O.8,  and  secant  AC"  for Rf==O.9. The  stress-strain

relationship  defined by Eq. (6) is applicable,  when  the

value  of  p(t) exceeds  the value  of  a.,  therefore  this

method  is based on  the response  of  expanding  plastic
zone.  Since the undrained  shear  strength  is dependent
only  upon  the  initial conditions  existing  before shear  and

are  independent of  the way  in which  shear  is applied

(Lambe and  Whitman,  1969), assuming  path as secant
AC  in lieu of  hyperbolic curve  ABC  should  not  sig-

nificantly  affect the  results  of  the analysis  expressed  by
Eq. (6).
  The  radial  strain, e.,  at the interface ofthe  elastic-plas-

tic interface is equal  to 4. 1rb, where  4. is defined by Eq.

(5b). Eltf is equal  to (ai-a3hle.. Substituting
cu=O.5(cri-o3",  the following relationship  for e.  is
obtained

            4. (1+v)c. (1+v)(oi-a3b

        
eip=-J'=

 E  
=

 2Eof 
'

or

                 erp  1+v
                     = . (14)
              (ai-o3h                       2Eif

At radial  distance fp, e,, is equal  to e.  and  ai 
-

 ai is equal

to (ai -  a3 ", then  substituting  these values  in Eq. (13), we

get

                         Erp

            (al-a3"=1 Rferp 
'

                     
-+

                     lt (ai-a3b
or

                     1 RfE.              erp

            (Cl-a3"=i+(al'a3"'
or

              1+v  1 Rf(1+v)
                 =-+  

,

              2Elif                   e                         2Edr

or

                2Eof 4Ekf

         
Et=(1+vxl-Rf)=3(1-R,)'

 
(15)

(Note: For  saturated  clay,  v  is equal  to O,5.)

  E3o is equal  to half the  value  of  (ai-a3h divided by
radial  strain, e..(o.sf} at half the value  of  (ai -a3".  Sub-
stituting  (ai-a3)==O.5(ei-a3>i. and  e,,=:e..(e.sf) in Eq.
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(13) following relationship  between Eso and  Ekf
tained,

05(at-a3b=err{O.5f)Rfarr(o.sf)
 
'

is ob-

1-+za(ol-a3"
or

 11-=-+

E3o Ei

Eso=Ei(1-O.5Rf)

O.5RfE3o
 

'

4Ehf(1-O.5Rf)

  3(1-Rf)
(16)
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iig. 4. For  San  Francisco Bay  Mud,  using  alternfitive method,  and  methods  of  Denby,  Baguelin et al., (19T8>, Ladanyi  (1972), Palmer  (1972), alld

   Preyost and  Hoeg  (1975), yalues  of  (a) c./ffg,  (b) 4, (c) Eif1c., (d) alc., (e} Esolc., and  (f) Efc.

  The  failure factor, Rf, which  always  has the value  less
than  unity  accommodates  the fact that at the failure
strain,  the soil  no  longer follows a  hyperbolic response

and  at strains  greater than  the  failure strain,  the soil

deforms  at  constant  value  of  (ai -  a3h,  i.e. at peak  devia-

tor stress. Values  of  Rfhave  been  found  to vary  from  ap-

proximately  O.9 for soft  plastic clays  to O.6 for overcon-
solidated  clays  (Denby, 1978). Using Eqs. (15) and  (16),
relationship  between Ei and  llof or  Eso for various  values

of  Rf have been shown  in Table  1. As previously stated
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the value  of  E  determined from  the alternative  method  is

equal  to the value  of  Eof. Therefore, after  determining
the value  of  Estr, values  of  El･ and  Eso can  be calculated  by
using  Eqs. (l5) and  (16) or  from Table  1.

EXAMPLES

  The  use  and  application  of  the alternative method  as

described above  shal1  be explained  by the following
examples.

