自由斜面の変形と応力状態について

(その1.等方性および異方性線形弾性斜面)

(State of Stress and Deformation of Natural Slopes)

川本朓万^{*} (Toshikazu Kawamoto) 藤田益夫^{**}

(Masuo Fujita)

論文要旨

The state of initial stresses in a natural slope, a factor which influences its stability, as well as the state of the deformation of the solpe is presented for the linearly elastic rock foundation. The problems are analyzed by the finite element method. The relationships between the state of stress and deformation of isotropic and homogeneous slopes and their angles of inclination or the width of the valley are shown. The influences of orthotropy of the rock foundation on the stress and the deformation of the natural slope are outlined. The stability of the natural slope is discussed from the point of view of the states of stress and deformation.

1. まえがき

近年,大きなアーチダムの建設が行なわれ,高速道路 が山岳地帯を通るに及んで,大規模な掘削斜面や盛土, 長大な基礎岩盤斜面が形成されるようになり,それらの 斜面の安定性に対する検討の必要性が増大してきてい る。土質斜面の安定性については,従来から,斜面の材 料そのものの有する性質,外部形状,土の内部の水の作 用などの観点から種々の検討が加えられてきており,最 近行なわれた第12回土質工学シンポジウムにおいても 活発に討議されている¹⁾。しかし,岩盤斜面の安定は, 岩盤の成層状態にはっきり依存しており,その強さや変 形性状も非常に異方性を帯びているので,土質斜面につ いて考えられている要素のほかに,もう一つ本質的な影 響,すなわち,岩盤の層構造が考えられねばならない。

土質斜面の崩壊形式としては、円弧状のスベリ面に沿 うスベリにもとづく破壊が多く、したがって、安全率の 算定も円弧スベリ面の仮定を前提としている場合が多 い。これに対して、岩盤斜面の安定性は、断層や卓越し た割れ目などの力学特性と同時に、それらのパターンと 斜面の位置や方向との関係に大きく影響されることは明

** 日本道路公団東京支社

 この論文について討論される方は昭和43年11月末日までに書面を もって、土質工学会会誌部までお申し出でください らかである。したがって、岩盤斜面では、円弧状のスベ リ面が形成されず、むしろ、ある成層面なり、ジョイン トによって特性づけられた面に沿って起こる場合が多 い。しかし、ヒビ割レ性(ランダムなジョイント群をも った)岩盤や風化岩の斜面では、土質斜面の場合と同様 にスベリ面の方式が適用される場合も考えられる。なお この場合、自由斜面の安定問題に対しては、岩盤材料の 強さの低下による安定性の定義が行なわれるが、斜面に おける初期応力状態や斜面掘削にともなう応力変化が、 地山材料の力学性状と密接な関係を有し、また、その性 状を変化させる影響を持っているから、問題は一層複雑 になる。

斜面近傍の岩盤の状態は,岩石の種類,斜面の地質学 的な履歴,潜在的な応力状態に関係すると考えられる。 また,岩盤の地質学的ないし力学的特性を大きく左右す ると思われるのは,斜面を形成しようとする岩盤に潜在 する一次的な内部応力状態と,斜面形成のための二次的 なカク乱応力状態であろう。すでに存在する斜面に対し ては,これらの一次的および二次的な応力(これは斜面 形成過程で徐々に累加されてきたものであるが)を合わ せたもので,現在の初期応力状態を考えることができ る。さらに,このような斜面に別に新しい斜面が掘削さ れる場合には,この初期応力状態に対応した岩盤の割れ 目の特性,岩盤の変形能(見かけの弾性係数など),諸 強さなどが基準として考えられねばならない。

^{*} 名古屋大学工学部土木工学教室 助教授 工博

論 文一2

斜面近傍の初期応力状態については、近年種々の方法 で研究が行なわれてきている。いままで, J. Stini (1930)²⁾, K. Terzaghi (1962)³⁾, Z. Jirousek (1962)⁴⁾ などがこの問題について検討しているが、それぞれ異な った結果を示しており、自由斜面の応力および変形状態 はまだ十分には明らかにされていない。また, P.J. Folberth (1965)⁵⁾ は, 斜面を多層立体ラーメンに 置き 換えて各節点に荷重を作用させ、変形法を用いて応力状 態を解析しているが,近似が粗く,応力集中などははっき りしない欠点がある。実験的解析には、 L.P. Rochelle (1960)⁶⁾ や J. Scheiblauer (1963)⁷⁾ による光弾性実験 (ゼラチン模型を使用)があり、また、筆者らも遠心力 光弾性装置(京都大学工学部土木工学教室設置)によっ て実験を試みたが、いずれも境界条件の調節がむずかし く,妥当な結果を得るに至っていない。さらに,W.D. Finn (1966)⁸⁾ は有限要素法による等方等質性斜面の弾 性応力解析結果を示しているが、斜面掘削前の初期応力 の仮定に少し問題があるように思われる。

以上のように,自由斜面の安定性を検討するための基礎として,斜面の応力および変形状態について種々検討が行なわれてきているが,まだ多くの問題点が残されている。

最近,有限要素法が開発され,岩盤の地質状態をかな り忠実に再現することが可能になったので,ここでは, この方法を適用して,まず,等方等質性の斜面の傾斜角 や谷幅と斜面の応力および変形との関係,岩盤の異方性 が斜面の応力および変形状態に及ぼす影響などについて 検討した。

