
The Japanese Geotechnical Society

NII-Electronic Library Service

The  JapaneseGeotechnical  Society

SOILS  AND  FOUNDATIONS  Vol. 43, No. 5, 189-194, Oct. 2oo3
Japanese Geotechnical Society

ON  THEREPLACEMENT  OF  MATERIAL-TIME  DERIVATIVE

COROTATIONAL  RATE  OF  YIELD  FUNCTION:

           MATHEMATICAL  PROOF
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                                       ABSTRACT

  Constitutive equations  have to be formulated in an  indifferent form independent of  the frame (i.e. coordinate

systems)  by which  they are  described or so  as  to be independent of  the superposition  of  rigid  body  rotation.  This  fact is
required  by the principle ofmateriai:f)ame indCOZ?rence (Oldroyd, 1950) and  is attained  conveniently  by describing rate
variables  in terms of  rate  tensorsi with  objectivity  in constitutive  equations  in rate  form. A  plastic strain  rate  is derived
by substituting  the plastic flow rule  into the consistency  condition  given as the material-time  derivative of  yield condi-
tion. In this note  the mathematical  process demonstrates the  fact that rate  variables  involved in the material-time
derivative of  yield function can  be directly replaced  with  their objective  rate  tensors. Here, the  yield function involves
arbitrary  tensors, whilst  the special  case  that the yield function involves only  a single  tensor or  second-order  tensors has
been discussed in the  past.
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INTRODUCTION

  Mechanical  properties of  materials  are  observed  to be
identical by different observers  and  thus constitutive

equations  have to be forrnulated in an  identical form
independent  of  the frame (i.e. coordinate  system)  by
which  they are described. In other  words,  they have to be
independent of  the  superposition  of  rigid  body  rotation.

This fact is advocated  and  called  the  principle of
materiai:frame  indtfi2irence by Oldroyd (1950).
  Elastoplastic constitutive  equations  are  formulated  in
rate  forms since  no  unique  relation  exists  between stress
and  deformation in the elastoplastic  deformation proc-
ess.  They  can  be formulated conveniently  by using

corotational  rate  tensors which  obey  the coordinate

transformation  of  the objective  tensors even  if a  relative

rnovement  exists between the  coordinate  systems.  The

plastic strain  rate  is derived by substituting  the plastic
fiow rule  into the consistency  condition  given by the
material-time  derivative of  yield condition.  Therefore,
rate  variables  in the consistency  condition  are  required  to
be transformed  to their corotational  rates. The fact that a
rate  variable  involved in the material-time  derivative of
yield function can  be directly replaced  with  the corota-
tional rate  has been verified  for isotropic hardening
models  by Hashiguchi  et al. (2002), for isotropic-

kinematic hardening models  (Edelman and  Drucker,
1951; Ishlinsky, 1954; Prager, 1955) by Papamichos and

Vardoulakis  (1995) and  for isotropic-rotational harden-
ing models  (Sekiguchi and  Ohta, 1977; Hashiguchi, 1977,
1994, 2001; Hashiguchi and  Chen, 1998) by Asaoka et al.

(2002), It was  also  verified  for a  general yield function of

a single  tensor by Dafalias (1985, 1998) without  a  detailed
discussion.

  A  scalar  quantity does not  need  to be observed  to be
identical by different observers  or  to  be independent of

the superposition  of  rigid body motion,  For instance, the
kinetic energy  depends on  observers  and  that superposi-
tion. On  the other  hand, the  rate  of  yield function which
is a  scalar  quantity describing a property  of  material  has
to be observed  to be identical by different observers.

Therefore, it would  be expected  that rate  variables  in-
volved  in the material-time  derivative of  yield function
can  be replaced  directly with  their objective  rate  tensors.
In this note,  a  mathematical  proof of  this fact is given.
Here, the yield function includes arbitrary  tensors with
objectivity,  whilst  up  to now  proofs are  only  for yield
functions with  scalars  or  second-order  tensors.

