圧密過程における粘土の構造変化

Microstructural changes in consolidated clays

1. まえがき

土の構造に関する研究は古く, Terzaghi (テルツァー ギ), Casagrande (キャサグランド)の時代にさかのぼる ことができる。近年,分析・計測機器の著しい進歩によっ て,土の構造に関する研究も飛躍的に発展した。とりわけ, 走査型電子顕微鏡の普及は,従来巨視的現象あるいは間接 的な手法で推定していた微細な構造を直接見ることが可能 になった。そして,粘性土の力学的挙動について,説明で きない点はすべて構造に起因するとされていたものも徐々 に明らかにされつつある。

粘土の圧密現象は間隙水の排出抵抗と土粒子の骨格構造 の変形抵抗である。圧密に伴う構造変化については幾つか の報告がある。例えば、Quigly (クイグリー)と Thompson¹⁾ (トンプソン)、村山と平山²⁾、岡田³⁾らによる X線 回折を用いた研究、松尾と嘉門⁴⁾、McConnachi⁵⁾ (マコー ナッキー)らによる電子顕微鏡写真を用いた研究などであ る。

本報告は、一次元の高圧圧密試験を行い、その構造変化 について、既に発表した結果^{6),7)}に新たなデーターを追加 し、それらの結果に関して考察したものである。すなわち、 構造的な異方性が圧密特性に及ぼす影響、圧密に伴う構造 変化を土粒子の骨格構造と間隙分布の両面に着目し、それ らを定量的に把握し検討を加えた。なお、粘性土における 「土の構造」とは土粒子 - 水系の物理化学的作用に依存し た土粒子と間隙の配列状態を意味する。ここでいう構造は 間隙分布も含めた土の幾何学的配列を意味しており、「fabric」という用語に近い内容であるが、 適切な和訳がない ので構造という語を用いた。現実に構造という場合、この ような内容を指すことが多い。

本小特集のテーマは「二次圧密」であるので、本来なら ば圧密に伴う構造変化を一次圧密、二次圧密に分けて測定 し、その結果について考察すべきである。そのためには与 ---えられた応力条件のもとで、構造がどのように変化するか

*埼玉大学工学部	建設基礎工学科
**清水建設㈱	
***埼玉大学 大学院	完

March, 1981

を時間とともに連続的に測定しなければならない。しかし ながら,現時点では技術的に不可能であるので,各荷重に おいて,一次圧密と二次圧密を一緒に含めた構造変化が中 心になっていることを断わっておく。したがって,本報告 は小特集の編集趣旨に必ずしも沿っていないと思われます。 その点はお許し願いたい。

2. 試料および実験方法

実験に用いた試料はジョージア産のカオリン(ASP100), 沖積粘土として東京湾川崎沖の海成粘土,埼玉県志木市の 後背湿地堆積粘土の3種類(以下,カオリン,川崎,志木 と呼ぶ)である。カオリンは比較的粒径がそろって均質な 試料で不活性である。砂の実験でよく標準砂が用いられる のと同様に,カオリンは室内のモデル実験に使用されてい る。沖積粘土はカオリンに比べて粒度組成の範囲が大きく, また有機物を多少含んでいる。試料の物理的性質を表-1 に示した。

供試体はできるだけ均質なものとするために、試料を蒸 留水でスラリー状に溶き、沖積粘土は 420 µm ふるいで裏 ごしして粗大な粒子、貝殻の破片、繊維などを取り除いた。 スラリーの含水比はカオリン、川崎、志木がそれ ぞれ 約 250, 200, 185%であり、これを大型圧密容器(直径 39 cm) に入れ、約50日かけて 0.78 kgf/cm² の先行荷重まで段階

表一1 試料の物理的性質

 米	타 -	Gs	砂分 (%)	シルト分 (%)	粘土分 (%)	w _L (%)	wp (%)	Ip
カオリ (ジョージァ	とう	2.633	0	1	99	83.8	32.6	51.2
沖 積 粘 (川崎洲	土 シ	2.658	5	40	55	96.3	42.9	53.4
沖 積 粘 : (志木市	土 う	2.617	0	56	44	92.5	43.4	49.1

