サンドコンパクションパイル打設による

粘性土地盤のカク乱時の強度回復について

^{えのき}	ř	。源	。 則*	高	はし		^{ゅたか} 豊**
ざ後	とう 藤	^{さだ} 貞	츑*	前	* ⊞	がっ勝	ប៉ ត] **

1. まえがき

東京ガス株式会社と東京電力株式会社とが共同で、横浜 市根岸工場に、世界最大の LNG (液化天然ガス) 基地を 建設したことは周知のことである。軟弱地盤上に建設した 大容量の高床式タンク基礎の設計と施工については、 "LNG タンク基礎の設計と施工"と題して本誌1969年11 月号に発表した。その後、LNG の需要の増加に伴い、今 回は45,000 KL タンク1基を増設した。

今回の工事では、工期にプレローディングのための余裕 がないので、サンドコンパクションパイル工法(以下 SCP 工法と略す)を採用した。SCP 工法には二重管式と単管式 とがあり、前者は通常サンドコンパクション工法といい、 後者はバイブロコンポーザー工法といわれているが、今回 は前者を採用した。従来、SCP 工法では打設後ただちに 載荷を開始することが多いので、載荷による強度増大とカ ク乱による強度低下とが重なり合って、粘性土の強度回復 だけを抜き出して観測できる例が少ないが、今回の工事で は、SCP 打設後約2個月にわたって、載荷重を置くこと なく、粘性土の強度回復の状態を観測することができた。

2. 工事の概要および原地盤の状況

タンクの構造,配置および土質状態などは前記の報文に 詳述されているものとほぼ同じである。SCP は鋼管パイ ルを囲むように施工された(図-1)。SCP の仕様はつぎ のとおりである。

配列:正方形 中心間隔: *s*=1.483 m
 打設深さ: *L*=10.0 m 圧入砂量: *V_s*=0.5 m³/m
 総本数: *n*=1,428本 延 長: *ΣL*=14,280 m
 地盤改良工事および調査測定の実施期間は表─1 のとおりである。当然, SCP は鋼管パイル打設前に施工されている。

調査測定の位置は図-2のとおりである。表-1の調査 段階の詳細は下記のようである。

1) 事前調査: B₀,施工前の原地盤の調査

* 東京ガス㈱工務部

** 三井建設㈱土木技術部

- 2) 第1次調査: B₁, SCP 施工後約 3~4 週間後の調査
- 第2次調査: B₂, SCP 施工後約 6~8 週間後の調査 で,第2次調査と同時に鋼管パイル打設を開始
- 第3次調査:B₃,鋼管パイル打設後約 6~7 週間後の調査

調査内容は表-2のとおりである。上記調査と平行して、 SCP 打設に伴う間ゲキ水圧の変化,ならびに地盤のフク レ上りと沈下を測定した。計器埋設の詳細は図-3のとお りである。調査地の代表的な土層断面および地盤改良の対 象となった粘性土の土質特性を要約すると、図-4のとお りである。

3. 調査結果

SCP 打設による粘土のカク乱の回復を示すものとして、 自然含水比w(%)、単位体積重量 γ_t (t/m³)、一軸圧縮強 さ q_u (t/m²)、一軸圧縮におけるヒズミ量 ϵ (%)、圧密 係数 c_v (cm²/day)を前記調査段階において比較した。調 査段階が比較的明確な東側のデータに重点をおいて整理し た。

 $w, \gamma, q_u, \varepsilon$ の比較は図—5 のとおりである。図—5 よ りパイルの周囲の粘性土は、 SCP 打設により施工時に乱 されて強さが一時低下するが、その部分の圧密が進むにつ れて強さが回復することが一目りょう然としている。含水 比は、1次調査で増大する傾向を示し2、3次調査におい ては多少のバラッキはあるが、明らかに 20% 程度の低下 が認められた。単位体積重量は1次調査で減少する傾向を 示した。2次調査ではバラツキがあるが、全体に 0.1~0.2 (t/m³) 増加している。一軸圧縮強さは1次調査では事前 調査と比べると低下する傾向を示している。これは SCP 打設に伴って地盤がカク乱され、強さの低下が生じている と考えられる。2次調査では、約 2.0 t/m² の増加を示し ている。事前調査では ε=5~6% であり、1次調査では、 ε=8~12% となり、1~6% 増大している。 2 次調査では 徐々に回復する傾向を示しているが、測定中にはもとの状 態には戻らなかった。3次調査では鋼管パイル打設による 影響が一部現われていると考えられる。

cv は図—6のとおりである。圧密係数は事前調査では先

87

No. 728

図-1 LNG タンクとその基礎一般図

表一1 地盤改良工事および調査測定実施工程表

	期間		1970年9月			10月		11月			12月			1971年1月		2月
-			30日10) 20	30 1	10 20	Ò	10 2	0 3	0 1	0 2	0 3) j	10	20	30
本	サンドマ	ット			3											
_T .	サンドコンバク (1号機	'ション)			組立— [[2]]			一解(<u>к</u> —						\square	
	サンドコンパク (2号機	ション)					-				_					
事	鋼管パイル	打ち					्रमत्र । -							3		
	間ゲキ水圧	測定		設置] 測定				1					
調本	沈下	板									3					
武測	地表移動	グイ					1.1			-0.14						
定	ボーリ	ング	二] 事育	ij						Č,	Ì					
	鋼 管 パ _水平載荷テ	イルスト														