  The sign  of  a  stress (rate) is taken  to be positive for
tension, and  the Einstein's summation  convention  is used
throughout  this note.
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TRANSFORMATION  OF  RATE  OF  YIELD

FUNCTION

 Consider two different coordinate  systems  with  bases

{e, } and  {er} (i-- 1, 2, 3), whilst  let the orthogonal  tensor

between these coordinate  systems  be denoted as e, i.e. 9,
=ei  ･q, fulfilling eeT=L  The notation  ( )T stands  for

the transpose and  I is the  second-order  identity tensor.
The  bases {ei}, {er} and  thus the  orthogonal  tensor e
depend on  time in general, Let the position vector  of

material  point observed  by the coordinate  systems  with

bases {ei} and  {er} be denoted x(X,  t) and  x'(X,  t),

respectively,  where  X  is position vector  of  material  point

in the reference  configuration  and  t is a  time. Then,  it

hold that

         x'(X,  t)-e(t)x(X,  t)+c(t), (1)

where  c(t)  is the position vector  of  the origin  of  the coor-

dinate system  with  bases {e,} observed  in the coordinate

system  with  bases {e,'}.
  If the components  of  a  quantity T  observed  by these

coordinate  systems  are  related  by the following equa-

tions, T is defined to be the m-th  order  tensor having

objectivity.

       TSLpi'' 
p.=Q,qi

 9piqi'''9.q. 71itqi -･4., (2)

denoting the components  of  T  in the coordinate  systems

with  bases {e,} and  {er} (i=1, 2, 3) as Tp,p,･ ･.. and

TS,p,･ ･ ･p., respectively.  Equation (2) can  be written  for the

second-order  tensor as

               T,=2rpT  (3)

by the symbolic  notation.

  The material-time  derivative of  Eq, (2) for the  objec-

tlve tensor ls glven as

       -- -

      T' =  TSipi･ ･ -p. ==  Giqi 9piq2 
'
 
'
 
"
 e.q.Tbiq2 ' 'qm

          +  9pdqi 2pzq! 
'
 
'
 
'
 9p.q. 7hig2' ' 'qm +  

'
 
'
 
'

          +9piq79iai'''ep.q.7Uiq2･･･q.

          +2pLqi 9pi4i'''2p.g.7:;,qi ･･q,. (4)

which  does not  have the property of  the objective  tensor

when  the relative  rate  of  rotation  exists  between bases

{ei} and  {ef}, i.e. e#O.
  Now,  consider  the following corotationai  rate  tensor

  Zi,p,- ･p,. ='  RpM,q,RpM,q, 
'
 
'
 
'RpM.q.(RsMa,RsM,q,

 
'
 
'
 
'Rsrn.q.

 Z,s,･･ 
･s.)'

                       .

        =RpMa,Rp",q,'''Rp".q.(RsM,q,Rsrn,qi'''RsM.q.Zis2'''s.

         +R:q,RsM,q, ' ' 'RsM.g. Tk,s,･･ -s. +  
'
 
'
 
'

                    .
         +RsM,q,Rs",4,'''RsM.q.TL',si 's.

         +RlhR:q2'  
"
 
'RsM,,g.

 71bs2' 'sm)

        =4ip2  ･p.-9pM/sLn,pi･ -p.-9pM]s!7},s2･･p.

          -'''-  9pM.s. 7})/p2 .,s.7 (5)

 where  aM  is the  spin  of  material-substructure  and  is

 generally related  to the rotation  tensor Rrn of  material-

 substructure  as follows:

                    .

               nm=RmRmT,  (6)

provided  that Rrn is related  to the motion  x(X,  t) of

material-substructure  and  fulfi11s the following transfor-
mation  rule

               Rm'-eRm,  e)

and  thus  nrn obeys  the transformation  rule

            nm'-egmeT+2,  (8)

where  n  is the  spin  of  bases {e, } observed  from bases {e,' }
as  known  from

       9  !!  (e,Xe,),,er Xoj ==  (e,)i' (e,),' ei' Xei'

         =(e,･eD(e,Je,')efXe,'=9,Qj,efXej'

         -@eT)ijeJXef-QQT,  (9)

noting  ei ==  2ei (eiXe, =  9e,&e, ==  n) and  that the magni-

tudes of  ei are  constant  as unit. The  corotational  rate
     e

tensor  Tis interpreted to be generated from (R:q,RsM,g,' 
'
 
'

Rge.q.Z,s,･･･s.)', which  is the material-time  derivative of  T

observed  in the coordinate  system  rotating  with  the

material-substructure,  i.e. Rsrn,q,Rsrn,a,''"Rsrn.q.71i,s,･･ s.,  by

the inverse transforrnation  rule  of  objective  quantity.

