アースアンカーの荷重一変位量関係の簡単な予測方法

A SIMPLIFIED METHOD OF PREDICTING LOAD-DISPLACEMENT RELATIONSHIP OF GROUND ANCHORS

うえ .**ト ***" <u>د</u>** ^{€と} 基* 勝 道 深 Ê

1. まえがき

アースアンカーは、杭などの基礎工法に比べると歴史的 には新しい工法であるが、最近の需要の伸びには著しいも のがある。これは施工法の改良・開発,特に削孔技術の進 歩により施工の確実性と経済性が向上したことと相まって、 地下構造物の大型化、急速施工、苛酷な設計・施工条件の 要求に対し、従来の工法では対処できなくなっていること によるものと思われる。このような現場の施工実績の積重 ねが、計画・設計・施工に対する一応の目安を我々に与え、 FIP, DIN、あるいはわが国における土質工学会基準「ア ース・アンカー工法」¹⁾ などに見られるように設計・施工 法に関する基準化がなされてきている。

これらの基準・規格では、いずれもアースアンカーの耐 カ、変位量は試験により定めるものとしており、地盤調査 結果からそれを推定するための具体的な算定式や地盤定数 の推定方法については示されていない。しかし、アースア ンカーの設計に際して、その耐力だけでなく、変位量をも 正しく予測することは、それを利用する構造物の安全性・ 経済性を確保する上で重要であるので、アースアンカー及 びこれを利用する工法の発展のためにはこのような基本的 な研究が必要と考えている。

筆者らは現場での実測結果に基づいてアースアンカーの 解析的研究を行い,基本的な計算法とその精度について第 9回国際土質基礎工学会議に発表²⁾した。この報告では, 摩擦抵抗方式のセメントモルタル注入加圧形のアースアン カー(以下,単にアンカーと呼ぶ)について、①アンカー の解析方法の検討と計算式,②計算式に必要な地盤定数の 推定方法と精度を紹介するとともに,更に③計算式から得 られる荷重一変位量関係の性質を明らかにし,より簡単な 荷重一変位量関係の予測式について述べた。

2. アンカー体周面の摩擦抵抗

多くの実測結果によれば,在来の設計方法のようにアン カー体全体が一様に外力に対し抵抗するのではなく,アン カーに加えられた荷重が小さい段階においては,主にアン カー体頭部付近に荷重が伝達され,先端部までは有効に伝

*(株)間組 技術開発本部技術研究所 次長 **(株)間組 技術開発本部技術研究所

February, 1979

わらないことが認められる。すなわち,引抜き力に対する アンカー体の主たる抵抗領域は,荷重の増加に伴って徐々 にアンカー体頭部から先端部に向って拡大していく。周面 摩擦抵抗形のアンカーのこのような現象を解析的に説明す るためには,まずアンカー体周面での摩擦応力度と変位量 の関係を明らかにする必要がある。

図-1³は、アンカーの引抜き試験時に測定された引張 り鋼材のひずみ分布の一例を示したものである。このひず み測定結果からアンカー体周面と地盤との間のみかけの摩 擦応力度と変位量を算定し、図-2のように整理すること により、アンカー体の任意点におけるみかけの周面摩擦応 力度一変位量関係を次式(図-3)のように近似すること ができる。

δ: アンカー軸方向変位量 (cm)

τ:周面摩擦応力度(kg/cm²)

cs:周面摩擦応力度係数(kg/cm^{2.5})

図-1 アンカー体内の鋼線のひずみ分布³⁰

No. 1094

図-3 周面摩擦応力度一変位量の近似

d:降伏点変位量(cm)

 τ_u :周面摩擦強度 (kg/cm²)

この関係は鉛直下向き荷重を受ける単杭の周面摩擦抵抗 に対して、すでに山門・牟田⁴)によって提案されている。

ファーマー (I.W. Farmer)⁵⁰ らによるコンクリート円 柱供試体面と砂との摩擦抵抗に関する室内試験が,アンカ ー体の状態に近いので,その試験結果を式(1)により検討し たところ非常によく表現できた。しかし,現在のところア ンカー体のひずみを測定したデータが少なく,今後のより 正確な試験データの積重ねによる研究が必要である。