2. 自由斜面の応力および変形解析に対する 有限要素法の適用について

有限要素法についてはすでに多くの文献があるが,そ のうち O.C. Zienkiewicz らの著書⁹⁾ がもっとも多くの 解析例を示しており,また,理解もしやすい。筆者ら¹⁰⁾ もこの方法の二次元問題への適用について説明している ので,それらを参照されたい。ここでは,有限要素解析 法の詳細についてはふれず,ただその基本的概念だけを 示しておく。

有限要素法の基本的概念は、一般にマトリックス法と 同様に、すべての構造物は個々の独立した構造要素の集 合であり、それらの要素は各節点ごとに結合されている と考えることである。この構造物の各要素は、それぞれ の形状、剛性で表わされる特性をもち、これらは要素の 節点における力と変位との関係から求められるが、その 特性を stiffness matrix と呼んでいる。従来の差分法が 基礎微分方程式の数学的近似を用いるのに対して、有限 要素法は stiffness matrix による物理的近似であり、そ

図-1 傾斜角 45°の斜面モデル

の近似の精度を上げるには,要素の数を増すことや精度 のよい結果を得る stiffness matrix を用いることなどが 必要である。

有限要素法はつぎの3つの基本的操作から成り立って いる。

(i) 構造物の理想化 (モデル化)。 す なわち, 無限 の自由度をもつ構造物を有限の自由度しかもたない要素 に分割し,構造物はこれらの要素の集合体とみなす。こ こで取り扱った斜面の一例を示すと, 図一1 のようであ る。傾斜角 45°, 高さ H の斜面が平面ヒズミ状態にあ るものと考え, 図に示すような領域を解析の対象とし て, 節点数 99, 要素数 161 に分割されている。

(ii) 要素のstiffness matrix を作ること。有限の節 点によって結合されている要素の剛性は、その節点に作 用する力と、それによる変位との間の関係によって表わ される。

(iii) 要素の集合体としての構造物を解くこと。すなわち,各要素の stiffness matrix を加え合わせて構造物全体の stiffness matrix を作り,その後,力あるいは変位によって与えられた任意の境界条件のもとでつり合い方程式を解く。

以上のような操作を電子計算機を用いて行なうにあた り,たとえば,分割要素パターンと解析精度の関係,つ り合い方程式の解法の選択と精度および計算時間の関係 や計算法の改良,算出された各要素の応力の不連続性の 処理など多くの問題にぶつかるが,これらについては別 に報告する予定である。

等方等質性の弾性自由斜面の応力および変形解析に対 して,有限要素法を用いる場合,境界条件や荷重条件が 問題になり,また,この解析法自身の適用性についても 検討しておく必要がある。そのため,図-1 に示すよう な傾斜角 45°,高さ H の斜面を考え,岩盤の単位体積 重量を $r=2.6 \text{ t/m}^3$,弾性係数を E,ポアソン比を $\nu=1/3$ とし,作用する荷重は自重のみとして,平面ヒズミ状態 における斜面の応力と変形をつぎの三種の条件のもとで 解析し,それらの結果を比較した。考えられた三種の解

土と基礎, 16-8

論 文一2

図-2 解析 (I),(Ⅱ),(Ⅲ) によって得られた傾斜角 45°の斜面下の変位状態の比較

析条件はつぎのようである。

解析条件(I):各要素の各節点にそれぞれの要素の重量の1/3ずつが外力として作用すると仮定し,境界条件として,左右の鉛直境界(AE, DF)上の節点の水平方向変位と下側境界(EF)上の節点の鉛直および水平変位が拘束されている場合を考える。

解析条件(II):斜面掘削前の地山(水平表面を仮定 し地表面に沿って水平方向にx軸を,鉛直下向きにy方 向をとる)内の深さhなる位置における初期応力状態を $\sigma_x = \lambda r h, \sigma_y = r h, \tau_{xy} = 0$ ($\lambda = \nu/(1 - \nu), \lambda$: 側圧係数, ν :ポアソン比)と考え,掘削面が自由表面になるよう に、それに沿う初期応力とその逆符号の応力との重ね合 わせを考え、この解放応力に対して有限要素法を適用す る。境界条件は(I)の場合と同じである。

解析条件(Ⅲ):(I)の場合と同じ荷重状態で,境界 条件として左側鉛直境界(OA)上の節点の鉛直変位を も拘束した場合を考える。

三種の条件のもとで求められた斜面の水平断面の鉛直 変位および鉛直断面の水平変位の状態を示すと、図-2 のようである。解析(II)は掘削(応力解放)による変 位のみを与えるから、斜面および谷の表面では浮き上が

図-3 解析(I) あるいは(II) によって得られた 45° 斜面下 の主応力(σ₁/γ H, σ₂/γ H) 状態

りを生ずるが、解析(I)では、鉛直変位に斜面掘削前 の地山全体の鉛直変位が含まれているので、全体に沈下 したような値を与えている。しかし、解析(I)におい て、各水平断面の鉛直変位として、左側支持境界上の鉛 直変位に対する相対的な値を考えれば、まったく解析 (II)の場合の値に一致することがわかる。また、水平変 位に両解析条件でほとんど差異はない。なお、解析(II) では鉛直変形のモードが他の二者とまったく異なる。

