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ON THE REPLACEMENT OF MATERIAL-TIME DERIVATIVE TO
COROTATIONAL RATE OF YIELD FUNCTION:
MATHEMATICAL PROOF

KoicHi HASHIGUCHIY

ABSTRACT

Constitutive equations have to be formulated in an indifferent form independent of the frame (i.e. coordinate
systems) by which they are described or so as to be independent of the superposition of rigid body rotation. This fact is
required by the principle of material-frame indifference (Oldroyd, 1950) and is attained conveniently by describing rate
variables in terms of rate tensors with objectivity in constitutive equations in rate form. A plastic strain rate is derived
by substituting the plastic flow rule into the consistency condition given as the material-time derivative of yield condi-
tion. In this note the mathematical process demonstrates the fact that rate variables involved in the material-time
derivative of yield function can be directly replaced with their objective rate tensors. Here, the yield function involves
arbitrary tensors, whilst the special case that the yield function involves only a single tensor or second-order tensors has

been discussed in the past.
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INTRODUCTION

Mechanical properties of materials are observed to be
identical by different observers and thus constitutive
equations have to be formulated in an identical form
independent of the frame (i.e. coordinate system) by
which they are described. In other words, they have to be
independent of the superposition of rigid body rotation.
This fact is advocated and called the principle of
material-frame indifference by Oldroyd (1950).

Elastoplastic constitutive equations are formulated in
rate forms since no unique relation exists between stress
and deformation in the elastoplastic deformation proc-
ess. They can be formulated conveniently by using
corotational rate tensors which obey the coordinate
transformation of the objective tensors even if a relative
movement exists between the coordinate systems. The
plastic strain rate is derived by substituting the plastic
fiow rule into the consistency condition given by the
material-time derivative of yield condition. Therefore,
rate variables in the consistency condition are required to
be transformed to their corotational rates. The fact that a
rate variable involved in the material-time derivative of
yield function can be directly replaced with the corota-
tional rate has been verified for isotropic hardening
models by Hashiguchi et al. (2002), for isotropic-
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kinematic hardening models (Edelman and Drucker,
1951; Ishlinsky, 1954; Prager, 1955) by Papamichos and
Vardoulakis (1995) and for isotropic-rotational harden-
ing models (Sekiguchi and Ohta, 1977; Hashiguchi, 1977,
1994, 2001; Hashiguchi and Chen, 1998) by Asaoka et al.
(2002). It was also verified for a general yield function of
a single tensor by Dafalias (1985, 1998) without a detailed
discussion.

A scalar quantity does not need to be observed to be
identical by different observers or to be independent of
the superposition of rigid body motion. For instance, the
kinetic energy depends on observers and that superposi-
tion. On the other hand, the rate of yield function which
is a scalar quantity describing a property of material has
to be observed to be identical by different observers.
Therefore, it would be expected that rate variables in-
volved in the material-time derivative of yield function
can be replaced directly with their objective rate tensors.
In this note, a mathematical proof of this fact is given.
Here, the yield function includes arbitrary tensors with
objectivity, whilst up to now proofs are only for yield
functions with scalars or second-order tensors.

The sign of a stress (rate) is taken to be positive for
tension, and the Einstein’s summation convention is used
throughout this note.

Professor, Graduate School of Bioresources and Environmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka

Written discussions on this paper should be submitted before May 1, 2004 to the Japanese Geotechnical Society, Sugayama Bldg. 4F, Kanda
Awaji-cho 2-23, Chiyoda-ku, Tokyo 101-0063, Japan. Upon request the closing date may be extended one month.