Equation (5) is written  in case  of  the second-order  tensor

as

        i4=Rm(RmTTRrn)'RmT

          = T+RmRmTT+ 711?mRmT

          =T-9mT+  7:S2rn (10)

by the symbolic  notation.
  e

  T  has the objectivity  as verified  as  follows:
 s7;,.,..

 ,.. -R.m,h,R,m,e,  
･
 
-
 
･R.m.',.(R.rn,i,R,",e,

 
･
 
･
 
･R.".e.

 Tg,,,･･･s.)-

      =  gitdR:qi git2RE,qi 
'
 
'
 
'
 2p.t.RP.q.

        × { es,riRPiqi 9s2r2RPig2 
'
 
'
 
'
 9s.r.R:.lq.( qsiui esiu, 

'
 
'
 
-

        × 2s.u. Tltiu2'''u.)}'

      =  2pit, Git2 ' - ' 9p,. t.R2q,RM,q2  
'
 
'
 
-RP.a.(RR,q,RP,q,

 
'
 
'
 
'

        XRP.q.Z,r2･''r.)'

                    
e

 (11)      ==9pLt:epit:'''9p.t.T},t?･･-t.

for the  first term  of  Eq. (5) or

#tp2'''pm=nipi･･･p.-9pM,siTsLpi･･-p.-9:siTS,s2･･･p.
       

-
 
.
 
'
 
'
 
-

 9pM.s. TSip2'' sm

      =  ( 9),q, {Z)242 
'
 
'
 
'
 g.g. 71;,qi･ ･ ･q.)- - ( 9p,r, 9rM, t, es, t,

         .

       +  epiri 9s,r, ) 9s;qi C!p-2 
'
 
'
 
'
 2pmqru 71;iqi- ･ 'qm

                     .
       -  ( g,r, 9P, t, es, t, +  9p,r, 2stri) ep,q, 9s2qi 

'
 
'
 
'

       × 9p.q," Tle]q2･･ qm 
-
 
'
 
'
 
'
 
-
 ( g. r.9P.t.  es.t.

       +  ep.r. 2s.r.) 9p/qi 2piqi' 
'
 
'
 es.g.71iiq2- ･qm

      =  (e,q, 9p:q2' ' ' 9p.g.71i,qi･ ･ q. 
+  2p,g] epiqi 

-
 
'
 
'

        × 9p.q. 7U/q7･ -gm +  
"
 
'
 
'
 +  Q,q: g2qi' ' '

        × pt.qm71iiq2･ ･ ･qm +  giai 9qig2 
'
 
'
 
'
 9p.q.71iigi' '4.)

        
-

 ( 2p,r, n:t, Qs,t, +  2p,r, 9s,ri) giqi g2qi ' ' '
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        X  g.q. 7leiqi ･ -q,. 
-

 ( g2r2 9Piti 2s2t2
          .
        +  9p2r2 9s2-) 9p,q, 9'iq2 

'
 
'
 
'
 9p.q. 71 iq2･  ･･g. -  ' ' '

        
-

 ( 9. r. 9rM.t. es.t. +  9o. r. es.r. ) 2piqF epiqi 
'
 
'
 
'

        × 9s.q.71;iq]' '4.,

      
=

 giqi ep2qi 
'
 
'
 
'
 gmqm(7leEqi･ ･･q. -9:/si Ziqi -･q.

        
-9qM:s271;is2

 ･･q.- ' ' ' -9:.s.Tq/42' sm)

                    s
      

=
 9p,q, 9piqi'''g.q.TIiiq2- 

q..
 (11)'

for the last term  in Eq.  (5), noting  Eq. (8).
  Arbitrary n-th  order  tensor-vaiued isotropic tensor

junction f of  arbitrary  scalar-  or  tensor-valued variables
T(i), T{2],･ ･ ･, T{") of  mi-,  mr,･  ･ ･, m.-th  order,  respec-

tively, has to fulfill the relation

97iq:Q2g2'''g.qnfbiq2'''qn(T£l)i･-･rm,}
  'S?)2'''r-i･'''･ ' £74'''r-.)