応力状態を見ると,解析(I)と解析(I)ではまった く一致し,主応力状態および水平,鉛直断面に沿う応力 成分の分布を示すと図─3 および図−4 のようになる。 これらに対して,解析(II)の場合には,側方での完全拘 束の影響がかなり広い範囲にまで及び,解析(I)あるい は(II)の場合に比べて,地表面近傍の最大主応力を高 め,逆に地山内部でのそれを低める結果を与える。

以上のように変位と応力状態の結果の比較から,ここ で考えているような規模の斜面に対して取られた解析範 囲に対しては,側方境界を完全に拘束することは不自然 のように思われる。しかし,側方への領域がさらに広げ られ,その拘束条件が斜面近傍にまで及ばないほどにと

> られるならば、図−2 の変位状態の傾向からも うかがわれるように、解析(Ⅲ)は解析(Ⅰ)の 場合の結果に近づくものと思われる。しかし、 解析領域の拡大は計算技術や計算時間などに問 題を生ずる結果となる。

> 上記三種の解析条件での結果を比較して,解 析条件(I)の場合が,比較的少ない時間で,斜 面形成後の応力状態を正しく与えるものと思わ れるので,以後の計算はすべてこの方法によっ た。なお,求められる変位は,斜面形成前の自 重による地山の鉛直変位をも含んだものであっ て,その値が今後図示され,比較される。した がって,掘削による変形のみを考える場合に は,形成斜面の影響の及ばない位置(たとえば 側方境界 *AE*)での鉛直変位だけ差し引かなけ

論 文--2

ればならない。

図-3 から明らかなように,最大主応力(圧縮)は水 平地表面および斜面に沿って流れ,ノリジリに近づくほ ど大きくなる。これに対して,最小主応力(この場合は 圧縮であるが,傾斜角が変わると引張りになることがあ る)は斜面に垂直な方向を向き,斜面表面近くでは,そ の深さに関係なくほぼ同じ値をとる。したがって,主応 力差(あるいは最大セン断応力)はノリジンに近いほど 大きくなる。

図ー4 からわかるように,鉛直応力 σ_y は自由表面か らの深さに比例し,斜面の下ではほぼ一様に変化する。 水平応力 σ_x は,谷の部分 \overline{CD} の下では深さに 対して直 線的に変化せず,またその部分の表面でかなり圧縮を受 けるが,他の部分では深さに比例してほぼ直線的に増加 する。また,セン断応力 τ_{xy} は直応力に比べてかなり小 さいが,ノリジリの近傍では大きくなる。

3. 斜面の傾斜角と斜面の応力および 変形状態の関係

完全な意味での等方等質性の地山はまれであるが,ジ ョイントが方向性をもたずにランダムな方向にほぼ均一 に分布しているような岩盤,岩石の強さが非常に低いの で,層構造が岩盤の強さを決定しないような地山,高い 岩石強さを示し,大きい割れ目によって完全に分離して いるが,小さいジョイント網によってわずかしか分離し ていない地山などは,いわゆる擬似等方等質体と考えて 取扱うことができる。

bedding joint や cross joint のような 不連続面の方 向性がはっきりした岩盤では、その方向に対応した安定 性を確保するための限界傾斜角が存在するだろう。その 場合、不連続面でのスベリや岩石ブロックの安定を問題 にして限界傾斜角が決定される。しかし、ここで取扱う ような擬似等方等質性岩盤に対しては、斜面の傾斜によ

図-5 等最大セン断応力 (max/r H)線図および引張り応力領域

図-6 種々の傾斜角の斜面下の変位状態

る応力状態,とくに、引張り応力や大きいセン断応力の 変化を明らかにしておくことが必要であると思われる。 それで 図—1 に示したものと同程度の 領域で、 斜面高 さ H,傾斜角 $\theta=30^\circ,45^\circ,60^\circ,90^\circ$ の斜面の応力および 変位状態を求め、検討した。

斜面下に生ずる引張り応力領域および等最大セン断応 力線の大略を示すと、図-5のようである。一般に、斜 面の傾斜が急になるほど、斜面近傍に引張り応力を生 じ、斜面上部にその領域が広がる。この引張り応力は斜 面に垂直な方向を向き、斜面に平行なヒビ割れを発生す る原因になり、さらに、その方向の大きい圧縮応力によ って板状岩塊の谷への膨み出しの危険性を増す。また、 急斜面のノリジリにおいて最大セン断応力が増大し、こ の部分からの局所的な破壊の可能性を暗示している。

変位状態は図一6 に示すようであり,谷の部分では, ノリジリより少し離れると,掘削による地表面の浮き上 がりは形成斜面の傾きにあまり影響されないようである が,ノリジリ近傍での浮き上がり量は傾向角(したがっ て,取除かれる地山の量)によって大きく変わる。

4. 谷幅と斜面の応力および変位状態 との関係

高さ H, θ =45° 傾斜角の 斜面に対して, 谷の幅 B が B/H=0, 0.5, 1.0, 2.0, 3.0 なる対称な領域を考えた。図—1 に示す解析 領域において,右側境界 (DF)では水平方 向変位だけが拘束されているから,図—1 に 対する解析法がその境界線を対称軸とし,谷 幅が CDの長さの2倍であるような対称な地 形を取扱うことができる。とくにこの場合, 谷幅がせまくなり,最後にV字谷になると, 斜面近傍および谷底の応力,変形状態がどの ように変化するかについて検討した。