189

NI | -El ectronic Library Service



The Japanese Geot echni cal

Soci ety

190 HASHIGUCHI

TRANSFORMATION OF RATE OF YIELD
FUNCTION

Consider two different coordinate systems with bases
{e,} and {e/} (i=1, 2, 3), whilst let the orthogonal tensor
between these coordinate systems be denoted as @, i.e. O,
=¢/ -e, fulfilling QQT=1. The notation ( )" stands for
the transpose and I is the second-order identity tensor.
The bases {e;}, {e/} and thus the orthogonal tensor Q
depend on time in general. Let the position vector of
material point observed by the coordinate systems with
bases {e;} and {e/} be denoted x(X,?) and x'(X,¢),
respectively, where X is position vector of material point
in the reference configuration and ¢ is a time. Then, it
hold that

x'(X, 1)=Q()x(X, 1)+ (1), )

where c(?) is the position vector of the origin of the coor-
dinate system with bases {e,} observed in the coordinate
system with bases {e/}.

If the components of a quantity T observed by these
coordinate systems are related by the following equa-
tions, T is defined to be the m-th order tensor having
objectivity.

T} o= g @ooaa” " *Opoanl a0, s 2

denoting the components of 7 in the coordinate systems
with bases {e,} and {e/} (i=1, 2, 3) as Tp,, -, and
T} p.---p.» TESpectively. Equation (2) can be written for the
second-order tensor as

T'=QTQ" 3

by the symbolic notation.
The material-time derivative of Eq. (2) for the objec-
tive tensor is given as

T =T}p 1= Dra Opgs” " vt a:a: -an
+ 0ra0. Opae” " “Oputnlaarant
+ Q00 Opa” " Orutal >0

+ 000, Opt” 'mequqxqz “m )

which does not have the property of the objective tensor
when the relative rate of rotation exists between bases
{e;} and {e/}, i.e. @=0.
Now, consider the following corotational rate tensor
Toor 2a=REq R Ring (RS Rigy - Rig. Ty )’
=R2:(I1R1Tzlh' : .R;’nmqm(R??‘llelh' : .R;:quSlSz”'Sm
+R;‘?41R;?qz. : 'R;?annxsz“‘Sm+ e
+ RS, R5q," 'R?:nqusm “Sm
+ R R%q, - 'R?':quslsz- sm)
= Tpnpz on— s, Tip, pu— Qs Tps, - pn

- _'QrpnmsmTplpz “Sm? )

where Q™ is the spin of material-substructure and is
generally related to the rotation tensor R™ of material-
substructure as follows:

or= RmRmT, (6)

provided that R™ is related to the motion x(X,¢) of
material-substructure and fulfills the following transfor-
mation rule

R™ =QR", @)
and thus 2™ obeys the transformation rule
"= 00"QT+Q, ®

where 2 is the spin of bases {e,} observed from bases {e/ }
as known from

Q = (ér®er)1]ei’ ®ej’ = (ér)i’ (el')]/ei’ ®ej’
=(é:-¢/)(e: €))el Re] = Oi Oyrel R
=(0Q");e/®ef = 00", ©

noting é= Qe (6Xe, = 2eXe,=N) and that the magni-
tudes of e; are constant as unit. The corotational rate
tensor T is interpreted to be generated from (R, R, -

R?, Tes,-s.)’» which is the material-time derivative of T
observed in the coordinate system rotating with the

m

material-substructure, i.e. R Ri.-""R%¢ Tss, - 50 DY
the inverse transformation rule of objective quantity.
Equation (5) is written in case of the second-order tensor
as

T=R™(R™TR™) R""
=T+R"R™ T+ TR™R™
=T-Q"T+TQ" (10)

by }he symbolic notation.

T has the objectivity as verified as follows:
T po= Ry Riy* - - RiLa, (R, R + R, Thsyos)
= Qp, R, Qpt, R0 * * Qputa Rian
X { Q5 R Qs RYg, * * Qsora R ( Qs Qo™
X Qsitn Ty 1)}
=0y, @putr” * * Oputn Ritg, b "Ry (Rrg Rug. -
XRE Trr 1)
=0t Oputa 'metmfrxtz'~~rn,
for the first term of Eq. (5) or

an

f},p2~ TP Télpr coa = ps Taips o™ 25T pisse o

= = Qs o s

= (000 Qrtx" " * Drutal 0102 -0x)" ~ (Do Q7 O
+ Q.pm Qi) @510 O™ * Ot Tos - an
—(Qp., 27, Dot sz’z 0Qsr) Onas Osgr” " *
X Opgnlaas aa™ """ T (Opura 27t Ost
+ merm Oar) Q00 Opatr” * * Csngnl a2 -