表-2 供試体の初期状態

	含水比 w (%)	湿潤密度 P _l (t/m ³)	間 隙 比 e	飽和度 Sr (%)
カオリン(ジョージア)	59	1.63	1.57	99
沖 積 粘 土(川崎沖)	77	1.54	2.05	100
沖 積 粘 土(志木市)	83	1.51	2.17	100

No. 1223

的載荷により圧密した。この方法により,再現性のよい均 質な供試体を作製することができた。供試体の初期状態の 平均的な値を表-2に示した。3種類の供試体の初期構造 は後述するようにランダムな構造でなくかなり配向の進ん だ状態である。

実験は供試体作製時の先行荷重方向と圧密試験の荷重方 向とが一致する供試体(Hサンプル)と直交する供試体(V サンプル)を切り出して, 102.4 kgf/cm²までの圧密試験 を行った。試験方法は JIS A 1217 に準拠した。H, Vサ ンプルの圧密試験の目的は構造的な異方性が圧密特性に与 える影響を求めるためである。圧密過程における粘土の構 造変化を測定するために,各荷重段階の圧密終了後ごとに, 走査型電子顕微鏡写真の撮影,水銀圧入試験,およびカオ リンについてX線回折を行った。いずれの場合も載荷した ままの状態で実験ができないので,除荷してから行った。

3. 圧密特性

3種類の試料のH, V サンプルの代表的な e~log p 曲 線を図-1に示した。同じ試料ならば供試体の間隙比, 含 水比などほぼ同じであるが, e~log p 曲線において両者は 一致していない。すなわち, 過圧密領域ではVサンプルの 方が圧密量が大きく, 正規圧密領域では逆にH サンプル の方が大きい。そして, 荷重が大きくなるにつれて両者は 漸近する。更に除荷後の間隙比はHサンプルの方が必ず大 きい。圧密降伏応力は当然のことながらHよりVサンプル の方が小さく,約2/3程度の値になる。川崎の時間-沈下 量曲線の一例を図-2に示した。図-2の(a),(b)はそ れぞれ圧密圧力 p=0.4, 12.8kgf/cm²の場合であり,(c) は 12.8kgf/cm² から 0.1kgf/cm²に除荷したときの膨張曲

線である。前述の点はこの図からも明らかである。 e~log p 曲線と同様にHとVサンプルは同じ曲線にはならない。 すなわち,過圧密領域において初期の沈下はHの方が大き いが,最終沈下量はVの方が大きい。しかし,正規圧密領 域では全く逆の傾向を示す。一次圧密域ではVの方が沈下 速度が大きく,50%圧密に要する時間はHよりVサンプル の方が1~2割小さい。これは後述するように透水係数に 起因するものである。更に二次圧密域ではHのクリープ的 な沈下が大きいのが特徴である。また,除荷時の膨張はH の方が著しく大きく,より弾性的な性状を示すといえる。

> いずれにしてもこれらの相違は同じ圧密圧力に 対してわずかに間隙比が異なるが,土の構造に 起因するものであり,圧密特性に異方性を示す ことは明らかである。

> 圧密試験の結果から得られた透水係数を間隙 比に対して示したのが図-3である。志木のデ ーターは図示していないが,ほぼ川崎の結果と 一致する。間隙比の大きい過圧密領域ではばら っきが大きいが,正規圧密領域では間隙比に対 して透水係数はやや上に凸の曲線になる。そし て同じ間隙比でもHよりVサンプルの透水係数 が大きく,間隙比が小さくなってもその差はあ まり縮まらない。透水係数の差が最も大きい場 合,VはHの2倍程度にも及んでいる。一方, 圧密荷重を載荷した状態で変水位透水試験を行 った結果⁸⁾によれば,図-3の結果と概略一致 する。したがって,図-3の結果は信頼性が高 いと思われる。ただし,沖積粘土の間隙比が0.7 以下で透水係数が10-7 cm/min 以下になると一