土と基礎,16-8

解析の結果からつぎのことが明らかにされた。斜面ノ リジリの近傍を除いて、応力状態は大 きく は 変化 しな い。一般に、谷幅が減少すると、斜面中腹から頂部にか けての応力が減少するが、斜面ノリジリからその下部に かけては、最小主応力(圧縮)が増加し、静水圧的応力 状態に近づき、この部分の最大セン断応力の値は減少す る。しかし、 *B*/*H* >2 になると、応力 状態は谷幅の影 響を受けないと考えられる。

図-7 谷幅と斜面高さの種々の比率 B/H=0, 1.0, 2.0, 3.0 に対する変位状態

変位状態を示すと図-7 のようである。谷幅がせまい ほど、谷の部分の相対鉛直変位(斜面形成の影響のない 地山の部分の鉛直変位に対するもの)は小さく、言いか えれば、絶対鉛直変位は大きくなり、水平変位は逆に小 さくなる。しかし、谷幅の大小にかかわらず、斜面から 山の深部にかけての変位状態にはほとんど変化が見られ ない。谷の部分の相対鉛直変位は、このような形状の掘 削を行なった場合の除荷による地盤の浮き上がりに対応 するが、そのように見ると、谷幅が大きいほど谷の浮き 上がりは大きく、また、それに従って水平方向の変位も 大きくなることがわかる。この傾向は B/H > 2.0 では ほぼ同程度であり、B/H=1.0~0 で急激に小さくなる ようである。

5. 岩盤の異方性の影響について

岩石試料の力学性質に異方性を示すものも多いが,実際の岩盤を見ると, bedding joint や cross joint の方 向性がはっきりしていて,岩石そのものより,より強い 異方性を示すものが多い。

半無限成層地盤の表面に荷重が作用した場合の応力お よび変形状態については、V. Kafka¹¹) や G. Sonntag ¹²⁾などによって、平面問題として研究され、また、直交 異方性土壌や岩盤を対象とした L. Barden¹³⁾ や川本¹⁴⁾ の研究があるが、自由斜面の応力や変形状態に対する研 究は見られない。

ここでは,直交異方性弾性体に有限要素法を適用する 場合の,等方等質弾性体に対する計算法との相違のみに ついて簡単に説明し、いくつかの主弾性係数比およびそ れらの方向に対して応力および変形状態を計算し、岩盤 の異方性が斜面に及ぼす影響について考察する。

5.1 平面ヒズミ状態での直交異方性体の取扱い

三次元状態における応力とヒズミの関係は,1678 年, フック(Hooke)により,36 個の弾性性質に関係した 定数を与えて,一般的に示されている。しかし,弾性体 のヒズミエネルギーの性質の対称性の存在などを考慮す ると,これらの弾性定数は減る。ここで取扱うような直 交異方性体(orthotropic body)に対しては,応力一ヒ ズミ関係式はつぎのように与えられる。

$\sigma_{x} = a_{11}\varepsilon_{x} + a_{12}\varepsilon_{y} + a_{13}\varepsilon_{z}$	
$\sigma_{y} = a_{12}\varepsilon_{x} + a_{22}\varepsilon_{y} + a_{23}\varepsilon_{z}$	
$\sigma_z = a_{13}\varepsilon_x + a_{23}\varepsilon_y + a_{33}\varepsilon_z$	
$\tau_{yz} = a_{44} \gamma_{yz}$	(1)
$\tau_{zx} = a_{55} \gamma_{zx}$	
$\tau_{xy} = a_{66} \tau_{xy}$	i
上式をヒズミについて解くと,	つぎのようになる。
$\boldsymbol{\varepsilon}_{\boldsymbol{x}} = \boldsymbol{c}_{11}\boldsymbol{\sigma}_{\boldsymbol{x}} + \boldsymbol{c}_{12}\boldsymbol{\sigma}_{\boldsymbol{y}} + \boldsymbol{c}_{13}\boldsymbol{\sigma}_{\boldsymbol{z}}$	
$\varepsilon_y = c_{12}\sigma_x + c_{22}\sigma_y + c_{33}\sigma_z$	
$\varepsilon_z = c_{13}\sigma_x + c_{23}\sigma_y + c_{33}\sigma_z$	(2)

- $r_{yz} = c_{44} r_{yz}$
- $\gamma_{zx} = c_{55} \tau_{zx}$

 $r_{xy} = c_{66} \tau_{xy}$

ここで,平面ヒズミ状態を考えると,

 $\varepsilon_z = 0, \ r_{yz} = 0, \ r_{zx} = 0$

であるから,つぎの関係を得る。

$$\varepsilon_{x} = \frac{c_{11} \cdot c_{33} - c_{13}^{2}}{c_{33}} \sigma_{x} + \frac{c_{22} \cdot c_{33} - c_{13} c_{33}}{c_{33}} \sigma_{y}$$

$$\varepsilon_{y} = \frac{c_{12} \cdot c_{33} - c_{13} \cdot c_{33}}{c_{33}} \sigma_{x} + \frac{c_{22} \cdot c_{33} - c_{23}^{2}}{c_{33}} \sigma_{y} \qquad \dots (3)$$