(oj BartoonCidy:  Wroth(1984)analyzedtheSBPMT
data obtained  at  a  depth  of  43.4m  (142.4 ft) of  the
Bartoon clay  by plotting the  internal cavity  pressure, p(t)
on  a Iogarithmic scale and  volumetric  strain  on  a  normal

scale, and  found that the data can  be  approximated  bya
linear relationship.  The  slope  of  the Iinear relationship

was  found to be equal to 386 kNlm2, and  compared  well

with  the value  of  c.  of  the  Bartoon  clay.  Wroth  (1984)
also  determined the value  ofE  from the  unload-reload  cy-

cle and  found it to be equal  to 141 MNIm2.  The  same

data is reproduced  in Table 2, and  have been analyzed  us-

ing the alternative method,  described in the previous
paragraphs. Values of  ai and  a2 by using  Eq. (1lb) are

found to be equal  to 2580.5 kNlm2  and  390.4 kNlm2, re-

spectively,  see  Fig. 3(b). The  value  of  the coeracient  of

correlation  is O.99. The  value  of  a2 is equal  to the value  of

c. and  compares  well  with  the value  determined by Wroth

(1984). When  ln (A VI V) is equal  to O, the value  of  y-in-

Table 1. Et, Eij, &e  for yarieus  values  of  failllre ratio,  Ilf

FailureratioRf Ei/Eof Eso/Esf

O.6O.7e,sO.9 3.334."6.6713.33 2.332.894.007,33

tercept is equal  to ai, which  is equal  to the Iimit pressure.
  Values of  ai and  a2 are  then  used  to determine the yalue

of  L or  E  and  ah  using  Procedures 1, 2, and  3, and  the

results ofthe  analysis  are  shown  in Table 3. According to
Procedure 1 , the value  of  L  based on  the values  of  E) de-
termined  from  the unload-reload  cycle  and  shown  in
Table  3, is substituted  in (1Oa) and  a  value  of  ah  equal  to
320 kNlm2  is obtained.  This value  of  ah  is about  one-

half of  the measured  uh  value  of  646 kNlm2  and  is even
less than  the hydrostatic water  pressure of  383 kNlm2,

created  by the ground water  table, see  Table 3. Thus,
Procedure 1 using  the value  of  E  O.e. EY) from unload-

reload  cycle  provides an  inaccurate value  of  ah.  This

result indicates that the p(t)-AV!V  relationship  ex-

pressed by Eq. (6) does not  depend up  on  the value  of

Eso, instead depends on  Ekf.
  As shown  in Table 3, the rneasured  value  of  ah  =  um  is
646kNlm2  and  the value  of  e.=a2  from (11) is 390
kNlm2.  These two  values  are  used  for Procedure 2, and
the value  of  L  is determined fi:om Eq. (10a). The value  of

EY=:Eis  then  determined  from  Eq. (5c). For  the  overcon-

solidated  Bartoon clay,  the  value  of  Rf is approximately
equal  to O.6. Then,  E} and  Ese are determined from Eqs.

(15) and  (16), respectively.  The  value  of  Ese is found
equal  to 143 MNIm2  and  compares  well  with  the value  of

E  equal  to 141 MPa  which  was  obtained  from the un-

load-reload cycle, see  Table  3. This  indicates that a  linear
stress-strain  relationship  during unload-reload  cycle  fol-
lows path of  secant  AB,  see  Fig. 3(a). This result also

shows  that the assumption  that thep(t)  
-A

 VI  Vrelation-

ship  depends on  secant  modulus,  Edr, at failure and  that a

hyperbolic stress-strain  relationship  for the elastic zone

shall provide a reasonable  estimate  of  ESo, appears  to be
correct.

  For  Procedure  3, the value  of  ah=KboS  estimated

from Eq. (12) is 670 kNlm2  and  compares  well  with  the

measured  value  of  646 kN1m2,  see  Table 3. By substitut-

Table 2.SBPMT  dEta for Bartoon  clay  (from Wroth,  19S4>

e.,  %=A
 VI  V==P(t),

 kN/m2=

  1.0201095  2.0391265  3.0571440  4.e75IS55  5.e931660  6.1101725  7.1271770  8.l431840  9.1581870 10.1741890 11.1881940