  
==Y}ipi

 pa(Tfl)l  'rm,, TS?)I ' rm,,'  
'
 
',
 T £7)i'''rm.)

  
=h,pi

 ･-p.(erisi 9r2si' 
-
 
'erm,sm,TSII,

 -･sm,, er,s, ebsi' 
'
 
'

    X  Qr.,sm,Tg?l,- s.,,  
'
 
'
 
"
 , 9rds, e-s2' 

'
 
'
 erm.sm.Tf72i･･'sm,,).

                                     (12)

  Yield condition  is generally described as

          f(T[]), T(2),･･･, T(n))=o, (13)

where  T{i), T(2), ･ ･ ･ 
,
 T{"] stand  for stress and  internal vari-

ables  describing alteration  of  mechanical  response  due to
plastic deformation, The yield function f as a  scalar-

valued  isotropic tensor 
.fttnction

 has to be invariant for
the orthogonal  transformation, i.e.

  f(T{j}, T(2), ･ J -, T(n)) =f(T(i)',  T(2)',･ ･ ･ 
,
 T(n}') (14)

which  is the special  case  of  Eq. (12).
 It follows from Eqs. (2) and  (14) that

of(T£l)2' rm,･TS?l!  'rm,･''',Tf7)i' rm.)

of(T(1),.rl rl'

 aTSi),, ･..,

r-,･  Tf?)l'''rm,･' 
'
 
'･
 TS7I''

TS, l., , . ..,

.rmu)TS'IS2

(no sum  over  (i))

         eTsc, pm,

of( er,si 9risi 
'
 
'
 
'
 9m,sm,Tkll,･

           
'Pm,

･･sm,, 9r,s, er2s2 
'
 
'
 
'
 Qrm,sm,Tg?l･-

× (g,q,9?!qi'''9.q.7kiqi

of(T21g,･- s.,･  Tf722･- s-,･''

    09p,qi 9piq2 
'
 
'
 
'
 2pm,qm,T

･- q.)-

',
 TS71･･ sm.)

'smit''')erLsi9r2s2'''erm.sm.Tk72i,,･sm.

g?,,-･qm,

           aTS?q2 -･qm,

The  selection  2=RMT  in Eq.

                  T(2)
tr (of(T(]),

giq, 9p2q2 
-
 
'
 
'
 2pm,qm,( 9):ri Q2rn ' ' ' 2p,, r,. 7;, r,･ ･

(15) leads to

'''',  T{n) .

OTo}
To]  

..tr

 {of(T(i), II;'}i,)' 
,

 
T(")

 die

.-//)-J

) (no sum  over  (i)).

(15)

(l5)･

Thus,  one  obtains

t?., tr (of(T(')' :;)a.)' 
'

 
',

 
T(")

 T(i)] 
=n

£  trJ=](-cvr(T(1),
 T(2), ･ ･ ･, T{n)

OT(i)
di1(o). (16)

That  is to say,  the rate  tensors  involved in the material-
time  derivative of  the yield function f can  be replaced

directly with  their objective  rate  tensors.

  Dafalias (1985a, b) introduced the following symbolic
notations  N[T]  for arbitrary  orthogonal  tensor  IV(NArT
=I).

 Here, add  the symbolic  notation  AiT[T] for the
mverse  transformation, i.e,

   :iJIV?s.c;;fm.J'='N,i,,"qLl))?c:1:i.",<'eT,:I.ii;L,.1:'..1 (i7)

                      e
 The  corotational  rate  tensor Tin  Eq, (5) and  the objec-
tive transformation  in Eq.  (l1) can  be expressed  concisely

using  the notation  defined by Eq. (17).

           di=Rm[(RmT[T]))], (18)

  e

  T,-=RM'[(RM'`[T,])･]=eRM[{(eRM)T[e[T]]}']

    
-e[Rm[(Rm'[T])')]]-2[i].