= (Qplql Qo' Dot a0+ a0 Ooia szqz' e
X QpuanTaar gt "t Opa, Opa "
X Q.pmquQI‘h"'qm + 05 Qaug” " mequq,qz- gm)
—(Qpir 271, Qs t me 0O5n) @50 Drua” "
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X meqm quqz Cm ( sz"z Q ;lzltz QSztz
+ Op.r, Osir,) 00, Osar” Ot Ta0r - am
- (merm Q::. Qsmtm + merm Qsmr.n) Qpqu szqz Ut

XQSQ @192" "4m

=050 Ot Qouta(To02 00— Q55Tsq, g,
— Q85T g™~ 20T aar s
=040 Opar* * "Orutn a2 o 11y

for the last term in Eq. (5), noting Eq. (8).

Arbitrary n-th order tensor-valued isotropic tensor
Junction f of arbitrary scalar- or tensor-valued variables
TO, T®,-- -, T™ of my-, my-,- - -, my-th order, respec-
tively, has to fulfill the relation

— 1y )y (n)’
_f;hpz ﬁn(Tflrz . Trl’: © rmy? Trer )

=for -2 Qrs, Qrzsz Qrmlsm,Tifiz sy Driss Onsy”
X Qrmem, T ™" "> @riss Orass” ™ * Qoo T -sm,).
12)
Yield condition is generally described as
f(T(l)’ T(Z)’. <., T(n))zo, (13)

where T®, T, .. T™ stand for stress and internal vari-
ables describing alteration of mechanical response due to
plastic deformation. The yield function f as a scalar-
valued isotropic tensor function has to be invariant for
the orthogonal transformation, i.e.

f(T(”, T(2),. . T(ﬂ)) =f(T(”', T(Z)', s T(n)’) (14)
T,
Or 'q’g” 0" Ooa, f‘i:f (T which is the special case of Eq. (12).
Tt s Thinerm,) It follows from Egs. (2) and (14) that
ST, s T e T
f (T, a]l‘“) ) T8 om (O sum over (i)
Py Pm
T e Ty T8 1)
T
=af( Q’IS[ Q’zsz' ) Q’m,Sm,ngz"'sml’ ersl Ql’zSz. : .Q’mzsszg;z T Q’|S1 Q’zsz. o Q’mn5mnT§?gz"'smn
00,.4, O 'me,qm. qlqz- “am,
X (QPIQI Opg” 'mequqnqz“ @)
(TG oy Tt o> T )
= l l(zi) ) — Oria. Qg * *Qomam (i Opurs * * Opura Trirye 1) (15)
aT
@42 " gm
The selection @=R™ in Eq. (15) leads to
f(TO, TO ... TO of(TO, T® ... T®
tr { /( 3T T(‘)} { /( 370 T(‘)} (no sum over (i)). 15y
Thus, one obtains
n 3f(T(1), TO, . S T™ N 6f(T(l), T(Z), s, T® .
,=Ex tr { 370 TY —;} tr ST O TOY. (16)
That is to say, the rate tensors involved in the material- ' =R™[(R™"[T'])] = OR™ R™T[OIT)
time derivative of the yield function f can be replaced [(m I[nT D ]_ Q [{O(Q V11T
directly with their objective rate tensors. =Q[R"[(R™[TDNI=QIT]. 19)

Dafalias (1985a, b) introduced the following symbolic
notations N [T] for arbitrary orthogonal tensor N(NNT
=1I). Here, add the symbolic notation N'[T] for the
inverse transformation, i.e.

(NIT Doy s =Npg,Npg," *
(NT[T])plpz < oo =Ngp, Ny, " *
The corotational rate tensor T in Eq. (5) and the objec-

tive transformation in Eq. (11) can be expressed concisely
using the notation defined by Eq. (17).

