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AN APPROACH FOR ESTIMATING DEFORMATION MODULI FROM
SELF-BORING PRESSUREMETER TEST DATA
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ABSTRACT

During a self-boring pressuremeter test (SBPMT) a cylindrical cavity is expanded from a finite radius. To determine
undrained shear strength, c,, of a saturated clay, SBPMT data is analyzed using the cylindrical cavity expansion theo-
ry, and curve fitting methods. At present, there is no completely consistent and reliable method to estimate the value
of modulus of elasticity. In this paper, an alternative method has been presented to first estimate ¢, and limit pressure,
p1, using a logarithmic model and then determine initial tangent modulus, E;, secant modulus at failure, Ey, and
secant modulus at half the value of (o,—03);, Es, using a hyperbolic-model. Values of ¢, determined from this
method compare well with those determined from other methods. The predicted values of E; and Es, compare well
with those determined from the triaxial tests. The values of Es, also compare well with the values of modulus deter-

mined from unload-reload cycle of SBPMT.

Key words: modulus of deformation, pressuremeter test, shear modulus, undrained shear strength (IGC: E2/C3)

INTRODUCTION

The theory of expansion of cavities in a semi-infinite
soil mass (Gibson and Anderson, 1961; Vesic, 1972;
Baguelin et al., 1978; Ladanyi, 1972; Palmer, 1972) is
being widely used for the solution of a number of ge-
otechnical problems such as (i) the analysis of the pres-
suremeter tests, (ii) estimating excess pore pressure
distribution around cone penetrometers (Baligh and
Levadoux, 1980; Gupta and Davidson, 1986), and (iii)
the bearing capacity of deep foundations (Vesic, 1972). A
self-boring pressuremeter is introduced into a soil deposit
with minimal disturbance. When it is expanded, it simu-
lates a cylindrical cavity expansion starting from a finite
radius. It is generally agreed that the existing methods for
“the analysis of the SBPMT data provide a reasonable esti-
mate of the undrained shear strength, c¢,, and the
coefficient of lateral earth pressure at rest, K. However,
these methods do not provide a reasonable estimate of
the modulus of elasticity, E. Some researchers (Wroth,
1984) use the value of E obtained from unload-reload
loops, but others (Huang et al., 1991) have found that
the determination of the loop slope or gradient as a
secant is sensitive to ‘“noise’’ in the data, especially when
the hysteresis is large. Considering all the uncertainties in-
volved in the determination of E, Chameau et al. 1987
has suggested not to use the SBPMT to determine this
soil parameter. An alternative method to provide a
reasonable estimate of initial tangent modulus, E;, secant
modulus at failure, Ey, and secant modulus at half the

value of (g;—a3)s, Es, is presented in this paper.

CYLINDRICAL CAVITY EXPANSION

When the internal cavity pressure is increased, a cylin-

drical zone around the cavity passes into the state of
equilibrium. The plastic zone expands until the pressure
reaches an ultimate value. In SBPMT, the expansion test
is stopped prior to reaching ultimate state to prevent
bursting the membrane of the device. For the analysis, it
is assumed that the cavity expansion occurs under radial
plane strain and undrained conditions. A brief summary
of the theory is given below (For details, see Gibson and
Anderson, 1961; Baguelin et al., 1978).
(a) Elastic Zone: Consider the expansion of a cylindri-
cal cavity of initial radius R, in an elastic, homogeneous
and isotropic medium defined by an undrained modulus,
E, Poisson’s ratio, v, and undrained shear strength, c,.
For the elastic phase of the test, the constitutive equa-
tions are as follows:

Err= E [(@r—v(owt022)],

1
809=‘E [(Goe—v(0rt0T22)],

Ezz=E [(Gzz— V(T ae)]=0.

Where at any instant of time, &, &g, &7z, Orrs Ggs, a0d Oy
are the radial displacement, principle radial, circumferen-
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tial, and axial strains and stresses, respectively. At any
instant of time, R(?), r(¢), &, and &, are radius of the
cavity, radial distance of a particle from the axis of the
cavity, radial displacement of the particle at radial dis-
tance r(¢), and radial displacement at the face of cavity,
respectively. Substituting for o,; in expressions for o,,
and og, the compatibility equations for plane strain are:

Ee,=—E il =1-v)o,—v(l+v)a
rr dr(t) rr 66
E ggo= (t)—(l_ 2)0'90 V(1+V)O'” (lb)
Orr=0n+ A0,
Op=0n+ Ac. (1c)
The equations of equilibrium are
do, 0,—0g
—_—= 1d
dr(t) r(t) (1d)

If stresses are eliminated using the above equations,
the elastic equation satisfies the ‘following.