3. 解析モデルとマトリックス表示

図ー4に示すようにアンカーは有限個の要素に分割され, 各要素の節点は引抜き力に抵抗する地盤のバネにより支持 されている。

通常用いられている変形法の線形解式は次式で表わされる。

> **DKD^T**: 剛性マトリックス る:変位ベクトル **P**: 荷重ベクトル

図-4の*i*節点のアンカー軸方向地盤反力は式(1)より次のように表わすことにする。

ここに,

R _i : i 節点のアンカー軸方向地盤反力	(kg)
-----------------------------------	------

 K_{si} : 節点バネ係数 = $c_{si}U(L_{i-1}+L_i)/2$ (kg/cm^{0.5})

Li: アンカー要素の長さ (cm)

U:アンカー体の周長 (cm)

式(3)の地盤反力を式(2)の荷重項に加えると図一4の解析 モデルの解が次式で与えられる。

左辺第二項に非線形項を含む上式の数値解析法について は,従来,数多く行われているので,ここでは改めて議論 しない。

4. アンカー体長と地盤特性値の決定

アンカーの材料特性は、使用鋼材と注入するセメントモ ルタルの材料試験により知ることが可能である。しかし、 地盤中に施工されたアンカーの形状寸法は予定したものと 異なるのが普通であり、一般的には確認することが難しい。 又、実際にアンカーが施工された状態での地盤特性値を測 定することも現在の測定技術では困難である。そこで、地 盤特性値と、アンカーの形状寸法のうちのアンカー体長 (または自由長)を引抜き試験によって得られた荷重一変 位量曲線より間接的に推定することにした。

実測荷重一沈下量曲線は図一5 (i=0) に示すように両 対数グラフ上で次式のような二直線で近似でき,この二直 線の交点 (P_{oy} , δ_{oy}) を降伏点と呼ぶことにする。

 $P_{0} \leq P_{0y}, \quad P_{0} = K_{0} \delta_{0} n_{0}$ $P_{0} > P_{0y}, \quad P_{0} = K_{0} \delta_{0} n_{0}$ (5)

ここに,

P_0 :	アンカー頭部の引抜き荷重	(kg)

δ₀: アンカー頭部の変位量 (cm)

土と基礎, 27-2 (252)

図-5 荷重-変位量曲線の近似

 Pou: アンカー頭部の降伏点荷重
 (kg)

 Ko, Ko': 定数
 (kg/cmno, kg/cmno')

 no, no': 定数
 (kg/cmno, kg/cmno')

上式の定数 K_0 , n_0 はアンカー体周長 U と周面摩擦応 力度係数 c_s , アンカー体長 L_b と自由長 L_f , 鋼材の弾性 係数 E_s と断面積 A_s の関数と考えられる。ただし, アン カー体周面での変位量とアンカー体中の鋼材の変位量とは 等しく, セメントモルタルは引張り応力には抵抗しないも のとした。

ここで、鋼材に関する E_s と A_s 及びアンカー体の周長 (アンカー体径は削孔径に等しいものと仮定)は既知とし、 かつ地盤を一層系とみなすことにより、みかけの周面摩擦 応力度係数及びアンカー体長(自由長)を考えることにす る。このようにすると定数 K_0 , n_0 は次式のように書くこ とができる。

 $K_0 = f_1(\bar{c}_s, r), n_0 = f_2(\bar{c}_s, r)$ (6) $\zeta \subset k_0$

r:	有効長比=Lb/La, (0 <r≦1)< th=""><th></th></r≦1)<>	
L_a :	アンカー長= L_b+L_f	(cm)
L_b :	アンカー体長	(cm)
L_f :	アンカー自由長	(cm)

 \bar{c}_s : 一層系地盤の周面摩擦応力度係数 (kg/cm^{2.5}) 上式は既知量 K_0 , n_0 , L_a (実測値) に対し,二つの未 知量 \bar{c}_s , rを与えるが,関数形 f_1 , f_2 が不明であるため, はたして工学的に満足する解が存在するか不明である。

そこで、任意のアンカーモデルに対し、未知量 $\overline{c_s}$, rの 値が定数 K_0 , n_0 にどのような影響を与えるか、式(4)を用 いて数値計算を行った。その結果、ある与えられた荷重一 変位量曲線の近似式(5)を満足する式(6)の解は図一6 に示す ようにただ一つ存在することがわかった。従って、実測荷 重一沈下量曲線を式(5)で近似することにより定数 K_0 , n_0