 (19)

  Equations (12) and  (14) for the isetropic tensor  func-
tion are  expressed  as

2[f(T(i), T(!), J - ･ , T(n))] =  f(e[T(i)], e[T(2)], ･ ･ ･ 
,

  2[T(")]) (20)
f(T(i), T{2},･ 

･
 
-,
 T(n)) =f(e[T{i}], e[T(2)],･ ･ ･, Q[T{n)]),

                                     (21)
using  the  symbolic  notation  (17).
 .
 Here, let the following symbolic  notations  N[T] and

ArT[T] be newly  defined in accordance  with  the  notation

(17) that
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(N[T]p,pi'''pm
(NT[T])p,pi''

   - -
-

=  (IV},taiAG,iq2' ' ' INI,.q. +  ACoiqiMzq! ' ' 'Al).q. +  
'
 
'
 
'
 +  IN},ig,Miq2 

'
 
'
 
'
 Alpma.) 71;/g2' ' 'q.,

    - - - -
･p. =  (IVli,p, IV4,p, ' ' 'IVb.p. +  IVb,p,IV4,p, 

"
 
'
 
'
 IVb.p. +  

'
 
'
 
'
 +  IVb,pilVbip2 

'
 
'
 
'
 N6.p.)Z;dq]' 'q.i

(22)

Further, define the  novel  symbolic  notation  n"[T]:
                 - - -
    (9N[T])p,p,･-p.i(NT[IViT]])p,p,･･･p.=(IV4,p,IVb,p,'''IVh.p,.+IVb,p,IVij,p,'''IVb.p.+'''
                +  IVb,p, Nb,pi ' ' 'M.p.)IVij,si Nisi ' ' ' Nb.sdLZis]' 'sm

               ==  (MipilVbisiof2s2 
'
 
"
 
'
 of.s. +  (7pisd?Vh2p21Vb:s2 

'
 
'
 
'
 dp.s. +  

'
 
'
 
'
 +  ofbs/ jpisi 

'
 
'
 
'IVij.p.Nb.s,.)71]s!

 ･s.

               : 9D[,s, Tl,p2･ ･ ･p. +  9pN,s, 7},isi･ ･ 'p. +  
'
 
'
 
'
 +  9:.s,. 7},ip2' ' 'sm, (23)

noting

              9N.IVTIV. (24)

 Then,  for choosing  IV=: RrnT the  corotational  rate  tensor

di in Eq, (S) is expressed  as follows:

             i- T- 9m[T]  (25)

by the symbolic  notation  (23). Further, the mathematical

process (11)' is expressed  as  follows:

 i･- i'･-9M'[T,]

   -(e[T])'-(eameT+eeT)[Q[T]]

   -e[T]+e[T]-(22meT+eQT)[2[T]]

       - e

   -e[T-9M[T]]-e[T].

 Furthermore, the algebraic  manipulation  of  Eq.

can  be expressed  concisely  as follows:

 tr (of(T(i)' Iili')ti 
'

 
''

 
TC")-/

 (To})'] (no sum  over

       of(e[T(i)], e[T{2)], 
･
 
J
 
,

=tr

 (

(26)(15)

(i))

=tr

 (e[of(T('),OQ[T(D]T(2),.,,,

,

 
e[T("'])

 (e[Tm]r]

=tr

 (of(T(i),
  OT(DT(!),･･･

T("')](2[T(i)])･]

noting

aTo,  
T`"')

 {QT[(e[T(])])･]}], a7)

tr {(e[A])B}-tr {(A(eT[B])} (28)

due to

giqi 9p2q2 
'
 
-
 
'
 2rmqmAqiai･ ･ -q. Bpipi ･ ･p. =Aq,qi･  ' qn, C]p,qi <]piqi 

'
 
'
 
'

  × G,nq.Bpipi'p. (29)

for arbitrary  same  order  tensors  A  and  B.  Besides, Eq.