Zér dé,
2(l‘) Var ()
General solutions of this equation are: &é,=r"(¢t), where n
must satisfy (n+1)(n—1)=0, and therefore has roots of
n=—1or n=1. Then &=Ar(t)+Br~'(¢); for r(t)=a,
£,=0, therefore A =0; at the cavity face, r(¢)=R(¢), and
&,=¢&,., therefore B=¢&,.R(t). Then,

_&R()

o
¢ _ &R()
dr(t) r’(t) °’
& _ER()
r(ey @)
Similarly, it can be shown (Beguelin et al., 1978):
R%(2)
ri(t)’

R*(¢t
O6=0m—[D(t)— 0] ©

1+vV)R(¢
Ero= (———v—)—-Q[ (£)— ).

2(l‘)

(1e)

Err=

(1f)

Ego=

On=0n+[p(t)—0n]

(1g)

Where
(1h)

(b) prior to the expansion of the cavity, 6,=g,=mean
horizontal stress, Ko=coefficient of lateral earth pressure
at rest, o, =effective vertical stress, y,=unit weight of
water, h,=depth of water below water table, and
u,=pore water pressure due to ground water table,
v=Poisson’s ratio (0.5 for saturated clay); and (c) at any
instant of time (¢), p(¢)=internal cavity pressure.

(b) Plastic Zone: In the plastic zone, at any instant of
time, g,,—0ag is equal to 2¢,. Then Eq. (1d) reduces to

(@) om=0,=Kog,+y,h,=Koo,+uy;

do./dr(t)+2c,/r(t)=0. Using the condition that
a,=p(t) when r(¢)=R(t), the solution of the differential
equation is

r(7)
arr_p(t) 2cu ln (R(t)) (2)
099=Grr—2Cy, (3a)
O'mp — O'rr'; To6 (3b)

where at time ¢, ., is the mean horizontal stress in plas-
tic zone. From (2), at r(¢)=r,=radius of plastic zone at
time ¢, 6,,=0,=0n+c,=p(t)—2c,In [r,/R(2)], then

To = P(O=am—c)/ 26,
R(1) ’
&e=R()— VR ()=} +(r,=&,%  (4b)

The equation for no volume change in the plastic zone

and the radial displacement at the interface of plastic and
elastic zones, &,,, are given by

(4a)

R*(t)— RO_rP'—(rp—érp)z) (5a)
where
_(A+v)re. T
= E 21 (50)
Where, rigidity index
()= (5¢0)

2(1+v)e,”

Substituting values of r, / R(¢) and &,, from (4a) and (5b),
respectively, in (5a) and re-arranging terms, we get

_ R} _ s _( p o )2

RX(t) R*t) \R(?) R(?)
Abl-la]
R(¢) 21,
r2 (4I—1
=1_ez_(t_)(—4f?")
or
r"% -___—( _..R_(z))< 41% )=e(p(t)—am—cu)/cu
R¥(?) R¥(t))\4I,—1
or
Rj{ 41?
p()=op+c,+c,In [<I—R2_(t))<41,_—1)]
For a,>0,,. (6)

Where o,,=the radial stress at a radial distance equal to
r,. The expression 412/ (41,— 1) can be expressed as 1/(1/
I,—1/41?). The value of the term 1/412 is a very small
and can be neglected, then (6) reduces to the following
well-known Gibson and Anderson (1961) formula.

o) s
_RZ(w)(z(l +v)e,

Gr>Grp. ™

p(ty=on+c,+c,In [(1

For
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1.p{H)=on+05c, (a)
2.p()=om+ Cu
3pM)=0nt+ 2
4p=om* 3cu
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Fig. 1. During expansion of cylindrical cavity in saturated clay, radial
distributions of (a) normalized radial stress, (b) normalized circum-
ferential stress, and (¢) mean horizontal stress
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Fig. 2. During expansion of cylindrical cavity in saturated clay,
relationships between (a) normalized maximum shear stress and
radial strain, (b) normalized radial stress and radial strain, and (c)
normalized circamferential stress and circumferential strain

Gibson and Anderson formula has been used extensively
to determine the soil properties of clayey soils using the
pressuremeter or self-boring pressuremeter data. The
value of c, is determined by selecting two points on the
curve, say, using internal cavity pressure values at AV/
V=0.1 and 0.3.