$$\tau_{xy} = c_{66} \cdot \tau_{xy}$$

ここで、x, y, z 方向を弾性主軸と考えると、 つぎの関係が与えられる。

$$c_{11} = 1/E_{x}, \ c_{22} = 1/E_{y}, \ c_{33} = 1/E_{z}$$

$$c_{12} = -\nu_{xy}/E_{x} = -\nu_{yx}/E_{y}$$

$$c_{13} = -\nu_{xz}/E_{x} = -\nu_{zx}/E_{z}$$

$$\cdots \cdots \cdots (4)$$

$$c_{23} = -\nu_{yz}/E_{y} = -\nu_{zy}/E_{z}$$

$$c_{ss} = 1/G_{xy}$$

(3)式によって、平面ヒズミ状態の直交異方性の弾 性体における弾性法則が与えられるが、弾性主軸(主弾 性係数の方向)が、一般に、x, y, z軸を一致していな い場合には、(3)式の関係はつぎに述べるように変化す る。図一8 に示すように、弾性主軸(主弾性係数を E_1 、 E_2 で表わし、 $E_1 \ge E_2$ とする)に平行な方向に x_0, y_0 軸をとり、それと角 β 傾いた方向に x, y 軸があるもの とする。なお、この場合には、z軸のみが対称軸とな る。いま、x, y 座標に対する x_0, y_0 方向の方向余弦

図-8 弾性主軸と座標との関係

を,

	Γ	т	n	07	
$\alpha_{ij} =$		<i>n</i>	m	0	(5)
		0	0	1_	

(ここで,
$$m = \cos \beta \ n = \sin \beta$$

で表わすと、テンソルの回転 $(R_{ij} \rightarrow R_{ij}')$ はつぎのように求められる。

 $R_{ij}' = \alpha_{ik} \cdot \alpha_{jl} \cdot R_{kl}$ (*i*, *j*, *k*, *l*=1~3)………(6) したがって、平面ヒズミ状態における応力ーヒズミ関係 式はつぎのようになる¹⁵⁾。

$$\begin{pmatrix} \varepsilon_{\boldsymbol{x}} \\ \varepsilon_{\boldsymbol{y}} \\ \gamma_{\boldsymbol{x}\boldsymbol{y}} \end{pmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{pmatrix} \sigma_{\boldsymbol{x}} \\ \sigma_{\boldsymbol{y}} \\ \tau_{\boldsymbol{x}\boldsymbol{y}} \end{pmatrix} \quad \dots \dots \dots (7)$$

$$A_{11} = \frac{c_{11} \cdot c_{33} - c_{13}^{2}}{c_{33}}, \quad A_{12} = \frac{c_{12} \cdot c_{33} - c_{13} \cdot c_{33}}{c_{33}}$$
$$A_{16} = \frac{c_{16} \cdot c_{33} - c_{13} \cdot c_{36}}{c_{33}}, \quad A_{22} = \frac{c_{22} \cdot c_{33} - c_{23}^{2}}{c_{33}}$$
$$A_{26} = \frac{c_{26} \cdot c_{33} - c_{23} \cdot c_{36}}{c_{33}}, \quad A_{66} = \frac{c_{66} \cdot c_{33} - c_{36}^{2}}{c_{33}}$$

 m^2 $2 m^2 n^2$ C_{11} n m^2n^2 m^2n^2 $m^4 - n^4$ m^2n^2 C_{12} $-m^2n^2$ $-2 m^3 n$ $2(m^3n - mn^3)$ C_{16} $2 mn^3$ m^3n-mn^3 n^4 $2 m^2 n^2$ C22 m^4 m^2n^2 $2(mn^3-m^3n) 2m^3n mn^3-m^3n$ $-2 mn^3$ C_{26} C_{66} $4 m^2 n^2$ $-8 m^2 n^2$ $4 m^2 n^2 (m^2 - n)^2$ m^2 n^2 C_{13} C13 m^2 n^2 C_{23} C_{23}^{0} -2 mn2 mnC 66

$$c_{33} = c_{33}^{0}$$

上の関係式で、添字記号0は図-8の x_0, y_0 (弾性主軸) 軸に対応する主弾性係数を(4)式に代入して求められる 弾性定数である。したがって、平面ヒズミ状態の弾性法 則を compliance を用いて表わすと、(7)式のように なり、stiffness で表わすと、つぎのようになる。

上式の[D]を一般に[D]マトリックスと呼び,応力 ーヒズミの関係を与えるものである。

直交異方性体の特別な場合として、層状体あるいは transversely-isotropic (または cross-anisotropic) な弾 性体が考えられる。これは、図一9 に示されるように、 弾性性質の回軸対称性が層の面内にある場合であって、 この場合には、(4)式で $E_z = E_x$ 、 $\nu_{xz} = \nu_{zx}$ 、 $\nu_{yz} = \nu_{yx}$ となり、したがって、 $c_{33} = c_{11}$ 、 $c_{23} = c_{12}$ となる。図一9 において、 E_1 および ν_1 (セン断弾性係数 G_1 は従属す る)を層の面内での弾性挙動に関した弾性係数およびポ アソン比とし、 E_2 , G_2 , ν_2 を層に垂直な方向に関するも のとして、

$$n = E_1/E_2, m = G_2/E_2$$

で表わすと,この場合の [D] マトリックスはつぎのようになる¹⁶⁾。

$$\begin{bmatrix} D_0 \end{bmatrix} = \frac{E_2}{(1+\nu_1)(1-\nu_1-2n\nu_2^2)}$$

$$\begin{bmatrix} n(1-n\nu_2^2) & n\nu_2(1+\nu_1) & 0 \\ n\nu_2(1+\nu_1) & (1-\nu_1^2) & 0 \\ 0 & 0 & m(1+\nu_1)(1-\nu_1-2n\nu_2^2) \end{bmatrix}$$
.....(10)