Table 3.Analyzed  results  for Bartooll clay

SBPMTdata(Wroth,1984) AlternatiyemethedProcedurell Procedure2
/

Cu ah Uw Er Cu al ahlE,f Ei Eso

* * * ** * * * **1 ** **

386 646 383 141 390 2580 32oI.61.2 272 143

Procedure 3

PI c.la;forNC c./a;forOC Ko ah Eof Ei Eso

* # ** **

4S O.276 1.465 1.08 670 57 190 143

*
 in kN/m!, **

 in MNIm2
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ing the estimated  of  value  of  o.=ah  and  c.,  yalue  of  L  is
obtained  from  (10a), and  value  of  E=Ehf  is obtained

frem  Eq.  (5c). Then  the value  of  Eso is calculated  from
Eq. (16), which  is found to match  with  the measured

value  of  E  from unload-reload  cycle, see  Table  3.

(Zij SanthanciscoBayMud:  UsingProcedures2and
3, the SBPMT  tests conducted  in San Francisco Bay  Mud

(Denby, 1978) are  analyzed  and  the  results  are  shown  in
Fig. 4. In this figure, values  determined by Denby  (1978)
method,  Baguelin, Ladanyi and  Palmer (BLP) method,
and  Prevost and  Hoeg  (PH) method  are  also  shown.  In

Denby  method,  (a.,-oee)12 versus  e,, curve  obtained

from  pressuremeter  data is transformed  as a  modified

hyperbolic curve  to  determine  the  yalue  of  G  and  c. . BLP
method  developed by Baguelin (1972), Ladanyi (1972),
and  Palmer  (1972) lead to the same  expression,  i.e.

(crrr-oee)12=errep'(Err), where  ep'(e,.) is the slope  of  the

pressure versus  Err curve  at any  radial  strain, err. Using
sub-tangent  method,  a  curve  with  above  expression  is

constructed  from the pressuremeter curve.  Initial slope

of  this constructed  curve  is equal  to two  times the shear
modulus,  while  peak  value  of  this curve  is the value  of

the shear  strength  of  the material.  The  PH  method  ana-

lyzes strain  softening  by incremental plasticity theory,
which  assumes  that  the  soil  undergoes  elastic  and  plastic
strains  from  the very  beginning of  the cavity  expansion.

  As  shown  in Fig. 4(a), values  of  the ratio c.la6  deter-
mined  from the various  methods  compare  well  with  each

other.  Between depths of  2 and  11 m,  the Kb values

predicted by Procedure 3 and  Denby  and  PH  methods

compare  well  with  each  other,  see  Fig. 4(b). Values of  Kb

predicted by various  methods  differ by about  only  O, 1 be-
tween  11 and  15 m.

  In Fig. 4(c), values  of  the Eoflc. ratios determined by
using  (a) Procedure 3 (see Curve I), (b) Procedure 2 with

K6 values  determined by Denby  method  (see Curve II),
(c) Procedure  2 with  1(h values  determined by BLP

method  (see Curye  IID, and  (d) Procedure  2 with  Kb

values  determined by PH  method  (see Curve IV), have
been shown.  It can  be seen  that Eoflc. determined using
values  of  Kb estimated  from various  methods  compare

well  up  to a depth of  11 m.  This shows  that smal1  errors

in estimating  Kb values  does not  significantly  affect the

values  of  Eltflc..

  Rf  is either  determined  based on  values  available  in

literature (Duncan and  Chang, 1970; Denby,  1978), or  by
obtaining  stress difference (ai -o3)  and  axial  strain  (Err)

data from the triaxial consolidated  undrained  tests per-
formed  on  high quality undisturbed  samples.  Using  a

hyperbolic model  the asymptotic  value  of  (ai -  a3)  is de-
termined  as shown  below  (Duncan and  Chang, 1970):

           
Err

 or 
a"

 =b+ae.,

  al-a3=

         b+a6r. al-a3

                                      err

   or  y=ai+a2x,  i.e., x=err  and  y=  .
                                    al-a3

From  Eq. (1 1 a) , using  x  and  y  values,  determine the value

of  ai  and  a2. Then  Ei is equal  to 1 1at, and  the asymptotic
value  of  (ai-a3) is equal  to 1la2, The  value  of  stress

difference [(ai-o3"] is determined from the  observed

peak value  at failure from triaxial tests. Rf is the ratio  be-
tween  [(oi-a3h] and  the  asymptotic  value  of  (oi-a3).
Rf is approximately  equal  to O.7 for the  upper  desiccated,
overconsolidated  Bay mud,  which  extends  to 5 m  depth
and  O.8 for the  underlying  NC  to slightly  OC  Bay  mud.