Figures 1 and 2 show the stress-strain relationship at
various stages of expansion (i.e. at p(¢)=0o,+0.5¢, to
om+0.5¢,), when values of o, u,, ¢,/ 7., Ko and I, of the
saturated clay are 50 kPa, 75 kPa, 0.4, 0.5 and 100, re-
spectively. At various normalized radial distances, r(¢)/
R(?), values of (Gr—0m)/Cus (Go6—Om)/ Cus Omp/Om,
(6.+—04)/ cuy, and (or,— Gm)/ ¢, are calculated using (1g)
for the elastic zone, and using (2), (3a), and (3b) for the
plastic zone, respectively. Values of &, and &g are calcu-
lated using (1f) for the elastic zone around the cavity,
and using (8b) for the plastic zone around the cavity. As
shown in Fig. 1(b), for each stage of expansion, the value
of (69— om)/ c. begins to decrease from the face of cavity
and decreases to — 1 at the interface of plastic and elastic
zones; thereafter it begins to increase in the elastic zone.
In Fig. 2, the normalized stress-strain relationships that
may develop at various radial distances have been shown.
For this purpose, horizontal axis has been used both for
&, and &g and for r(¢)/ R(¢t). At distances of r(¢) <r,, the
value of (a,,— )/ c, increases linearly until it reaches a
peak value of 1, indicating that a state of equilibrium has
reached, thereafter, ¢, increases at the peak value. Prior
to reaching a state of equilibrium, the increase in the
value of g, is equal to the decrease in the value of g,
however, both the g, and gy increase after the state of
equilibrium has been reached. Therefore, prior to reach-
ing a state of equilibrium, values of (¢,,—awm)/c. and
((6es— Gm)/ c, vary linearly to 1 and — 1, respectively, there-
after, &, and &y increase rapidly with increase in the
values of (6,,—on)/c, and (6,,— &)/ cu, TESPECtively.

In the cavity expansion theory for undrained condi-
tions, it is assumed that the finite plastic zone is incom-
pressible and semi-infinite zone around the plastic zone is
elastic. Another case can be considered where the infinite-
ly long cylindrical cavity expansion occurs from finite
radius in an infinite, incompressible and homogeneous
medium; the cavity has a radius R at time zero, and
radius R(¢) at time ¢. At any time ¢, a soil element located
at radial distance (), is related to its initial position r at
time =0 by a simple expression (8a), and the radial and
the circumferential strains with respect to the displaced
position of the particle are defined by Eq. (8b), (Gupta,
1991).

r(0)=[r*+R*(t)—R3]'?, (8a)
&E=r(t)y—r=r(t)—[r*(t)+R§—R*(1)]'?,
szdér_ B r(?) _ &
Tdr(t) T [P()+RI—-R*O]V*  r’

&
Eee—r(t) . (8b)

For the incompressible finite plastic zone surrounded by
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semi-infinite elastic zone, R*(#)—R? is equal to
ri—(r,—¢&,)?. Equations (8a) and (8b) will also work for
incompressible finite plastic zone, if R*(¢)—R? is
replaced by r2—(r,—¢,,)%. It may be noticed that the cir-
cumferential strain in the infinite incompressible medium
is equal to the ratio & /r(t), while the radial strain is
equal to the ratio —¢,/r. On the contrary, the absolute
values of both the radial and circumferential strains with
respect to the displaced position of the particle in the elas-
tic zone are the same, i.e. equal to &,/r(?), see (1f). Dis-
placements, strains, and stresses in the semi-infinite
elastic zone around the plastic zone can be calculated
assuming that (i) the interface of the plastic-elastic zones
is the face of the cavity, (ii) the radius of the cavity is r,,
and (iii) displacement at the face of the cavity is &,,. Thus
the analysis is based on the continuity of the displace-
ment at the interface of the elastic-plastic zones. Strains
in the plastic zone for distances less than r, are calculated
from (8b). Strains in the elastic zone for distances equal
to or greater than r, are calculated after replacing &,. by
¢p in (1f). Thus to maintain continuity, the interface of
elastic-plastic zones is considered to be a part of elastic
zone.

ANALYSIS OF PRESSUREMETER TEST DATA

Several methods are in use for the analysis and the in-
terpretation of the pressuremeter test data. For the
Gibson and Anderson method, either (1) an iterative
procedure (Ladd et al., 1980; Benoit and Clough, 1986),
or (2) a procedure based on matching the relationship ob-
tained from measurements both during loading and un-
loading with that computed from the assumed values of
G, ¢, g, (Jefferies, 1988), is used. More advanced and su-
perior methods which have provided useful results are
those proposed by Baguelin et al. 1978, Ladanyi, 1972,
Palmer, 1972 and Prevost and Hoeg, 1975. Several curve
fitting techniques have also been developed such as those
proposed by Wroth and Hughes, 1973, Denby, 1978,
Ladd et al., 1980, Arnold, 1981, and Huang et al., 1991.