February, 1979

を決定すれば、図-6に示すように周面摩擦応力度係数 \bar{c}_s (5.5 kg/cm^{2.5}) と有効長比 r (0.84) を推定することが できる。

実際に施工現場で実施されたアンカーの試験データ30例 を上記のようにして解析し、一層系地盤としてのみかけの 地盤定数とアンカー自由長を求めた。

図一7,8は対象地盤を一層系として取り扱った場合の, 周面摩擦応力度係数 cs と周面摩擦強度 cu の推定結果を, アンカー体周辺地盤の平均N値:Nで整理したものである。 なお多層系地盤は次式により平均N値を算定し,一層系地 盤として取り扱った。

図-8 一層系地盤としての周面摩擦強度と平均N値

No. 1094

$\overline{N} =$	$\sum a_i N_i / L_b$	(7)
ここに,	and an	
\overline{N} :	ー層系地盤としての平均N値	
a_i :	第i層の層厚	(cm)
N_i :	第 <i>i</i> 層のN値	

図一7,8から,一層系地盤としての地盤定数はそれぞ れ次式により推定できる。

 $\bar{c}_s = 0.114 \,\overline{N} - 0.508$ $\bar{\tau}_u = 0.0584 \,\overline{N} + 0.546$ (8)

ここに,

 *ī*_u=一層系地盤の周面摩擦強度 (kg/cm²)

図一9はアンカー自由長 L_f の推定結果の比較を示した ものである。方法1は先に述べた手法を示し、方法2と方 法3は、実測変位量から除荷時の残留塑性変位量を差し引 いた荷重 P_0 一弾性変位量 δ_{0e} 曲線の勾配からそれぞれ下 式により算定した自由長を示す。なお、図中の L_{fmax} は、 荷重の小さい段階における変位量はすべて自由長部の鋼材 の伸び量によるものとして、荷重 P_0 ~変位量 δ_0 曲線の 初期の勾配から算出した。

> 方法2の自由長= $E_sA_s [\Delta \delta_{0e}/\Delta P_0]$ initial 方法3の自由長= $E_sA_s [\Delta \delta_{0e}/\Delta P_0]$ latter.....(9) $L_{fmax} = E_sA_s [\Delta \delta_0/\Delta P_0]$ initial

ここに,

 $[\Delta \delta_{0e}/\Delta P_0]$ initial: $P_0 - \delta_{0e}$ 曲線の初期勾配 $[\Delta \delta_{0e}/\Delta P_0]$ latter: $P_0 - \delta_{0e}$ 曲線の後半部の勾配 $[\Delta \delta_0/\Delta P_0]$ initial: $P_0 - \delta_0$ 曲線の初期勾配

次に,式(8)に対する図-7,8の地盤定数のばらつきが 荷重一変位量曲線にどの程度影響するものか調べるために, 式(8)から算定した地盤定数を用いて式(4)により荷重一変位 量曲線を計算した。図-10はその結果と実測値を,荷重-

図-10 降伏点付近での実測値と予測値の比較

図-11 荷重-変位量曲線の実測値と予測値の比較例

変位量曲線の降伏点(図-5)付近の同一変位量に対応す る荷重の大きさで比較したものである。図-11には、これ らの計算結果のうち、計算荷重一変位量曲線が実測値に近 いものと最も離れたものの2例を示した。

以上の結果から判断して,式(8)から決定した地盤定数を 用いて,式(4)から算定される荷重一変位量曲線は実用上十 分な予測精度をもっているものと推定される。ただし,こ のことは今後のデータによりさらに検討する必要のあるこ とは言うまでもない。

5. 荷重一変位量曲線と限界アンカー体長

アンカー自由長部の鋼材は通常弾性限度内で使用される ものとして、その荷重一伸び量の関係は弾性的であるとす る。従って、ここではアンカー体頭部における荷重 P_1 -変位量 δ_1 曲線の性質を調べれば十分である。そこで、こ の荷重一変位量曲線を 図-5 (i=1)で示したように次式 で近似することにする。