(20) is used  for deriving the third equation  from the

second  one  in Eq. (27).
 From  the first and  the  sixth  equations  of  Eq. (27) it

results  that

t, (af(T{O, {i;"i,,' 
'

 
',

 
T("')

 a[To]]  
=o

                      (no sum  over (i)). (30)

For the special  case  that T(i) is the second-order  tensor,
denoted as a,  it follows from the first and  the last equa-

tions of  Eq. (27) with  Eq.  (10) that

              a
 of =  -of' a  (3 1)

               aa                  aa

by the arbitrariness  of  9, noting  tr(AB):=tr(Bi4).

Equation (31) was  derived by Dafalias (1993).
 The transformation  rule  of  Eq. (16) can  be also  derived

by the following method  in the special  case  that f is a

scalar-valued  isotropic function of  the  second-order  sym-

metric  tensor a,  which  has three independent mvariants.

The functionfcan be described by the invariants of  them,

i.e.

           f(a) -f(I,  ll, M),  (31)

where  I, U, M  are  the first, the second  and  third invari-

ants of  a,  respectively,  i.e.

       JEtra, lli;tra2, Ill!trev3.

 It holds that

tr (:: di) -tr  ((.s g/ + ,of. gg/+ ,a.f,. 
ag:i)

 di]

      =tr{(aol+aia+a2a2)di}

      =tr{(aol+aia(')+a2a2)(d+9or-a9)}

      =tr{(aol+aia+a2a2)a}

      
=tr(a-of.d)'

where

           of af af
        

ao='il,
 

a]=all,
 

a2='sm

which  are  scalar  functions of  I, ll, M,

and  tr(STa)=O,  S  and

symmetric  second-order  tensors, respectively.

(32)

(33)

(34)

          noting  (S")T=sn
Ta  being symmetric  and  skew-

COROTATIONAL  RATE  TENSOR

 In the previous section,  it is verified  that the  corota-

tional rate  tensor  defined by  Eq.  (5) has the objectivity

and  the  rate  variables  involved in the material-time

derivative of  yield function and  can  be  directly replaced
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by the corotational  rate  tensors of  Eq. (5). However, one

has to select the rotation  tensor R"  and  the spin  tensor

nrn describing appropriately  the rotation  of  the substruc-

ture  of  the material.  For  instance, the Zaremba-.laumann
rate  (Zaremba, 1903a, b; Jaumann, 1911) with  the spin

W(=:L-LT)l2,  L: velocity  gradient) and  the Green-
IVbghdi or  Dienas rate  (Green-Naghdi, l965; Dienes,                    .
1977) with  the spin  PVk!RRT,  where  R  is the rotational
part in the polar decomposition of  the cleformation

gradient tensorF,  fulfill Eq. (8) and  have been adopted  as

corotational  rate  tensors, Mis  the spin  of  principal direc-

tions  of  strain  rate  P(E  (L -+- LT)!2)  and  is called  the con-
tinuum  spin or vorticity  tensor, and  va'ii :i  RR' is the spin
of  principal stretches  and  is called  the polar  or  bocly or
relative  or  material  spin. The rigid body spin  of  material

is exactly  given by PVit in general, as  known  also  for the
continuum  spin  PV==RR'+R{(UU-'+u-]U)12}RT
(U: right  stretch  tensor).

  Mandel  (1972) and  Kratochvil (1972) revealed  that the

spin  of  material-substructure  is suppressed  from the

continuum  spin  when  plastic deformation proceeds.
Dafalias (1983, 1985a) and  Loret (1983) proposed  that
the substructure  spin  is not  so large as the continuum  spin

but has to be given as  the spin  where  thepkxstic  spin due
to plastic deformation is subtracted  from the continuum
spin.  The  pertinent form of plastic spin  was  given by
Dafalias (1985b) and  Zbib  and  Aifantis (1988). However,
in order  to  use  this spin  tensor, one  has to formulate the
constitutive equation  for the plastic spin  tensor, and  thus
a  concrete  form  of  the constitutive  equation  becomes
complicated  and  diMculty arises in determining the plas-
tic spin  since  one  needs  test data for a large shear  strain

more  than  l50%. Below this level, the influence of  the

plastic spin  is negligible,  but it would  be impossible to
perform  an  element  test for such  a large deformation due
to the occurrence  of  localized deformation. Here, it
would  be practical to use  the Jaurnann  rate  for usual

problems  in engineering.  On  the other  hand, the Green-
Naghdi  or Dienes rate  is not  appropriate  for the  corota-

tional rate  tensor in the formulation of  elastoplastic  con-

stitutive  equations  since  PVk depends on  R  describing the
whole  rotation  from the initial state.  However,  a current

response  of  material  for the plastic deformation is hardly
dependent on  a  total strain  andlor  rotation  from the
initial state as has been reviewed  by Dafalias (1983) and

Hashiguchi (2ool).