ALTERNATIVE METHOD FOR ANALYSIS OF
SBPMT TESTS

Expressing (6) in the following form can develop an al-
ternative method for the analysis of the SBPMT data

412 3
p(t)y=ou+c,+c,In <41’—_1>+cu In ( 1 _Rz(t)>
R}

=al+a2 In < 1 _Rl([))

_ AV

=a;+a;In (7)

=ata;Ine,. For o.>0,, ©)

41?2

a=pL=0n+c,+c,In (41,—1)’ (10a)
B=Cy. (10b)

Where V=volume of  cavity at time t,
AV=V—-Vy=change in volume of the cavity=n[R*(¢)
—R§], Vo=initial volume of cavity=nR3, &=A4V/
V=n[R*(t)—R3]1/nR*(t)=1—R3/R*(¢), and p,=limit
pressure when the value of 4V/ Vis equal to 1. It may be
noted that A V/ V becomes 1, when A V'is equal to Vj; this
condition is almost impractical to achieve in a test.
Mathematically, the importance of p; is similar to a y-in-
tercept of a straight line, signifying that when x=0, the
value of the y-coordinate is equal to y-intercept. Similar-
ly, p. is a y-intercept of p(t) versus In (AV/ V) linear
relationship, when the value of x=In (4V/ V) is equal to
zero. Therefore, using this property, the value of p; is al-
ways theoretically calculated from p(¢) versus In (4V/
V) relationship. As shown by (10a), the value of p; is a
property of clay and has a specific value which depends
upon G, ¢, and I,.

Equation (9) can be transformed as a straight line, by
substituting as x=In (¢,) and y=p(¢). Using the method
of least squares for a straight line, values of @; and a, are
given by (11a) and (11b), respectively (Harr, 1977).

I Zy—ZxZxy
“= nZx?—(Zx)
_nXxy—2xZy
T nEx—(Zx)

3

(11a)

a

or
_2(neg)Zp(t)—ZIne,Zp(t)Ine,
" n3(neg,)*—(ZIne,)? ’
_nZlnegp(t)—2ne,Zp(t)
~ n3(ng)l—(Zlne)

@ (11b)
Where n=number of pressure increments at which meas-
urements of pressure and volume are made during the
test, and p(¢) and ¢, are the measured readings at each
pressure increment.

The value of a, is equal to the value of the undrained

shear strength, ¢, (Wroth, 1984). When the value of c, is
substituted in (10a), the sum of terms containing 7, and
O is obtained. Values of I,, 6,,= o}, and K, can be deter-
mined from any of the following three procedures.
(a) Procedure 1: If the clay behaves as a perfectly
linear elastic material in an unloading-reloading cycle per-
formed in a SBPMT test, the slope of the straight line
relationship between p(¢) and circumferential strain will
be equal to twice the value of shear modulus, G, see
Wroth (1984). Using Eq. (1g), this is also illustrated
below:

S=R ) E ’
pP(t)—0n E
= =——=2G.
Slope o Y

I.is equal to G/c, and Gis equal to E/2(1+v). The value
of I, is substituted in (10a) to determine values of o, and
K.

(b) Procedure?2: At the start of the expansion test the
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membrane fits tightly over the instrument and has the
same diameter as the cutting shoe. In theory no expan-
sion of the membrane should be detected until the ap-
plied pressure is equal to the in situ total lateral stress in
the ground in contact with the pressuremeter. In reality
there will be some small compliance of the instrument it-
self, until at a point, known as the lift-off pressure on the
expansion curve, the soil starts to deform under increas-
ing lateral stress. The lift-off pressure is in situ total later-
al stress, for details see Ghionna, Jamiolkowski and
Lancellotta, 1982 and Lacasse and Lunne, 1982. When
the information about the ground water table and the
unit weights of the subsurface layers is available, the
value of K, can be readily determined from the known
value of ;. Values of I,, and E are determined by sub-
stituting the value of 6,=0; in (10a). |

(¢c) Procedure 3: The ratio c¢,/a, for a normally con-
solidated (NC) clay, overconsolidation ratio (OCR) of
overconsolidated (OC) clay, and K, can be estimated
from the following equations (Skempton, 1957; Ladd et
al., 1977; Schmertmann, 1978).

Cu
(—7> =0.114+0.0037(P.1.),
0y /NC

(cu /0'5 )OC
(Cu/O'Z)Nc ’
Ko=0.45(OCR)°'42.

(OCR)**=
(12)

Where P.I.=Plasticity index of clay. Using the value of
¢, obtained from (10b), K is determined from (12) and
then values 7, and E are determined from (10a).

(d) Initial Tangent Modulus: Results of the triaxial
tests have shown that the stress-strain relationship of
both clay and sand is non-linear. It is quite difficult to de-
termine the initial tangent modulus, E;, accurately from
such tests, since the slope of the stress-strain curve
changes rapidly even at very small strains. The following
hyperbolic model (Duncan and Chang, 1970) can approx-
imate the nonlinear stress-strain curves.