土と基礎, 21-6 (184)

図一2 調 査 測 定 位 置

			ヨキカい	(点) N値測定	ペーンテスト	土質試験(個)							
	No.	深さ(m)	武料(個)			w 自然含水比	<i>G</i> 。 比 重	Υ_ι 単位体積重量	轴	<i>c_{uu}, φ_{uu}</i> 三 軸	<i>m</i> v, cv 庄密	^{c'} uu,¢'uu セン断	
	1	41.00	3	38		3	3	3	3	3	3	3	
	3	39.00	4	34		4	4	4	4	4	4	4	
事 前 調 査	1	31.30	3	28		3	3	3	3	3	3	3	
	ц	36.09	3	33		3	3	3	3	3	3	3	
	1	13.65	2	10	2	2	2	2	2	2	2	2	
1次調査	3	13.50	5	8	4	5	4	5	5	4	4	2	
	砂グイ1	11.30	-	21	-		-		—	-		_	
	1	12.45	2	7	2	2	2	2	2	2	2	2	
	2	12.50	2	10	2	2	2	2	2	2	2	2	
	3	12.46	4	7	4	4	4	4	4	4	4	4	
2次調査	4	12.47		12	2			-		-		_	
	5	12.50	2	10	-	2	2	2	2	2	2	-	
	砂グイA	11.45	-	11	-	-	-	-	_	-	-	-	
	В	11.46		11	-	-	-	-	-			_	
3次調査	1	12.50	2	9	2	2	2	2	2	2	2	2	
	2	12.58	4	8	4	4	4	4	4	4	4	4	
	3	12.50	2	10	2	2	2	2	2	2	2	2	
合 計	-	308.71	38	267	24	38	37	38	38	37	37	33	

表--2 調 査 内 容 一 覧 表

No. 728

図—5 土 性 の 変 化 状 況

• 事前調査 ×1 次調査 △2 次調査 ○3 次調査

図—6 $\log p$ - $\log c_v$ 曲線(数字は深度を表わす)

土と基礎, 21-6 (184)

行荷重付近を境として×10³ 台から×10² 台まで急激に変 化を示すのに対して、1次調査では地盤のカク乱により $(1\sim 2) \times 10^2 \text{ cm}^2/\text{day}$ とほとんど一定した値となっている。

SCP 打設に伴う間ゲキ水圧および沈下板の 挙動

間ゲキ水圧の変化と地表のフクレ上り(または沈下)と 打設距離との関係は図-7 のとおりである。1号機は打設 距離が一番接近したとき、間ゲキ水圧計の読みの最大値は $\Delta u_{max} = 0.55 \text{ kg/cm}^2$ を示し、地表の変位最大 $S_{max} = 61$ cm フクレ上りを示した。

打設順序の関係で途中で2号機が接近し、間ゲキ水圧が 0.08 kg/cm² 上昇し 3~4 cm の地盤のフクレ上りが測定 された。その後、地盤のフクレ上りは徐々に減少し、2次 調査時点では S_1 =37 cm となり、過剰間ゲキ水圧は U_1 = 0.16 kg/cm² となった。その後、諸般の事情で測定できな かった。

5. 粘性土の強度回復の検討

5.1 強度回復の速さ

強度回復をカク乱された粘土の圧密と考えると、図-7より u_{max} から u_1 までの所要日数 t=42 day では

となる。

つぎに次式で有効円周上での圧密度を求めると,

式(2)において $C_v = 1.0 \times 10^2 \text{cm}^2/\text{day}$ (図一6 より), $d_e = 1.13 \times 1.483 = 1.68 \text{ m}, t = 42 \text{ day}$ であるから,

$$T_h = \frac{1.0 \times 10^2 \times 42}{1.68^2} = 0.15$$

 $d_w = 0.6$ m, $n = d_e/dw = 2.8$ であるから, $T_h = 0.15$ のとき (高木俊介氏の図表による), U = 89% となる。また, U = 71% のとき, $T_h = 0.08$ であるから,

$$t = \frac{T_h \times d_{e^2}}{C_v} = \frac{0.08 \times 168^2}{1.0 \times 10^2} = 23 \text{ day}$$

となる。

実測値 (U=71%) は計算値 (U=89%) より遅れてい るようである。これは、 u_{max} から u_1 になる途中に再び 地盤をカク乱する原因があったことと、複合地盤としての パイル効果で遅れが生じたのではないかと推定される。

5.2 強度增加

強度の増加量に関しては、施工前の土質調査で正規圧密 と考えられる AP+2.0 m~-2.0 m の範囲についてのみ検 討する。

SCP 打設作業地点が観測位置に一番接近してから、42 日後に $\Delta q_u = 0.2 \text{ kg/cm}^2$ が測定された。この q_u の増大 をカク乱された粘土の圧密により発生したと考えると、有 効圧密荷重は下記のように $\Delta p_1 = 0.26 \text{ kg/cm}^2$ となる。

