

流線網の求め方の実例とそれらの問題点

とう藤 鄎* 斉 い藤 記 *** お原

1. まえがき

締切り工事・地下掘削工事などの土構造物工事において は、必ず浸透流の問題が生じる。浸透流とは、自由水の動 き"の意であり、これの検討とは具体的には、流出量・ボ イリング・止水壁の根入れ・揚圧力・集水位置の選定など を意味する。このためには、まず流線網を描くことが必要 となる。

流線網の求め方としては、試行スケッチ(Trial and error)法・砂モデル実験・電気アナログ法・リラクゼーシ ョン(Relaxation)法・有限要素法・ヘルーシャウ(Hele-Shaw)モデルなどがある。以下に、これらの方法で求めた 流線網の実例を示しながら、その得失についてもふれてみ たいと思う。

一般に、流線網といえばそうであるが、これから示す実 例においても、流れは定常状態の層流を仮定している。し たがって、流線網は揚水開始直後の非定常状態や、地盤が レキ層などで乱流を生じる場合のものではないことに注意 してほしい。

2. 試行スケッチ法

試行スケッチ法とはホルヒハイマー(Forchheimer)の 図解法とも呼ばれ、まず与えられた境界条件をもとに、初 めはごく大ざっぱなスケッチをして、試行法によって修正 を加えてゆく方法である。この具体的な手順については他 の文献¹⁾ などにも詳しく述べられているので、ここでは省 略する。

図-1 は実際に施工された二重締切り工事のために, 試 行スケッチ法で求められた流線網である。この流線網を用 いて, 流出量・ボイリングなどの検討を行なっている。下 流側の水位が地表面下 7.00 m の所にあるのは ウェルポイ ントによって, この位置まで地下水位を下げることを意味 している。また, 締切り壁体内部の水流は, 最初から無視 して考えている。流線と等ポテンシャルラインが直交しな かったり, 境界条件の取り方が不明確であったりする不備 も見られる。本図の例で理解されるように, 試行スケッチ

```
** 大林組技術研究所研究員
```

August, 1973

図-1 試行スケッチ法による流線網

法による流線網は手軽に描ける利点を有するが,その反面, 解析者の個人差が大きくでる。しかし,概略の検討には十 分その役目を果たすことができる。

3. 砂モデル実験

砂モデル実験で流線網を求めるには、まず境界条件を満 足するような形に砂を詰め、これに浸透水流を生ぜしめる。 着色水を流して流線を、マノメーター(水位管)で水頭値 を測定する。これらによって、流線網を描くことができる。 写真-1,2,3に二重締切り矢板壁の流線の写真を示す。

これらは締切り水深を 15 cm, 矢板の根入れを 7.5 cm と

写真-1 砂モデル実験による流線(幅9cm)

^{*} 大林組技術研究所次長

資料---207

写真--2 砂モデル実験による流線(幅15 cm)

写真-3 砂モデル実験による流線(幅24 cm)

ー定に保ち,締切り幅をそれぞれ 9 cm, 15 cm, 24 cm と 変化させた場合のものである。実験そうは前面を透明アク リル板で作った木製の箱で,その内のり寸法は深さ 48 cm, 幅 100 cm,奥行き 40 cm である。止水矢板の模型として はブリキ板 (厚さ 0.8mm)を,地盤は標準砂を用い,その 透水係数は 1.7×10^{-2} cm/sec であった。流線は矢板の根 入れ先端部分に集まり,壁体内では扇状に広がり,上に凸 なきれいな曲線となってみられる。

この方法の利点は、モデルを比較的容易に造ることがで

き、また考え方も比較的簡単であることである。一方、欠 点は多層地盤を作ることが困難であること、水面を地中に とる場合などには毛管水帯の影響が大きくでることなどで ある。

4. 電気アナログ法

定常状態の地下水の流れと導電体を流れる電気の流れは、 同じラプラス (Laplace)の方程式で示される。電気アナ ログ法とは、水頭・水頭コウ配・透水係数をそれぞれ、電 圧・電位コウ配・電気伝導度に対応させて解く方法である。 ラプラスの方程式は数学的に共役な調和関数 $\phi(x, y)$ およ び $\psi(x, y)$ が存在し、 $\phi(x, y)$ =const の曲線は $\psi(x, y)$ = const の曲線の直交軌跡である。したがって、等ポテンシ

図-2 電気アナログ法の結線図

写真--4 電気アナログ法の実験状況

土と基礎, 21-8 (186)

図-4 電気アナログ法による流線網(その2)

ャルラインを求める境界条件を全く逆にして結線すれば, 流線が求まる。図─2に二重締切り矢板の等ポテンシャル ラインと流線を求める結線図を示す。写真─4に実験中の 状況を示す。

図-3,4は電気アナログ法によって求めた二重締切り矢 板の流線網である。締切り壁内部の自由水面は,最初少し 上方に不透水面として仮定し,この面で測定されるポテン シャルが位置ポテンシャルになるように切り取ってゆく。