6""
@ =0)=1T R,
E; (oi—03)f

For (0,—03)<(01—03)-

13)

Where (6, — o;)=stress difference at any instant of load-
ing; (01— 03);=2c,=compressive strength at failure, or
stress difference at failure; and R,=failure ratio=
(01— a3)/ Asymptotic value of (6;—a3).

As shown in Fig. 3, initial tangent modulus, E;, equals
the slope of the g, — g3 versus normal strain (g) plot at the
start of the test. Secant modulus at failure, E, equals the
slope of the straight line between the origin and the point
of failure (i.e. the first instant when peak shear strength
is reached) on the plot of ¢;— g3 versus €. Secant modu-
lus, Es, equals the slope of the straight line between the
origin and the point at half of the value of (6;—a3).

The theory for expansion of a cylindrical cavity
(Gibson and Anderson, 1961; Vesic, 1972) is based on

the assumption that (i) Prior to the formation of the plas-
tic zone, the stress-strain relationship during expansion
of the cavity is linear in the elastic zone, Figs. 3 and 4,
and (ii) the saturated clay in the plastic zone behaves as
an incompressible plastic solid, defined by the undrained
shear strength, c¢,. As shown in Fig. 3, these assumptions
imply that the clay during the expansion of the cavity fol-
lows path ACD for R,=0.7, or AC’D’ for R;=0.8, or
AC”D” for R;=0.9, in lieu of path ABCC’C”E. There-
fore, the value of E used in the analysis of this theory is
the value of the secant modulus at failure, Ey, equal to
the slope of secant AC for R;=0.7, secant AC’ for
R;=0.8, and secant AC” for Ry=0.9. The stress-strain
relationship defined by Eq. (6) is applicable, when the
value of p(t) exceeds the value of g,, therefore this
method is based on the response of expanding plastic
zone. Since the undrained shear strength is dependent
only upon the initial conditions existing before shear and
are independent, of the way in which shear is applied
(Lambe and Whitman, 1969), assuming path as secant
AC in lieu of hyperbolic curve ABC should not sig-
nificantly affect the results of the analysis expressed by
Eq. (6).

The radial strain, &, at the interface of the elastic-plas-
tic interface is equal to &,/ r,, where &, is defined by Eq.
(5b). E; is equal to (o1—as3)s/&p. Substituting
¢,=0.5(g1—a3);, the following relationship for &, is
obtained

. _Sp_(+V)ew_(1+v)(a1—0a3),
Y E 2E; ’

or
&p 14y
(01—03)r 2Ey’

(14

At radial distance r,, &, is equal to &, and g, — g3 is equal
to (g1 — g3);, then substituting these values in Eq. (13), we
get

&
(01— a3)= 1 R;&,p
E (01— a3)
or
Erp _1 Rrep
@—a) E (1—a3)’
or
1+v 1 R(1+v)
2E, E, & 2E; °
or
2Ey 4E

1s)

TA+W(A-R) 30-R)
(Note: For saturated clay, v is equal to 0.5.)
Es is equal to half the value of (g:—03); divided by
radial strain, &,¢.ss at half the value of (6;—a3)s. Sub-
stituting (0'1_0'3)=0.5(0'1"‘0'3)f and Err=Err(0.55) in Eq.
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Fig. 3. (a) Typical hyperbolic stress-strain relationship during expansion of a cylindrical cavity, (b) relationship between internal cavity pressure
and volumetric strain for Bartoon clay using data of Wroth (1984)

(13) following relationship between Es, and Ejr is ob-

tained.
Err(0.5f)
0.5 g1 03)r—
¢ ¥=7 Rrémosn’
E;  (o,—03)
or

1 1 05R,
Eso Ei ESO

’

or
4E4(1—0.5R))

3(1—Rp) (16)

E50=E,'(1 —OSRf)=
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Fig. 4. For San Francisco Bay Mud, using alternative method, and methods of Denby, Baguelin et al., (1978), Ladanyi (1972), Palmer (1972), and
Prevost and Hoeg (1975), values of (a) ¢,/a,, (b) Ky, (¢) Ey/c,, (@) E;/c,, () Esy/c,, and (f) E/c,

The failure factor, Ry, which always has the value less  tor stress. Values of R, have been found to vary from ap-
than unity accommodates the fact that at the failure proximately 0.9 for soft plastic clays to 0.6 for overcon-
strain, the soil no longer follows a hyperbolic response  solidated clays (Denby, 1978). Using Egs. (15) and (16),
and at strains greater than the failure strain, the soil relationship between E; and E, or Es, for various values
deforms at constant value of (g;—a3)y, i.e. at peak devia- of R, have been shown in Table 1. As previously stated
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the value of E determined from the alternative method is
equal to the value of E,. Therefore, after determining
the value of E, values of E; and Es, can be calculated by
using Eqgs. (15) and (16) or from Table 1.