T=R™[(R™[T]))],

"NowtTa,0: ams a7
"Ny.p, Ty

“qm*

(18)

Equations (12) and (14) for the isotropic tensor func-
tion are expressed as

QUAT®, T®, - - -, T™)] = f(QIT"], Q[T®),

o[T™)) (20
f(T(l), T(2), e T(n)) =f(Q[T“)], Q[T(Z)], N Q[T(“)]),
(21)

using the symbolic notation (17).

Here, let the following symbolic notations N[7T] and
NT[T] be newly defined in accordance with the notation
(17) that
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(N[T]p.pz~"pmz(prquszqz’ : 'Npmqm'*'qu.szqz' " Npaga T + Npig,Npig,* * 'Npmqm)Tq-qz~-~qmv

(NT[T])p.pz'“pm:(Nq.quzpz' : 'qupm+Nq1p1Nq1pz' : 'qupm+ o+ NgpNop," .N.Qmpm)TqIQZ"'qm'

Further, define the novel symbolic notation 2N[T']:

(22)

(‘QN[T])plpz'- me(NT[N[T]])plpz'--p...:(Nq.pquzpz' ' 'qupm+Nq|p|qupz' “*Ngpa T
+qu1Nszz' ) 'qupm)qusquzsz' . 'qusmnlsr “Sm
= (qupqumépzSz' ' '5p.nsm+ aplsquzpquzsz' : '5pmsm+ “ +0psOps 'qupqumsm)TS.Sz “Sm

— 0ON N N
- Qp,s, nlpl‘ " Pm + QPZSZTPISZ' *Pm + -t mesmTplp2' ©Smd

noting
OQN=N"N. (24)

Then, for choosing N=R™ the corotational rate tensor

T in Eq. (5) is expressed as follows:
T=7T-Q"[T] (25)

by the symbolic notation (23). Further, the mathematical
process (11)’ is expressed as follows:

T =7 -Q"[T]
=(QIT] —(QQ"Q"+ 00N QITI
=Q[T1+Q[T]1-(Qe Q"+ 00N QIT]]
=Q[T-Q"(T]1=0QIT].

Furthermore, the algebraic manipulation of Eq. (15)
can be expressed concisely as follows:

af(T(l), T(?-)’. .-, T(n))
tr { aTO
—tr {6f (QIT"], QIT?),- -, QIT®))

(26)

(T‘”)'} (no sum over (i))

30T
. T(n))}

(Q[T“)])'}

_ af(T(l), T(Z), .
=tr {Q[ 3T®

af(T“), T(Z),. .
=t { PYAC)

(Q [T‘i’])'}

. (n)
. T7) {QT[(Q[T“’])']}}, 27)

noting

tr {(Q[A4])B} =tr {(4(Q"[BD)} (28)

due to

Opa0. Qg OpuanAaas 0. Bpirs com=Agar au Opa Opa” ™
X meIImelpz * Pm (29)

for arbitrary same order tensors 4 and B. Besides, Eq.
(20) is used for deriving the third equation from the
second one in Eq. (27).

From the first and the sixth equations of Eq. (27) it
results that

{af(T(l)’ T(Z)’. - T(n))
tr

aT® Q[T(')]} =0

(no sum over (i)). (30)

23)

For the special case that T® is the second-order tensor,
denoted as a, it follows from the first and the last equa-
tions of Eq. (27) with Eq. (10) that

af _of
o=«
do  da
by the arbitrariness of £, noting tr (AB)=tr (BA).
Equation (31) was derived by Dafalias (1993).

The transformation rule of Eq. (16) can be also derived
by the following method in the special case that fis a
scalar-valued isotropic function of the second-order sym-
metric tensor «, which has three independent invariants.
The function f can be described by the invariants of them,
i.e.

@31

Sfle)=/U, 11, 1), (31

where I, II, IIT are the first, the second and third invari-
ants of o, respectively, i.e.