さらに,座標軸が図-9のx, yに一致するように z_0 軸を中心に回転して,新しい座標系(x, y, z)に変換す

ると、この座標系における平面ヒズミ状態での応力とヒ ズミを関係づける [D] マトリックスはつぎのように求 められる。

 $[D] = [T] [D_0] [T]^T$ (11) 上式で $[]^T$ は転置行列を表わし、[T] は変換マトリ ックスと呼ばれるもので、次式のように座標の回転角 β のみに関係する。

土と基礎, 16-8

	$\cos^2\beta$	$\sin^2\beta$	$-2\sin\beta\cos\beta$
[T] =	$\sin^2 \beta$	$\cos^2\beta$	$2\sin\beta\cos\beta$
	$\sin\beta\cos\beta$	$-\sin\beta\cos\beta$	$\cos^2\beta - \sin^2\beta$
	•••••	••••••	(12)

(11) 式の [D] マトリックスは(9) 式の特別な場合として求められるものと一致する。

有限要素法における基本的な計算操作は2項に示した とおりであるが、平面ヒズミ状態の場合の三角形要素の stiffness matrix はつぎのように与えられる。

$$\begin{bmatrix} D \end{bmatrix} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)}$$
$$\begin{bmatrix} 1 & \nu/(1-\nu) & 0 \\ \nu/(1-\nu) & 1 & 0 \\ 0 & 0 & (1-2\nu)/2(1-\nu) \end{bmatrix} \dots \dots (14)$$

が用いられたが,直交異方性の場合には(9)式あるいは(11)式を用いればよい。

5.2 岩盤の異方性が自由斜面の応力および変形状態 に及ぼす影響

Vilar ダムのダムサイトにおいて三直交方向に採取された花コウ岩角柱試験体の変形試験の結果¹⁷⁾によると,

この現場の花コウ岩は、 $E_1 = 147,000 \text{ kg/cm}^2$, $E_2 = 61,000 \text{ kg/cm}^2$, $E_3 = 33,000 \text{ kg/cm}^2$ の主弾性係数をもち、 $E_1/E_2 \rightleftharpoons 2$, $E_1/E_3 \rightleftharpoons 5$ 程度のかなり大きい異方性を示している。

高さ H, 傾斜角 θ =45°の斜面を考え, その岩盤の主 弾性係数比が $E_1/E_2=2$ あるいは $E_1/E_2=5$ で, それぞ れの弾性主軸 (E_1 の方向)が x 軸と β =0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, の角をなす場合 に ついて解 析を行ない,岩盤の異方性の程度(主弾性係数比の大き さおよび斜面に対する弾性主軸の傾き)が斜面の応力お よび変形に及ぼす影響について比較検討した。

主弾性係数比が $E_1/E_2=5$ の場合の斜面の変形状態を 示すと図—10 (a), (b) のようである。(a) は $0 \le \beta \le$ 90°の岩盤に対するもので、岩盤の異方性が成層状態あ るいは方向性のはっきりしたヒビワレ性にもとづくもの である場合には、この異方性の状態はいわゆる流れ目に 相当する。(b) は 90° $\le \beta \le$ 180°の岩盤、すなわち、 差し目に対するものである。図中点線で示されているの は等方等質の岩盤に対するもので、これと異方性岩盤に 対するものとを比較すると、とくに、水平変位が異方性 の方向(とくに差し目と流れ目)に対して、いちじるし く異なることがわかる。この場合の鉛直変位はやはり掘 削前の初期変位も含んだ絶対変位であるが、流れ目と差

論 文--2

し目の比較において、大きい主弾性係数 E_1 の方向が鉛 直軸に対して対称な方向にある場合には、絶対鉛直変位 はほぼ等しくなる。なお、斜面の掘削による表面の浮き 上がりは図から容易に算定されるが、絶対鉛直変位が大 きい場合ほど、掘削による斜面表面および谷の浮き上が り量は大である。一般に、直交異方性体の変形は小さい 方の主弾性係数の方向に大きく出る傾向を有するが、斜 面の場合には、小さい方の弾性主軸(図—10 の E_2 の 方向)と斜面の傾斜角とが関係する。ここで計算したよ うに、斜面の傾斜が 45°の場合には、鉛直変位は、 $\beta=$ 0°, すなわち、 E_2 軸が鉛直方向を向く場合に、もっとも 大きく、水平方向変位は、 $\beta=30°$ 付近(流れ目)で地 山内部に向かって、また、 $\beta=150°$ 付近(差し目)で谷 側に向って、もっとも大きくなることがわかる。