EXAMPLES

The use and application of the alternative method as
described above shall be explained by the following
examples.

(a) Bartoon Clay: Wroth (1984) analyzed the SBPMT
data obtained at a depth of 43.4m (142.4 ft) of the
Bartoon clay by plotting the internal cavity pressure, p(¢)
on a logarithmic scale and volumetric strain on a normal
scale, and found that the data can be approximated by a
linear relationship. The slope of the linear relationship
was found to be equal to 386 kN/m?, and compared well
with the value of ¢, of the Bartoon clay. Wroth (1984)
also determined the value of E from the unload-reload cy-
cle and found it to be equal to 141 MN/m?. The same
data is reproduced in Table 2, and have been analyzed us-
ing the alternative method, described in the previous
paragraphs. Values of a; and @, by using Eq. (11b) are
found to be equal to 2580.5 kN/m? and 390.4 kN/m?, re-
spectively, see Fig. 3(b). The value of the coefficient of
correlation is 0.99. The value of a, is equal to the value of
¢, and compares well with the value determined by Wroth
(1984). When In (4V/ V) is equal to 0, the value of y-in-

Table 1. E,, Ey, Ej, for various values of failure ratio, R,

tercept is equal to a;, which is equal to the limit pressure.

Values of a; and a are then used to determine the value
of I, or E and o}, using Procedures 1, 2, and 3, and the
results of the analysis are shown in Table 3. According to
Procedure 1, the value of I, based on the values of E, de-
termined from the unload-reload cycle and shown in
Table 3, is substituted in (10a) and a value of o}, equal to
320 kN/m? is obtained. This value of o} is about one-
half of the measured g, value of 646 kN/m? and is even
less than the hydrostatic water pressure of 383 kN/m?,
created by the ground water table, see Table 3. Thus,
Procedure 1 using the value of E (i.e. E;) from unload-
reload cycle provides an inaccurate value of aj. This
result indicates that the p(¢)—AV/V relationship ex-
pressed by Eq. (6) does not depend up on the value of
Es, instead depends on Eg.

As shown in Table 3, the measured value of g,=0, is
646 kN/m? and the value of ¢,=a, from (11) is 390
kN/m?. These two values are used for Procedure 2, and
the value of I, is determined from Eq. (10a). The value of
Ey4=FE is then determined from Eq. (5c). For the overcon-
solidated Bartoon clay, the value of R, is approximately
equal to 0.6. Then, E; and Es are determined from Eqgs.
(15) and (16), respectively. The value of Es is found
equal to 143 MN/m? and compares well with the value of
E, equal to 141 MPa which was obtained from the un-
load-reload cycle, see Table 3. This indicates that a linear
stress-strain relationship during unload-reload cycle fol-
lows path of secant AB, see Fig. 3(a). This result also
shows that the assumption that the p(¢) —4V/ Vrelation-
ship depends on secant modulus, E, at failure and that a
hyperbolic stress-strain relationship for the elastic zone

Failure ratio R, E/Ey Eso/ By shall provide a reasonable estimate of Es,, appears to be
0.6 3.33 2.33 correct.

0.7 4.44 2.89 For Procedure 3, the value of ¢,=K,o, estimated

g'g lg'gz ‘7“3)2 from Eq. (12) is 670 kN/m? and compares well with the

. ’ : measured value of 646 kN/m?, see Table 3. By substitut-

Table 2. SBPMT data for Bartoon clay (from Wroth, 1984)

& %= 1 2 3 4 5 6 7 8 9 10 11
AV V= .020 039 057 075 .093 .110 127 143 .158 174 .188
p(t), KN/m?= 1095 1265 1440 1555 1660 1725 1770 1840 1870 1890 1940

Table 3. Analyzed results for Bartoon clay

SBPMT data (Wroth, 1984) Alternative method Procedure 1 Procedure 2

Cy gy U, E, Cy a; [ E; E; Esy
* * & % * * * £33 EE ] &k

386 646 383 141 390 2580 320 61.2 272 143

Procedure 3

PI ¢,/ o} for NC ¢,/ o, for OC K, oy, E; E; E,
* L3 Ex 3 *k

45 0.276 1.465 1.08 670 57 190 143

* in kKN/m?, ** in MN/m?
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ing the estimated of value of ¢,= 0% and c,, value of I, is
obtained from (10a), and value of E=E is obtained
from Eq. (5c). Then the value of Es is calculated from
Eq. (16), which is found to match with the measured
value of E from unload-reload cycle, see Table 3.