 $P_1 \leq P_1 \psi, \quad P_1 = K_1 \delta_1^{n_1}$

 $P_1 > P_{1y}, P_1 = K_1' \delta_1^{n_1'}$ ここに、各記号の添字1はアンカー体頭部を表わし、 P_1, δ_1 等はそれぞれアンカー頭部の P_0, δ_0 等に対応した量である。

土と基礎, 27-2 (252)

図ー12 アンカー体頭部での荷重一変位量曲線と アンカー体長の関係(降伏点前)

図-12は、ある地盤条件下での、式(4)から計算される降 伏点以前の P_1 - δ_1 曲線とアンカー体長 L_b の関係を示した もので、 L_b がある長さ L_{bc} を越えると P_1 - δ_1 曲線はほと んど変化しなくなることがわかる。この L_{bc} を限界アンカ ー体長と呼ぶことにして、この限界アンカー体長の存在に ついて図-6 で取り扱った実際の試験アンカーを例により 具体的に説明を加えておく。

図-6で、 $P_0 = K_0 \delta_0 n_0$ ゾーン(降伏前の $P_0 - \delta_0$ 関係を 支配)と $P_0 = K_0' \delta_0 n_0'$ ゾーン(降伏後の $P_0 - \delta_0$ 関係を支 配)との境界線上の有効長比rに対応するアンカー体長が 限界アンカー体長である。この試験アンカーの例では、

アンカー長: La=16m

アンカー体長: $L_b = rL_a = 0.84 \times 16 = 13.4 \text{m}$ アンカー自由長: $L_f = L_a - L_b = 16 - 13.4 = 2.6 \text{m}$

限界アンカー体長: $L_{bc} = r'L_a = 0.27 \times 16 = 4.3 \text{m}$ となる。ただし、r'の値は、 $\mathbf{2} - \mathbf{6}$ に示す両ゾーンの境界 線と $\bar{c}_s = 5.5 \text{ (kg/cm}^{2.5)}$ との交点におけるrの値である。 従って、アンカー体 13.4 mのうち、頭部より 4.3 mの部分 が降伏前の荷重一変位量曲線の形を決定し、残りの L_{b-} $L_{bc} = 9.1 \text{m}$ が降伏後の形を決定していることになる。

6. 荷重-変位量関係の簡易計算法(一層系地盤)

式(4)は非線形の連立方程式であり、実際に設計や施工管 理を行う上でしばしば不便であることが多い。そこで、種 々の入力情報の組合せに対し、式(4)から計算される荷重一 変位量曲線の性質を調べることにより、式(5)または式(4)の ような簡単な形で表わされる荷重一変位量曲線の計算式を 求めた。

6.1 基準アンカーと簡易計算式の設定

アンカー体周長 U_0 ,鋼材弾性係数 E_{s_0} の基準アンカー を設定し簡易計算式を求める。従って、一般のアンカーに ついては、実際の周面摩擦応力度係数 c_s と鋼材断面積 A_s

February, 1979

のかわりに次式で換算されるみかけの値を用いる。

$$c_{s'} = c_s U/U_0$$

$$A_{s'} = A_s E_s/E_{s_0}$$
(1)

ここに,

U₀: 基準アンカー体周長 (=π×13.5cm)

Eso: 基準鋼材弾性係数 (=1.95×106 kg/cm2)

cs': 換算周面摩擦応力度係数 (kg/cm^{2.5})

As': 換算鋼材断面積 (cm²)

アンカー体頭部における荷重一変位量関係を式(0)で仮定 し、基準アンカーに対する定数 (K_1 , n_1), (K_1 ', n_1 ') を決 定する。アンカー頭部における荷重一変位量は次式で計算 するものとする。

 $P_0 = P_1$ $\delta_0 = \delta_1 + P_0 L_f / E_s A_s$ (0)

なお,以下では単位を特に定義しない限 $9 \, \pm \, \tau$ [kg, cm]を用いることにする。

6.2 限界アンカー体長

図ー12に示したように、アンカー体長には地盤の剛性と アンカー体自身の剛性に応じた限界アンカー体長が存在す るようである。

式(4)から計算される荷重一変位量曲線の定数 n_1 の値は アンカー体長の増加に伴って、他の計算条件には無関係に、 $n_1 \Rightarrow 0.78$ に漸近する。そこで、限界アンカー体長は $n_1 =$ 0.73 (0.78 の 95%)に対応するアンカー体長で仮に定義