CONCLUDING  REMARKS

  The general form  of  a rate  tensor with  objectivity  is
shown  and  it is verified  that the rate  variables  involved in
the material-time  derivative of  yield function can  be
directly replaced  by the objective  rate  tensors.  Here,  it
should  be noted  that  the  verification  is applicable  not

only  to yield function but also  to arbitrary  scalar-valued

isotropic functions.

  The  objectivity  of  tensors has been  interpreted from
the following two  methods:  Method  1) Equation  (2) holds
between components  of  the tensor described by two

different coordinated  systems  where  a  relative  rate  of

rotation  exists between these coordinate  systems  and

Method  2) The  components  of  the  tensor  observed  by a

fixed coordinate  system  changes  as  in Eq. (2) when  the
rigid body  motion  PVIt(RM=R)  is superposed  to the

material  motion.  Method  1) adopted  in this  note  would

be more  natural  than  Method  2), which  reflects directly
the concept  of  the prineiple of materia":frame  indCt7ler-
ence  (Oldroyd, 1950), Further, it can  avoid  the use  of  a

concrete  corotational  spin  tensor of  material  which

remains  to unsolved  still now.

ACKNOWLEDGEMENTS

  The author  expresses  the sincere  gratitude to Prof. C.
Yatomi, Kanazawa  Univ., Prof. M. Kuroda,  Yamagata
Univ., Prof. A. Asaoka  and  Prof. T. Noda, Nagoya
Univ. and  Prof, N.  Nishimura,  Kyoto  Univ. for valuable
discussion and  advice  on  this problem.  Very recently  the

author  was  informed from Prof, O. T, Bruhns, Ruhr-
University Bochum,  Germany, now  staying  in the

author's  laboratory from June 15 to Oct. 15, 2003, that
the replacement  for the yield function of  the scalar  and

the second-order  tensor variables  was  verified  in the

different way  (Bruhns et al., 2003).

REFERENCES

 1) Asaoka,  A., Noda,  T., Yamada,  E., Kaneda, K. and  Nakano, M.
   (2002): An  elastoplastic  description of  two  distinct volume  change

   mechanisms  of  soils,  Soils and  Fbundations, 47-58.
 2) Bruhns,  O.  T., Xiao, H.  and  Meyers, A. (2003): Seme basic issues

  in traditional  Eulerian formulations of  finite elastoplasticity,  int. J,

  Ptasticity, 19, 2007-2026,

 3) Dafalias, Y. F. (1983): Ceretational rates  for kinematic hardening

  at large plastic deforrnations, X  Ampl. Mlech. (LtlSuaY, 50,

  651-565,

 4) Dafalias, Y. F, (1985a): The plastic spin,  J. AmpL  (ASMEJ. ASne,
  52, 86S-871.

 5) Dafalias, Y. F. (1985b): A  missing  link in the  macroscopic  constitu-

  tive formulation ef  large plastic deformations, Plasticity 71)day,

  MbdeUing,  Mbthods and  Amplications, Elsevier Appl. Sci. Publ.,
  Ltd., 135-151.

 6) Dafalias, Y. F. <1993): On  multiple  spins  and  texture developrnent.
  Casestudy:kinematieandorthotropichardening,ActaMechanica,

  100, 171-194.