斜面近傍の応力状態が、岩盤の異方性によってどのように変わるかを見るために、 $\beta=30^\circ$ と $\beta=150^\circ$ の場合の主応力状態を図示すると、図—11(a)、(b)のようである。この両図から明らかなように、 $\beta=30^\circ$ の場合には、斜面表面の近くでは、最大、最小主応力ともに小さく、斜面に沿って引張り応力を生ずる範囲が広がるが、 $\beta=150^\circ$ の場合には、引張り応力範囲が斜面頂部にとどまり、ノリジリの部分での主応力はかなり大きくなる。斜面近傍の代表的な要素(図—14 参照)における主応力 σ_1 および σ_2 、セン断応力 τ_{xy} と弾性主軸の方向 β の関係を、 $E_1/E_2=2$ および5 に対して示すと、図—12(a)~(f)のようである。それらの図では各応力値を極座標表示で与えている。また、等方等質の場合の応力値がそれぞれ円で書きこまれている。等方等質の場合と異

図―12 直交異方性斜面の代表位置における応力値と異方性の方向との関係

方性の場合との応力値の比較は図から容易に行なえる。 $E_1/E_2=2$ の場合には、応力値の変化は異方性の方向に よってあまり影響を受けないが、 $E_1/E_2=5$ になるとか なりの影響を受けることがわかる。また、その影響は、 斜面表面近くの要素で大きく、とくにノリジリの部分の 要素 33 でいちじるしく、地山内部の要素では、その影 響はきわめて小さい。そして $E_1/E_2=5$ の場合には、一 般に、弾性主軸 (E_1 軸)の方向 β が 0° (あるいは 180°) の近くおよび 130°~180°の範囲では、等方等質の場合 よりも応力値を増大し、 β が 10°~130°の範囲ではむし ろ小さくなることがわかる。また、 $\beta=90°$ の近くで σ_1 および τ_{xy} は最小になるようである。

7.むすび

自由斜面の安定性に影響を及ぼす要素の一つと考えら れる初期応力状態に注目し、線型弾性性質をもつ斜面の 傾斜や谷幅,異方性等の程度と初期応力状態との関係に ついて考察した。また、それらの諸要素が斜面の変形状 態に及ぼす影響についても検討した。ここで求めた初期 応力状態なり、変形状態が自由斜面の安定性、すなわち ,斜面の破壊とどのように結び付 け られ る かについて は、今後さらに検討しなければならないことである。そ れは、斜面の破壊および崩壊の機構が岩盤内の初期応力 状態だけでなく,成層やヒビワレ状態に大きく影響さ れ、ある時には土質力学的なスベリ破壊を生じたり、ま た、ある時には層に沿うスペリや単なる岩塊の不安定性 (崩落)を生じたりして、容易に斜面の破壊機構をつか まえることができないからである。また、さらに、上記 の地質工学的な弱点の影響に加えて、地下水の作用が大 きく斜面の破壊に影響していることが、実際の斜面の崩 壊例からも明らかであり、地下水の作用と斜面の安定性 との関係も今後に残された大きな問題である。

等方等質の線型弾性体として取扱われる岩盤斜面の安 定性の検討には、土質斜面の安全率の算定の場合と同様 に、あるスベリ面に沿う全体破壊の考え方と、斜面の各 位置におけるスベリ(セン断)や引張りに対する安全率 (いわゆる抵抗係数)の分布を求める局所破壊の考えと が取られている。このいずれの方法を取る場合にも、自 由斜面に対しては、ここで示した初期応力の分布状態と 岩盤の強さの特性とが必要になる。

初期応力状態については,各章で種々の場合について 検討しているが,一般に,つぎのような傾向を示してい る。等方等質の岩盤では,最大主応力は斜面表面に沿っ て流れ,斜面ノリジリに近づくほど大きくなり,一方, 最小主応力(ほとんど圧縮であるが,斜面の傾斜角が大 きいほど,斜面天端付近で引張りになる)は,斜面に垂 直な方向を向き,その値は斜面表面近くではほば同じに なる。したがって,最大セン断応力はノリジリに近づく ほど大きくなってくる。この応力分布から斜面の安定性 に関係して,つぎの3つのことが考えられる。まず,ノ リジリにおける最大セン断応力の集中現象であって,岩 盤の強さによってはこの部分からのセン断破壊が考えら れるか,あるいはノリジリ部分に塑性領域が発生し,こ れが進行性破壊の始点となりうる。つぎに,斜面に平行 な潜在的ヒビワレを有する岩盤では,斜面表面に平行な 大きい圧縮応力の存在のもとで,浸透水圧の作用によっ て,板状岩塊の谷への膨み出しの危険性が増す。さら に,引張り応力を生ずる領域では,この引張り応力が斜 面に垂直な方向に生ずるために,斜面に平行なヒビワレ を促がし,斜面方向の大きい圧縮応力や浸透水の作用に よって,崩落の可能性を増す。

岩盤の異方性の影響は,主弾性係数比が5程度になる と,かなり大きく表われてくる。応力状態ではとくに斜 面表面近傍に生ずる引張り応力領域とノリジリ部分での 主応力の大きさが,異方性の方向によって大きく変化さ せられる。また,斜面表面の水平方向の変位は異方性の 方向,とくに,差し目と流れ目の状態で異なり,異方性 岩盤の安定性を問題にする場合,この水平方向の変形挙 動に注目する必要があるように思われる。