一般に、二次元問題の解析には、導電体として導電紙を、 三次元問題の場合には、寒天を用いることが多い。多層地 盤を作るには、導電紙の場合には細孔をあけ、寒天の場合 には塩分濃度を変えるなどすれば可能である。

電気アナログ法は比較的簡便で精度の良い方法であるが, この項の最初に述べたように,定常状態しか解析できない 欠点がある。

5. リラクゼーション法

リラクゼーション法とは考える領域を適当な間隔の格子

に切り, これらの格子点における水頭値を, ラプラスの方 程式を満足するある関係式によって解くものである。まず, 境界上に既知の水頭値を与え,その他の格子点に第一次近 似値を与える。つぎに,すべての格子点に対し,ラプラス の方程式を満足する格子点水頭間の関係式によって,新し い水頭を計算する。これを繰返すことによりよりよい近似 値にまで計算を進める。もちろん,流線も電気アナログ法 の項で述べたと同じ考え方で求めることができる。

図-5に解析領域の格子分割図を示す。 この図をもとに 電算プログラムを組んだ。図-6,7に一重締切りと二重締 切りの解析結果を示す。二重締切りの壁体内部の自由水面 は水平な不透水層を仮定し,この不透水層での水頭値が位 置ポテンシャルに等しくなるようにする。通常は,この不 透水層を上下流の水頭差の中央にもってくれば十分である。 試みに,この不透水層の位置を種々変化させた場合の解析 も行なってみたが,これによる流線網全体に与える影響は ごくわずかであった。

この解析方法では、境界条件・地層などが大きく変わる

図-5 リラクゼーション法の格子分割図

資料--207

場合には別のプログラムを組み直す必要があるのが欠点である。

図-8 有限要素法による流線網(円形締切り)

図-9 有限要素法による流線網(地下街掘削)

6. 有限要素法

浸透流・熱流などの問題はいずれも,準調和微分方程式 を支配方程式とする物理問題である。上述したラプラスの 方程式は準調和微分方程式の特別な場合である。

有限要素法によって、浸透流・熱流などの問題を解析す る場合には、弾性問題を解く場合と異なって、ある汎関数 を、ある領域内で最小にする問題として公式化する。これ らの基礎理論の概要と電算プログラムの組立て手順につい ては、既に発表^{2).3)}してあるので、ここでは解析例につい てのみ述べる。

図-8 に円形締切り矢板壁(直径 21.0 m, 矢板 根入れ 10.9 m, 締切り水深 5.7 m)の流線網を示す。もちろん, 軸対称問題として解析している。

図―9は地下街(幅40 m, 深さ17 m)の掘削完了時点の 流線網である。解析領域は左右の対称性を考慮して, 左半 分の領域を考えた。境界条件は図中に示すとおりであるが, 左端の境界は不透水層でなく,静水圧分布すると考えてい る。また,自由水面(水位低下曲線)は5回の繰返し計算 によって求めた。

解析例で理解されるように,有限要素法は解析領域が複 雑な場合や異方・異質地盤,軸対称問題に対してなんら特 別の考慮を必要とせず,同じプログラムで解析することが できる利点がある。また,筆者の開発したプログラムを用 いれば,流線網をプロッターで自動図化させることができ る。

7. むすび

実際の浸透流を検討する場合には、解析以前の問題とし

て,解析条件の決定に悩まされる。すなわち,透水係数の 決定,地盤のモデル化,地下水位の位置,潮汐などによる 水位変動,二次元解析でよいのか,などである。とくに, 流出量の算定においては,透水係数の推定精度がそのまま 流出量の算定に影響してくる。われわれの経験したところ では,揚水試験と現場近くの工事例からの推定が,一番確 かな透水係数を与えてくれるようである。

流線網が解析的に正確に求まったとしても,必ずしも現 実の状態を示しているとは限らない。また,流線網が現実 の状態を正確に示して求まったとしても,これを用いて, 流出量・ボイリング・根入れ・揚圧力などの検討をするの も,熟慮を要することがらである。流出量については,砂 モデル実験では測定した流出量から,電気アナログ法では 電流量から,有限要素法では計算される流速から,直接算 出することもできる。

最後に,ここに示した解析例のある部分は,日大理工学 部最上・酒井両先生のご指導を受けていた卒論学生,関口 栄悟・高久静夫・関山健一君の卒業研究として実施してく れたものである。また,電算プログラムの開発にあたって は,当社(大林組)機械計算室の太田・徳永両氏からご援助 いただいた。ここに記して,深く感謝の意を表します。

参考文献

- 宇野尚雄:土質工学における図解法の使い方5.流線網の図解法,土と基礎, Vol. 21, No. 2, 1973
- 2) 斉藤・藤原: 有限要素法による浸透流・熱流などの解析(定常・非定常),第8回土質工学研究発表会,1973
- 3) 斉藤・藤原:有限要素法による浸透流・熱流などの解析(定常・非定常)、大林組枝術研究所報, No. 7, 1973
- 4) 斉藤・藤原:二重締切り矢板壁の浸透流について,第7回土質 工学研究発表会,1972

(原稿受理 1973.5.12)