(b) San Francisco Bay Mud: Using Procedures 2 and
3, the SBPMT tests conducted in San Francisco Bay Mud
(Denby, 1978) are analyzed and the results are shown in
Fig. 4. In this figure, values determined by Denby (1978)
method, Baguelin, Ladanyi and Palmer (BLP) method,
and Prevost and Hoeg (PH) method are also shown. In
Denby method, (6,,—0w)/2 versus &, curve obtained
from pressuremeter data is transformed as a modified
hyperbolic curve to determine the value of G and c,. BLP
method developed by Baguelin (1972), Ladanyi (1972),
and Palmer (1972) lead to the same expression, i.e.
(G, —0w)/2=¢.¢’ (&), where ¢’ (g,,) is the slope of the
pressure versus &, curve at any radial strain, &,. Using
sub-tangent method, a curve with above expression is
constructed from the pressuremeter curve. Initial slope
of this constructed curve is equal to two times the shear
modulus, while peak value of this curve is the value of
the shear strength of the material. The PH method ana-
lyzes strain softening by incremental plasticity theory,
which assumes that the soil undergoes elastic and plastic
strains from the very beginning of the cavity expansion.

As shown in Fig. 4(a), values of the ratio ¢, / a§ deter-
mined from the various methods compare well with each
other. Between depths of 2 and 11 m, the K, values
predicted by Procedure 3 and Denby and PH methods
compare well with each other, see Fig. 4(b). Values of K,
predicted by various methods differ by about only 0.1 be-
tween 11 and 15 m.

In Fig. 4(c), values of the E/c, ratios determined by
using (a) Procedure 3 (see Curve I), (b) Procedure 2 with
K, values determined by Denby method (see Curve II),
(c) Procedure 2 with K, values determined by BLP
method (see Curve III), and (d) Procedure 2 with K,
values determined by PH method (see Curve 1V), have
been shown. It can be seen that Es/c, determined using
values of K, estimated from various methods compare
well up to a depth of 11 m. This shows that small errors
in estimating K, values does not significantly affect the
values of Ey/c,.

Ry is either determined based on values available in
literature (Duncan and Chang, 1970; Denby, 1978), or by
obtaining stress difference (0, —a3) and axial strain (g,,)

data from the triaxial consolidated undrained tests per-
formed on high quality undisturbed samples. Using a
hyperbolic model the asymptotic value of (¢;—03) is de-
termined as shown below (Duncan and Chang, 1970):

Err Err
g1—03= or =b+ag,
b+aeg,., g,—0;
. Err
or y=a+ax, i.e., x=¢g, and y= .
g1— 03

From Eq. (11a), using x and y values, determine the value
of a; and a,. Then E;is equal to 1/a;, and the asymptotic
value of (g;—a3) is equal to 1/a,. The value of stress
difference [(o;—o03);] is determined from the observed
peak value at failure from triaxial tests. Ry is the ratio be-
tween [(g1—a3)s] and the asymptotic value of (g,—03).
Ry is approximately equal to 0.7 for the upper desiccated,
overconsolidated Bay mud, which extends to 5 m depth
and 0.8 for the underlying NC to slightly OC Bay mud.
As shown in Figs. 4(d) and 4(e), values of E;/c, and Es,/
¢, are determined by substituting E;s/ ¢, values of Curves
I through IV of Fig. 4(c) in Egs. (15) and (16), respec-
tively. As shown in Fig. 4(d), the average values of E;/c,
for the lower NC to slightly OC Bay mud (i.e. from 6 to
15 m) varies between 1890 and 2430, and compare well
with values of E;/c, between 2200 and 2600 determined
from the triaxial shear tests performed by Denby, 1978.
The estimated values of Es/c,, as shown in Fig. 4(e),
compare well with values of the E/c, determined by
Denby (1978), using the Denby and PH methods, as
shown in Fig. 4(f)] in a depth interval of 6 to 15 m. This
shows that the E values determined by Denby and PH
methods are approximately egual to Es, values.

(c) Kaolinite: Using Procedure 2, the strain-con-
trolied model pressuremeter tests performed in a large
calibration chamber by Huang et al. 1991 are analyzed,
see Table 4. The value of ¢, determined from the
logarithmic model compares well with the value deter-
mined by Huang et al. 1991 and also with plain strain un-
drained shear strength. The value of Esy/c, ratio deter-
mined from pressuremeter data using Procedure 2,
compares well with the value of Esy/ ¢, determined from
the triaxial shear tests.