7) Dafalias, Y. F. (1998): Plastic spin:  Necessity or  redundancy,  int. J,

  Ptasticity, 14, 909-932.

 g) Dienes, J. K. (1979}: On  the analysis  ef  rotation  and  stress  rate  in

  deforming  bodies, Acta Mbch,, 65, 1-11.
9) Edlemann, F. and  Drucker,  D. C. (1951): Some  extension  of

  elementary  plasticity theory, J. F?anklin insL, 251, 581-60S.
10} Green, A. E. and  Naghdi,  P. M,  (196S): A  general theory of  an

  elastic-plastic  continuum,  Areh, Rational Mlech. AnaL, 13,
  251.281.
11) Hashiguchi, K. {1977): An  expression  of  anisotropy  in plastic
  constitutive  equations  of  soils,  Censtitutive Equations of Soils,
  Proc. Spec. Session 9, Pth ICSFME,  Tokyo,  302-30S.
12} Hashiguchi, K. (1994): Subloading surface  model  with  rotational

  hardening for soils, Proc, I}tt. Coof  Comp:  Mbth. Struct.

  Geotech. Eng., Hong  Kong,  807-812,
13) Hashiguchi, K. and  Chen,  Z.-P. (1998}: Elastoplastic constitutive

  equations  of  soils with  the sub]oading  surface  and  the rotational

  hardening, lnt. J. IViimer. AnaL  Meth.  Geomech.,  22, Tucson,
  197-227.

NII-Electionic  



The Japanese Geotechnical Society

NII-Electronic Library Service

TheJapaneseGeotechnical  Society

194

14) Hashiguchi, K. (2001): Description ef  inherentfinduced anisotropy

   ofsoils:Rotationalhardeningrulewithobjectivity,SoitsandFbun-

   dations, 41(6), 139-145.

15) Hashiguchi, K., Saitoh, K., Okayasu,  T. and  Tsutsumi, S. (2002):
   Evaluation of  typical conventional  and  unconventional  plasticity

   models  for prediction of  softening  behavior of  soils, Ge'otechnique,

   52, 561-573.

16) Ishlinski, I, U. (1954): General theory  of  plasticity with  linear strain

   hardening, Ukr. Math.  Zh., 6, 314-324.

17) Jaurnann, G. (1911): Geschlossenes System physicalisher und

   chemischer  Differentialgesetze, Sitzber. Akad. PPiss. PVien rlldy,
   120, 38S-530.
18) Kratochvil, J. (1971}: Finite-strain theory  of  crystalline  elastic-

   plastic materials,  J. Ampl. Phys., 42, 1104-1108.

19) Loret, B. {1983): On  the  effeets of  plastic rotation  in the finite defor-

   mation  ef  anisotropic  elastoplastic  materials,  dech.  of Materiats,
   2, 287-304,

20) Mandel,  J. (1971): PIastidite et  viscoplasticite,  CISM  Lectures

   Notes, (97), Udine,  Springer, Wien.

HASHIGUCHI

21)22)

23)24)

25)26)

27)

Oldroyd, J. G. (1950): On  the  formulation of  rheological  equations

of  state, Proc, Rey.  Soci. London,  Ser. A,  200, S23-541.

Papamichos, E., Vardoulakis, I, (1995). Shear band  formation in
sand  according  to  non-coaxial  plasticity model,  Ge'otecknique, 45,
649-661.Prager,

 G. (1955): The  theory  of  plasticity: A  survey  of  recent

achievements,  Proc. Ihst, Mech.  Eng., 169, 41-57.

Sekiguchi, H. and  Ohta, H. (1977): lnduced  anisotropy  and  its time

dependence in clays,  Constitutive Equations of Soits, Proc. Spec.
Sessien 9. Pth ICSFME,  Tokyo,  229-238.

Zaremba,  S. (1903a): Sur une  ferme perfectionee de la theorie  de ia

relaxation,  BulL  int. Acad. Sci. Cracovie, S94-614.
Zaremba,  S. (1903b): Le  principe des mouvements  relatifs  et  les

equations  de la mecanique  physique, BulL  I}tt. Acad. Sci. Cracovie,
614-621.Zbib,

 H.  M.  and  Aifantis, E. C. (1988): On  the concept  of  relative

and  plastic spins  and  its implications to large deformation theories.
Part I: Hypoelasticity and  vertex-type  plasticity, Acta  Mbch., 75,
15-33.

'

NII-Electionic  