サンドマット
地盤のフクレ上り
単位体積重量の増加:
$$\sigma_c'h''=0.0018\times70=0.13$$

第 $ch'=0.0016\times50=0.08$
前: $\sigma_c'h''=0.0001\times500=0.05$
計 0.26 kg/cm²

前回のサンドドレーン工事では、圧密度 U=90% で平 均 c/p=0.33 と観測された。乱された粘土の圧密による粘 着力の増大 $\Delta c_1(kg/cm^2)$ は、下記のように計算される。

91

No. 728

粘着力の増大量に関して、実測値と上記計算値との差を みると、 $\Delta c' = 0.1 - 0.068 = 0.032 \text{ kg/cm}^2$ であって、これ が発生するための有効圧密荷重 $\Delta p'$ を計算すると、

$$\Delta p' = \frac{\Delta c'}{0.33 \times \frac{U_{71}}{U_{90}}} = \frac{0.032}{0.33 \times \frac{0.71}{0.90}} = 0.123 \, \mathrm{kg/cm^2}$$

となる。

カク乱された粘土の圧密と考えると、 $\Delta p' = 0.123 \text{ kg/}$ cm² の有効圧密荷重が不足することになる。つぎに、過 剰間ゲキ水圧の消散量 $\Delta u'$ が有効圧密荷重として働いた と考えると、図-7 よりその消散した量は、

$$\Delta u' = \Delta u_{\rm max} - \Delta u_1 = 0.55 - 0.16 = 0.39 \, \rm kg/cm^2$$

である。

この *du'* は下記のように考えられる。

 $\Delta u' = \Delta u_2 + \Delta u_3 + \Delta u_4$

$$\Delta u_3$$
: 地盤のフクレ上りによる過剰間ゲキ水圧
($\Delta u_3 = \gamma_c h' U_{71}$)

 $\Delta u_2 = \Delta u' - \Delta u_3 - \Delta u_4 = 0.39 - 0.08 \times 0.71 - 0.05 \times 0.71$ = 0.30 kg/cm²

*Δu*² が有効圧密応力として働くためには、土性、パイル打 設方法および周囲の拘束条件などによって当然異なるが、 この現場では

$$\frac{\Delta p'}{\Delta u_2} = \frac{0.123}{0.30} \times 100 = 41\%$$

となった。

ゆえに、コンパクションによる過剰間ゲキ水圧の約 41 %が有効圧密応力として働いたと推定することができる。

6. あとがき

1) 強度回復の速さはカク乱された粘土による圧密と考

えると、圧密所要日数
$$t = 42 \text{ day}$$
 で圧密度は、
実測値 $U = 71\%$
計算値 $U = 89\%$

- と、前者は後者より遅れる傾向を示した。
- 2) 強度の増大は SCP 打設に伴う過剰間ゲキ水圧の上 昇の約 41% が有効圧密荷重として働いていること がわかった。

上記の事実はこの現場の諸条件におけるものであって, 今後はデータの集積によって打設による粘性土のカク乱後 の諸問題に関して研究したい。

これをまとめるに当たって,適切なご助言をいただいた 運輸省港湾技術研究所中瀬博士,奥村氏,東京コンサルタ ンツ㈱社長福岡氏に心からの感謝の意を表わす。

なお、調査は応用地質調査事務所が担当した。

参考文献

- 榎戸源則・山口靖之・後藤貞雄:LNG(液化天然ガス)タンク 基礎の設計と施工,土と基礎, Vol. 17, No. 9, 1969年
- 木庭宏美・堀江宏保:砂杭を打設した粘性土地盤の挙動,港湾 技術研究所報告,10巻3号,1971年9月
- 高木俊介:盛土速度を考えたサンドパイル排水工の間隙水圧変 化の解析法,土と基礎, Vol. 4, No. 3, 1956年
- 4) 西田義親・保田市兵衛:締固め杭に関する基本的研究,土木学 会論文集, No. 69, 1960 年
- 5) 上阪春樹・荒柴 茂・斎藤 実・福住隆二:名神高速道路乙訓 地区試験盛土工事報告(その3),土と基礎, Vol. 9, No. 4, 1961 年
- 6) 村山朔郎:粘性土に対するヴァイブロ・コンボーザ 工法の考察,建設の機械化, No. 150, 1962年
- 7) 小川充郎・一本英三郎: 粘性土に対するヴァイブロ・コンポー ザ工法の適用について, 土と基礎, Vol. 11, No. 3, 1963 年
- 8) 西田義親:杭に作用する間ゲキ水圧の一計算法,土木学会論文 集, No. 98, 1963 年
- 9) 茨木龍雄: 複合土の直接セン断試験による実験的研究(第1報), 土と基礎, Vol. 13, No. 3, 1965 年
- 10) 松尾 稔・久我 昂・前川行正:砂柱を含む粘土の力学的性質 に関する研究,土木学会論文集,No. 141, 1967 年

(原稿受理 1972.10.9)

*

*