SPHERICAL CAVITY EXPANSION
When a balloon of spherical shape is expanded in a soil

Table 4. Analyzed results of kaolinite

Data of Huang et al. 1991

Alternative method

Pressuremeter test Triaxial test Procedure 2
Strain
rate Cu E Cy Esy Cy E, E; Ey,
%/minute * &% * *k * &% &% *%
0.1 65 22.5 64 108 68.6 19.3 172 99

* in kKN/m?, ** in MN/m?
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deposit, it simulates a spherical cavity from finite radius.
The problem of the spherical cavity is analogous to the
problem of the cylindrical cavity, with the difference that
it is spherically symmetrical instead of axially symmetri-
cal. Using the equations described in Appendix I, a simi-
lar analysis for the spherical cavity expanded from a
finite radius can be performed.

CONCLUSIONS

Following conclusions are based on the findings of this
study: (1) The alternative method consisting of (a) cavity
expansion method, (b) curve fitting with a logarithmic
model, and (c) hyperbolic stress-strain model for the elas-
tic zone provides a rational procedure to estimate soil
parameters of saturated clays. (2) The curve fitting
method based on a logarithmic model for values of p(¢)
greater than a,, provides an excellent match with the
SBPMT stress-strain curve. (3) The value of the un-
drained shear strength, c,, compares well with values de-
termined by other methods. (4) The undrained cavity ex-
pansion theory from finite radius provides a reasonable
estimate of secant modulus at failure. (5) Using the hyper-
bolic model and value of secant modulus at failure, the es-
timated values of initial tangent modulus compares well
with those determined from the triaxial tests. Values of
secant modulus at half the value of (g, — g;); determined
using the alternative method compare well with those de-
termined from the triaxial tests and from the unload-
reload cycle of the SBPMT tests.

NOTATIONS
The following symbols are used in this paper:

c,=undrained shear strength of saturated clay;
E=Young’s modulus of elasticity;
E;=initial tangent modulus;
E, ,~secant modulus at failure;
Es,=secant modulus at half the value of (6,—a3)s;
E,=unload-reload modulus;
G=shear modulus;
K,=coeflicient of earth pressure at rest;
h,=height of ground water table over test location;
I,=rigidity index;
Ry=radius of cavity at time t=0;
R(¢)=radius of cavity at time #;
r=radial distance of particle from axis of cavity in its original
position;
r(t)=radial distance of particle from axis of cavity in its
deformed position at time ¢;
r,=radius of plastic zone at time ¢;
R,=failure ratio;
p(t)=internal cavity pressure at time ¢;
u,,=pore water pressure due to ground water table;
v=Poisson’s ratio;
AV=change in volume of cavity at time ¢;
V,=initial volume of cavity;
V=volume of cavity at time #;
&,=volumetric strain;
&,,=radial strain;
£g9=circumferential strain in cylindrical or spherical polar coor-
dinates; :
&4 =circumferential strain in spherical coordinates;

&, =normal strain in vertical direction;
¢,=radial displacement of particle;
&,.=radial displacement of particle at face of cavity;
¢,,=radial displacement of particle at the interface of elastic and
plastic zones;
a,.~radial stress;
gg=circumferential stress in cylindrical and spherical coor-
dinates;
044 =circumferential stress in spherical coordinates;
o, =normal stress in vertical direction;
g, =total horizontal stress prior to cavity expansion;
o, =effective vertical stress;
O 0, =total and effective mean stress in elastic zone;
Gomps O mp=total and effective mean stress in plastic zone;
T.ars T4 =total and effective octahedral stress in elastic zone;
Oocp=0ctahedral stress in plastic zone;
o,=radial stress at interface of elastic and plastic zones;
o, — oy =stress difference at failure;
t=maximum shear stress; and
y»=unit weight of water.
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Go=Pwt+0c,(1+2Kp)/3,
ém=mR(t)[p(t)—am]. (18)
2E
(b) For Plastic Zone, i.e. For r(t)<r,
—p(t)—desn 2D
or=p(t) Cy nR(t) s
4c,
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R e (19
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Gew=04s=p(t)—4c, lnR—(t—)—Zcf‘,
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octp D u R(t) 3
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APPENDIX I—SPHERICAL CAVITY EXPANSION

(a) Cavity Expansion Prior to Formation of State of
Plastic Equilibrium at Face of Cavity

R¥(t)

=00t [P(t)—Gocr] r3(t) ’

Substituting values of r,/R(t) and &,/R(¢) from Egs.
(19) and (21b) in (21a), the cavity pressure p(¢) at any
instant ¢ is given by

271} >

)= + 4 + 4 1 1 R
P()=0wtyatIn 27— 9L +1

3 TR
(23)
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