本論文では、岩盤が等方性あるいは異方性の線形弾性 を有する場合のみを取扱った。しかし実際の岩盤は非等 質である場合が多く、また、その力学挙動は非線形的要 素を多く含み、変形挙動、強さの特性はきわめて複雑で ある。それで、著者らは、さらに風化による地表面から の弾性係数の低下を考慮した非等質岩盤の応力、変形状 態や、岩盤の強さの低下による弾塑性領域の発達状態を 解析し、斜面の安定問題に一歩でも近づくように努力し ている。また、岩盤の載荷および除荷時の変形挙動を考 慮して、斜面の逐次掘削による応力状態および変形状態 の変化を解析している。この後二者の問題はいずれも岩 盤の非線形的な性質を考慮しているもので、それらにつ いては引続いて報告する。

終わりに,本研究を行なうにあたり,終始ご指導いた だいた名古屋大学成岡昌夫教授,電子計算機のプログラ ミングについて助言をいただいた当教室水島章次助手, および,解析に協力いただいた大学院学生,梶田建夫, 上野建昭の両氏に感謝の意を表する次第である。

参考文献

- 1) 第12回土質工学シンポジウム,土質工学における安全率 について,土質工学会,1967
- J. Stini : Zur Kenntnis und Abwehr der Rutshungen, Geologie und Bauwessen, H. 4, 1930.
- K. Terzaghi : Stability of Steep Slopes on Hard Unweathered Rock, Geotechnique, 12, 1962, p. 251.
- Z. Jirousek : Contribution a la Mecanique des Roches stratifiées, Trans. of 7 th Int. Cong. on Large Dams, Rome, 1961, R. 96, No. 25, 1962, p. 751.
- 5) P.J. Folberth : Beitrag zur rechnerischen Ermittlung

論 文一2

der Spannungszustände in Felsbauwessen, Felsmechanik, Suppl. II, 1965, p. 25.

- L.P. Rochelle : The Short-Term Stability of Slope in London Clay, Thesis presented to the University of London, 1960.
- J. Scheiblauer : Modelleversuche zur Klärung des Spannungszustandes in steilen Böschungen, Rock Mechanics and Engineering Geology, 1-1, 1963, p. 72.
- W.D. Finn: Static and Dynamic Stresses in Slope, Proc. of 1 st Cong. of ISRM, Vol. II, Lisbon, 1966, p. 167.
- 9) O.C. Zienkiewicz and Y.K. Cheung: The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, 1967.
- 藤田益夫,川本桃万:有限要素解析法の二次元問題への応用,土木学会誌,52巻,8号,1967, p.56
- 11) V. Kafka : Der Spannungszustand in einem Geschichteten Medium, ACTA Technica, 2, 1957, p. 262.

- G. Sonntag: Die in Schichten gleicher Dicke reibungsfrei geschichtete Halbebene mit periodischverteilter Randbelastung, Forsch. Ing.-Wes., Bd. 23, 1957, p. 3.
- L. Barden : Stresses and Displacements in a Cross-Anisotropic Soil, Géotechnique, 13, 1963, p. 198.
- 14) 川本朓万:ダム基礎地盤内の応力状態に関する2,3の考察,発電水力,68,1964, p.1 川本朓万:基礎岩盤の変位状態におよぼす地山の異方性の影響について、土木学会論文集,126,1966 p.16
- 15) R.F.S. Hearmon : An Introduction to Applied Anisotropic Elasticity, Oxford Univ., 1961, p. 10.
- 16) 前出 9), 32
- J.L. Serafim : Étude des Fondations Rocheuses des Barrages en Béton, Annales de L'Institut Technique du Batiment et des Travaux Publics, 17-197, 1964, p. 472.

(原稿受理 1968.6.22)

英文雑誌「Soils and Foundations」論文募集と投稿規定

英文雑誌「Soils and Foundations」の原稿を以下の要領で募集いたします。

英文雑誌「Soils and Foundations」論文投稿規定

- 1. 原稿は英文で書き,本文は白いタイプ用紙 (A4判) にダブルスペースでタイプする。ただし,天地,両側に 約 2.5 cm の余白を残すこと。
- 2. 原稿は本文・図・表・写真とも3部(オリジナルおよび写し2部)提出すること。
- 原稿は図・表・写真などを含めて 30 枚を越えないことが望ましい。内容によってこれ以上となる場合でも 45 枚を限度とする。
- 4. 第1ページには著者の氏名および勤務先を記すこと。
- 5. 記号および用語は標準的なものを用い,記号のアルファベット順リストをつけること。
- 6. 論文中の文献引用は、カッコ内に著者名および発行年を示し、別に著者名のアルファベット順の文献リストを つけること。
 - [例] BISHOP, A.W., I. ALPAN, C.E. BLIGHT, and I.B. DONALD, 1960. Factors controlling the strength of partiallysaturated soils. Res. Conf. Shear Strength Soils, Colorad, pp. 503-532. SKEMPTON, A.W., 1954. The pore-pressure coefficients A and B. Géotechnique, 4:4:143-147. TERZACHI, KARL, 1943. Theoretical soil mechanics. Wiley, New York, 510 pp.
- 7. 図はA 4 判の上質トレーシングペーパーに**黒インク**でかくこと。1/2 程度に縮少される場合を考えて、十分太 い線を用い、数字は高さ **3 mm** 以上、文字は高さ **2 mm** 以上とすること。
- 8. 論文には 150 語以内の英文要約をつけ「土と基礎」用に 400 字づめ原稿用紙 5 枚程度(図・表こみ)の和文 要約をつける。