No. 1094

することにした。図—13は、試験アンカーの実測荷重一変 位量曲線から推定した定数 n_1 の値を整理したもので、そ の平均値は解析的に求めた $n_1 \Rightarrow 0.78$ に近いことを示して いる。

図ー14は定数 n_1 =0.73 に対応する限界アンカー体長を示したもので、次式の関係がある。

 $L_{bc} = 500 \ A_s^{0.41} c_s^{-0.62}$ (13) ここに,

L_{bc}:限界アンカー体長 (cm)

ここに,

R:限界アンカー体長比

を定義し、以下では R≥1 について述べることにする。
6.3 降伏点以前の荷重一変位量曲線 (P₁≤P₁)

式(4)から計算される P_1 - δ_1 曲線を式(4)で近似し、先に述 べたように $R \ge 1$ に対する定数 n_1 を 0.73 とすると、定数 K_1 は 図-15 に示すような値を取る。従って、降伏点前の P_1 - δ_1 曲線は次式で計算できる。

 $P_1 \leq P_{1y}, R \geq 1$ $\mathcal{C}, P_1 = 10000(A_s c_s)^{0.51} \delta_1^{0.73} \dots (15)$

6. 4 降伏点以後の荷重一変位量曲線 (P₁>P_{1y})

同様にして、降伏点以後の式40の定数 n_1' , K_1' を求めた。その結果、 n_1' は一定値0.5となるが、 K_1' はR=1 で

図-15 定数 $K_1(P_1 \leq P_{1y}, R \geq 1)$

図-16 定数 K₁'(P₁>P_{1y}, R=1)

図-17 定数 $K_1'(P_1 > P_{1y}, R \ge 2)$

図—16, $R \ge 2$ で 図—17に示すような値を取ることがわかった。また、1 < R < 2 の範囲の限界アンカー体長比に対し、 K_1' と R は両対数グラフ上でほぼ直線関係にあることがわかった。以上の結果から、降伏点以後の $P_1 - \delta_1$ 曲線は次式で近似できるものとした。

 $P_1 > P_1 y$, $1 \leq R < 2$ \mathcal{C} ,

$$P_{1} = 11800(A_{s}c_{s})^{0.46}d^{0.17}R^{m}\delta_{1}^{0.5}....(16)$$

$$m = \log(1.21 A_{s}^{0.17}c_{s}^{0.13}d^{0.23})$$

 $P_{1} > P_{1y}, R \ge 2 \quad (A_{s}c_{s})^{0.50} d^{0.24} \delta_{1}^{0.5} \dots (17)$

6.5 荷重-変位量曲線の降伏点

降伏点 (P_{1y} , δ_{1y}) は式(15)と式(16)又は式(17)の交点で与え られ,それぞれ次式のようになる。

 $1 \leq R < 2$ ℃,

 $P_{1y} = 17000 A_s^{0.32} c_s^{0.35} d^{0.54} R^{m'}$

$$\delta_{1y} = 2.04 A_s^{-0.26} c_s^{-0.22} d^{0.73} R^{m''} \qquad (18)$$

 $m' = (m'')^{0.73}, m'' = \log(2.29 A_s^{0.74} c_s^{0.56} d)$

 $R \geq 2$ \mathcal{C} ,

土と基礎, 27-2 (252)