As  shown  in Figs. 4(d) and  4(e), values  of  Ei1c. and  Eso1
c. are  determined by substituting  Eltflc. values  of  Curves
I through  IV  of  Fig. 4(c) in Eqs. (15) and  (16), respec-

tively. As  shown  in Fig. 4(d), the ayerage  values  of  Ei/ c.
for the lower NC  to slightly OC  Bay mud  (i.e. from 6 to

15 m)  varies  between  1890  and  2430, and  compare  well

with  values  of  Ei1c. between 2200 and  2600 determined
from the triaxial shear  tests performed by Denby,  1978.

The estimated  values  of  Esole., as shown  in Fig. 4(e),

compare  well  with  values  of  the Elc. determined by
Denby  (1978), using  the  Denby  and  PH  methods,  as

shown  in Fig. 4(f)] in a depth  interval of  6 to 15 m.  This

shows  that the E  values  determined by Denby  and  PH
methods  are  approximately  egual  to ESo values.

(e) Kdotinite: Using Procedure  2, the  strain-con-

trolled model  pressuremeter tests performed  in a  1arge
calibration  chamber  by  Huang  et  al.  1991 are  analyzed,

see  Table  4. The  value  of  c. determined from  the

logarithmic model  compares  well  with  the value  deter-
mined  by  Huang  et  al. 1991 and  also with  plain strain un-

drained shear  strength.  The  value  of  Esolc.  ratio  deter-
mined  from pressuremeter  data using  Procedure 2,
compares  well  with  the value  of  Eso1 e. determined from
the triaxial shear  tests.

SPHERICAL  CAVITY  EXPANSION

  When  a  balloon of  spherical  shape  is expanded  in a soil

Table 4.Analyzed  results  of  kaolinite

DataofHuangetal,1991 Alternatiyemethod

Pressuremetertest Triaxialtest Procedure2

Strainrate
clt E Cu Eje Cu Esf Ei Ese

e/efminuteO.1 *65'**22.5 *64 **108 *68.6 **19.3 **172 **99

'in
 kNlm2, 

'*
 in MNfm2

NII-Electionic  



The Japanese Geotechnical Society

NII-Electronic Library Service

The  JapaneseGeotechnical  Society

32 GUPTA

deposit, it simulates  a  spherical  cavity  from finite radius.

The  problem  of  the spherical  cavity  is analogous  to the

problem of  the cylindrical  cavity,  with  the difference that
it is sphericaily  symrnetrical  instead of  axialIy  symmetri-

cal.  Using the equations  described in Appendix I, a  simi-

lar analysis  for the spherical  cavity  expanded  from  a

finite radius  can  be performed.

CONCLUSIONS

  Following conclusions  are  based on  the findings of  this

study:  (1) The alternative method  consisting  of  (a) cavity
expansion  method,  (b) curve  fitting with  a  logarithmic
model,  and  (c) hyperbolic stress-strain  model  for the elas-
tic zone  provides a  rational  procedure to estimate  soil

parameters of  saturated  clays. (2) The curve  fitting
method  based on  a  logarithmic model  for values  ofp(t)

greater than  crp provides an  excellent  match  with  the

SBPMT  stress-strain  curye.  (3) The  value  of  the un-

drained shear  strength,  c.,  compares  well  with  values  de-
temined  by other  methods.  (4) The  undrained  cavity  ex-

pansion  theory from finite radius  provides a reasonable
estimate  of  secant  modulus  at failure. (5) Using the hyper-
bolic model  and  value  of  secant  modulus  at failure, the es-

timated values  of  initial tangent modulus  compares  well

with  those determined  from  the  triaxial tests. Values  of

secant  modulus  at  half the  value  of  (ai -  a3h  determined

using  the alternative method  compare  well  with  those de-
termined  from  the triaxial tests and  from  the unload-

reload  cycle  of  the SBPMT  tests.