I=tra, II=tro?, HI=trd’. (32)
It holds that
af . af oI af oIl  of olll\ .
Yal=tu {(Z T
o (aa O’) r{(alaa oIl 9o oIl o |*
=tr {(ao] + a0+ aa)a}
=tr {(ao] +a,;0®+a0?)(a+ La—a)}
=tr {(@ ]+ a,a+aa’)a}
=tr (af&), (33)
Ja
where
of af af
= =— =—— 34
w=5r, W= g, =y (34)

which are scalar functions of I, I, III, noting (§™)'=S"
and tr (ST%=0, S and T* being symmetric and skew-
symmetric second-order tensors, respectively.

COROTATIONAL RATE TENSOR

In the previous section, it is verified that the corota-
tional rate tensor defined by Eq. (5) has the objectivity
and the rate variables involved in the material-time
derivative of yield function and can be directly replaced
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by the corotational rate tensors of Eq. (5). However, one
has to select the rotation tensor R™ and the spin tensor
Q™ describing appropriately the rotation of the substruc-
ture of the material. For instance, the Zaremba-Jaumann
rate (Zaremba, 1903a, b; Jaumann, 1911) with the spin
W(=L—-L")/2, L: velocity gradient) and the Green-
Naghdi or Dienes rate (Green-Naghdi, 1965; Dienes,
1977) with the spin Wz=RR", where R is the rotational
part in the polar decomposition of the deformation
gradient tensor F, fulfill Eq. (8) and have been adopted as
corotational rate tensors. W is the spin of principal direc-
tions of strain rate D (= (L +L")/2) and is called the con-
tinuum spin or vorticity tensor, and Wy =RRT is the spin
of principal stretches and is called the polar or body or
relative or material spin. The rigid body spin of material
is exactly given by Wk in general, as known also for the
continuum spin W=RRT+R{(UU '+ U"'U)/2}R"
(U right stretch tensor).

Mandel (1972) and Kratochvil (1972) revealed that the
spin of material-substructure is suppressed from the
continuum spin when plastic deformation proceeds.
Dafalias (1983, 1985a) and Loret (1983) proposed that
the substructure spin is not so large as the continuum spin
but has to be given as the spin where the plastic spin due
to plastic deformation is subtracted from the continuum
spin. The pertinent form of plastic spin was given by
Dafalias (1985b) and Zbib and Aifantis (1988). However,
in order to use this spin tensor, one has to formulate the
constitutive equation for the plastic spin tensor, and thus
a concrete form of the constitutive equation becomes
complicated and difficulty arises in determining the plas-
tic spin since one needs test data for a large shear strain
more than 150%. Below this level, the influence of the
plastic spin is negligible, but it would be impossible to
perform an element test for such a large deformation due
to the occurrence of localized deformation. Here, it
would be practical to use the Jaumann rate for usual
problems in engineering. On the other hand, the Green-
Naghdi or Dienes rate is not appropriate for the corota-
tional rate tensor in the formulation of elastoplastic con-
stitutive equations since Wk depends on R describing the
whole rotation from the initial state. However, a current
response of material for the plastic deformation is hardly
dependent on a total strain and/or rotation from the
initial state as has been reviewed by Dafalias (1983) and
Hashiguchi (2001).

CONCLUDING REMARKS |

The general form of a rate tensor with objectivity is
shown and it is verified that the rate variables involved in
the material-time derivative of yield function can be
directly replaced by the objective rate tensors. Here, it
should be noted that the verification is applicable not
only to yield function but also to arbitrary scalar-valued
isotropic functions.

The objectivity of tensors has been interpreted from
the following two methods: Method 1) Equation (2) holds
between components of the tensor described by two

different coordinated systems where a relative rate of
rotation exists between these coordinate systems and
Method 2) The components of the tensor observed by a
fixed coordinate system changes as in Eq. (2) when the
rigid body motion WR(R™=R) is superposed to the
material motion. Method 1) adopted in this note would
be more natural than Method 2), which reflects directly
the concept of the principle of material-frame indiffer-
ence (Oldroyd, 1950). Further, it can avoid the use of a
concrete corotational spin tensor of material which
remains to unsolved still now.
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