$A_{s}(\mathrm{cm}^{2})$			4					8			12			
Cs(k	g/cm ^{2•5})	1 :	2		4		2		4		2		4	
<i>d</i> (c	m)	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0	
	$0.2P_{1f}$	0.7	0.5	2.2	1.0	2.2	1.2	3.6	2.7	3.0	2.0	4.4	3.6	
	0.4 "	1.6	1.8	0.4	0.5	0.4	0.5	2.8	3.1	1.4	1.9	3.6	4.9	
R = 1	0.6 //	2.9	0.4	2.8	2.8	2.8	2.4	4.4	2.3	3.4	4.4	5.6	7.9	
	P_{1y}	2.9	0.4	2.8	2.8	2.8	2.4	1.6	2.3	0.3	4.4	1.0	7.3	
	P_{1f}	2.9	4.6	3.8	2.9	2.3	1.5	2.1	1.1	0.3	1.1	2.5	2.1	
	$0.2P_{1f}$	2.5	4.4	1.8	2.8	0.7	3.7	0.3	2.4	0.4	4.2	0.2	1.5	
	0.4 "	6.1	4.7	6.8	2.2	4.5	6.1	5.3	8.4	5.1	7.5	6.9	8.2	
R = 2	0.6 ″	0.3	1.8	0.5	3.3	0.4	0.4	0.2	0.7	0.1	7.6	0.7	1.5	
	P_{1y}	9.6	4.7	9.3	2.2	9.0	6.1	7.1	8.4	7.4	8.3	8.9	8.2	
	P_{1f}	2.3	2.1	1.4	2.2	1.2	0.5	0.0	0.6	0.2	0.1	0.4	1.2	

表一1 式(4)に対する簡易計算式の誤差率 (%)

 $P_{1y} = 20400 \ (A_s c_s)^{0.48} d^{0.77}$

 $\delta_{1y} = 2.61 \ (A_s c_s)^{-0.043} d^{1.03}$

6.6 簡易計算式の精度

図-18は、式(13~式(17で計算されたアンカー体頭部での 荷重一変位量曲線と式(4)のそれとを比較した例を示したも のである。また,表-1は同様な比較計算結果を次式で表 わす誤差率でまとめたものであり、その誤差率は最大 9.6 %,最小0%,平均3%程度となった。

> 誤差率= |式 (4) の変位量-簡易式の変位量 式 (4) の変位量 |×100%

7. あとがき

この報告ではアースアンカーの一解法について述べたが、 その精度は他の土質基礎工学上の問題と同様に、地盤特性 の推定精度に大きく左右される。ここでは、このような地 盤特性を標準貫入試験のN値から便宜的に推定することに した。しかし、N値をこのように利用することは必ずしも 望ましいことではないと思われるので、他の地盤調査結果 との対応、または全く新しい地盤調査法の開発を検討して ゆくべきものと考える。この種の研究については、最近欧 州方面で盛んに行われているようであり^{6,7)}、理論と実際 の現象とをできるだけ近づける上で、今後の研究がまたれ る。

参考文献

- 1) 土質工学会:アース・アンカー工法,昭和53年6月
- Fujita, K., Ueda, K. and Kusabuka, M. (1978): A method to predict the Load-displacement relationship of ground anchors, 9th, ICSMFE, Tokyo, Revue Française de Géotechnique, Janvier No. 3, pp. 58-62.
- Mori, H. and Adachi, K. (1969): Anchorage by an inflated cylinder in soft ground, 7th, ICSMFE, Mexico, Speciality Sessions No. 14 and 15, pp. 175-183.
- 4) 山門明雄・大地羊三・牟田親弘(1973):マトリックス法 に よる杭の非線形解析,土木学会第28回年次学術講演会講演概 要集,pp.218-219.
- Farmer, I.W., Buckley, P.J.C. and Sliwinski, Z. (1971)
 The effect of bentonite on the skin friction of cast in place piles, Behaviour of Piles, The Institution of Civil Engineers, London, pp. 115-120.
- Ostermayer, H. and Scheele, F. (1977): Research on ground anchors in non-cohesive soils, 9th, ICSMFE, Tokyo, Revue Française de Géotechnique, Janvier-No. 3, pp. 92-97.
- Lackner, E. and Kramer, H. (1977): Abshätzung der Tragfähigkeit von Verpreßankern durch Anwendung der Korrelationstheorie, Mitteilungen, Hannover, Erschienen im Eigenverlag.

(原稿受理 1978.11.20)

学会発行図書	事案内				ан Формония (1997) Формония (1997)		
		技	術	手	帳		
	実	ミ務に役	立つ土住	質工学用	語の解説		
				B	6判 320ペ	ージ	
				定	2,000円	会員特価 1,500円	
発	行:土 貿	【工学	会	東京都千代田 〒101	区神田淡路町2-2 電話 03-2	23(菅山ビル4階) 251-7661(代)	

February, 1979