NOTATIONS

The  following symbels  are  used  in this paper:

  c,=undrained  shear  strength  of  saturated  clay;

  E==  Young's  modulus  of  elasticity;

 Ei -- initial tangent modulus;

 Ekr=secant  modulus  at failure;

 &o=secant modulus  at half the value  of  (aiLash;
 E.=unload-releadmodulus;

  G==shearmodulus;
 K6=eoeMcient  of  earth  pressure at rest;

 h.=height  ef  ground  water  table over  test location;

  L== rigidity index;

 Ro=radius  of  cavity  at  time t=O;
R(t}=:radius of  cavity  at  time t;
  r=radial  distance of  particle from axis  ef  cavity  in its original

    pesltlon;
r(t)=radial  distance of  particle  from  axis  of  cewity  in its

    deforrned position at  time t;

  le=radius ef  plastic zone  at time t;

 Rt=  failure ratie;

p(t)=internal cavity  pressure at time t;

 u.=pore  water  pressure due  to  ground  water  table;

  v=Poisson's  ratio;

 A V=change in volume  ef  cavity  at time t;

 Pb =: initial velume  of  cavity;

  V=velume  of  cavity  at time t;
  E.=volumetric  strain;

 e,.==radial  strain;

 eee=  circumferential  strain  in cylindrical  or  spherical  polar coor-

    dinates;

 e"di=circumferential  strain  in spherical  coordinates;

    E..=normal  strain  in vertical  direction;
    e.=radial displacement of  partiele;

    4..=radial displacernent of  particle at face of  eavity;

   4.p =  radial  displacement of  particle at the interface of  elastic and

      plastic zones;

   arr==radial  stress;

   aee==circumferential  stress in cylindrical  and  spherical  coor-

      dinates;

   a"di=  circumferential  stress in spherical  coordinates;

   a,,=normal  stress  in vertical  direction;

    ah  ==total  herizontal stress  prior to  cavity  expansion;

    a;=effectiye  vertical  stress;

 o.,  ak=total  and  effective  mean  stress in elastic zone;

amp,  afu  
==total

 and  effective  meall  stress in plastic zone;

o.ct, ag.t=tetal  and  effective  octaheclral  stress in elastic zene;

  a,op=octahedral  stress in plastic zone;

   arp  
==radial

 stress at interface ef  elastic and  plastic zones;

 ai-  ai =stress  difference at failure;
    T=maximum  shear  stress; and

    1,. ==  unit  weight  ef  water.
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APPENDIX  I-SPHERICAL  CAVITY  EXPANSION

(tof Cavity Expansion Prior to Fbt:mation of State of
Pkustic deuilibrium at fece of Cbvity

                    R3(t)

     
arr=

 
aoct+[P(t)-aect]

 r3(t)  '

av

Oee=adie==aect+[P(t)-Oect]R3(t)

a.ct==7.+ag(1+2Kb)13,

   (1+v)
erc= 2E  R(t)[p(t)-a.,t].

Fbr  Plastic Zone, i.e

err =p(t)-4cu  ln

       4Cu
arp=  

Oect+T
 '

2r3(t)

. for r(t)cfp

r(t)R(t)'

 
tlP
 =ecp(t)-ff..t)i4eu)-a/3)

R(t)

               r(t)
aee==eedi=p(t)-4c.In                  

-2Cu,
               R(t)

             r(t) 4c.
oocip

 
=p(t)

 
-4Cu

 
ln

 R(t) 
-T

 
'

R3(t)-R3=rB-(,?,-4.)3,

(17)

(18)

where

4.
      3E

4. =R(t)-3

2(1+v)fpc. fp3LR3(t)-r;+(fp-4.)3.

(19)

(20)

(21a)

(21b)

(22)

Substituting values  of  fpIR(t) and  4.IR(t) from Eqs.

(19) and  (21b) in (21a), the cayity  pressure p(t) at any

instant t is given by

        4 4t  R3V  27I? X
p(t)=aect+'iLcu+Ji-1"V-R3(t))k27il-gL+i                                 7･
                                   (23)