図-3 間隙比と透水係数の関係

致しない。これは変水位透水試験の適用限界を越えるため と考えられる。これらの結果は間隙比が同じでもHとVサ ンプルの構造が異なる状態の透水係数である。通常の地盤 において、いいかえると同じ構造における鉛直方向と水平 方向の透水係数を変水位透水試験で測定したところ、間隙 比が1.0以上では図-3の曲線上にほぼのる結果が得られ た。したがって、水平方向と鉛直方向の透水係数は2倍程 度の差があるといえる。詳しくは別の機会に報告する予定 である。

そのほかの圧密定数に対し、体積圧縮係数 mv は正規圧 密領域ではHとVは同じかあるいはわずかにHの方が大き い。したがって、圧密係数 Co は透水係数と全く同様にな り, HよりVの方が1~8割大きい。構造が圧密の異方性 に及ぼす影響は沖積粘土よりカオリンの方がやや顕著であ る。HとVサンプルの圧密特性に与える影響は土の構造に よるもので,特に透水係数に大きく影響する。三つの試料 の初期構造は後述するように配向度が50%程度である。つ まり, Hサンプルは荷重の作用面に平行に配列した土粒子 が多く, Vサンプルはそれが少なく, むしろ荷重方向に平 行な土粒子が多い。そのために透水流路はHサンプルが大 きく、その結果として透水係数が小さくなるためである。 配向構造における流れの屈曲度の考え方について は既に Youg $(\gamma \nu)$ & Warkentin⁹⁾ $(\dot{\rho}_{\pi} - \dot{\rho}_{\nu} \neq \nu)$ によって 指摘されている。このように, 土の構造的な異方性(配向 度)は程度の差はあるにしても圧密特性に影響を及ぼすば かりでなく、土の強度・変形特性にも影響することは明ら かであり、多くの研究者によって指摘されている¹⁰⁾。

4. 構造変化

4.1 土粒子とペッド

粘土を構成するような微細な土粒子の形状は,一般に薄 片状あるいは板状のものが比較的多く,砂粒子のようにだ 円体のものは比較的少ない。沖積粘土には珪藻土,有孔虫, 花粉などが含まれることが多く,そのほか極めて不規則な 形状の土粒子を含む。このような微細な土粒子は,通常単 独で存在することはまれであり,複数の土粒子が集まって 一つの集合体を構成し,これが何個か集まって更に大きな 集合体を構成している。この集合体をペッド(ped)と呼 び,粘土の構造を構成する最小単位と考えられている。そ

No. 1223

(a) カオリンの電子顕微鏡写真

図-5 ペ К Ø 構 成 vy

してその大きさによって二~四つに分類…されている。こ のような基本単位としてのペッドは物理化学的な力の作用 する上限単位とみなされ,ペッド内部は安定状態にあり, ペッド間には機械的な力のみが作用すると仮定されている。 ただし、外力の作用によってペッドは変形、場合によって は分割されることもあり得ると考えられている。

薄片状あるいは板状粒子がペッドを構成する場合の接触 方法は面-面接触 (face to face), 面-端触接 (face to edge), 端-端接触 (edge to edge) のいずれかである。 一般には面 - 面接触が多く, 面 - 端, 端 - 端接触はペッド 間に見られることが多い。この傾向はカオリンに顕著に見 られる (図-5(a), 口絵写真-1, 3参照)。

粘土の構造を観察するには電子顕微鏡以外の方法ではほ とんど不可能である。透過型電子顕微鏡は像が平面的であ るのに対し、走査型電子顕微鏡は焦点深度が深いために立 体的に像が見られ、構造の観察には有効な機器である。圧 密試験をした供試体の走査型電子顕微鏡写真の代表的な例 を口絵写真一1~6に示した。

電子顕微鏡写真からペッドの構成を模式的にスケッチし たのが図-4である。図中の黒い部分は間隙,黒っぽい部 分は土粒子の面,白い部分は端を示している。図から前述 のペッドの構成およびその状況が理解できる。しかし、沖 積粘土は不規則な形状の土粒子や有機物質を含むために、 必ずしもペッドを明りょうに区分できない場合もある。一 枚の顕微鏡写真からペッドの構成を示したのが図-5であ る。図のように部分的にはペッドとペッドが重なり合って いる部分もあり,(b)図を作成する際に主観的な要素が入 ることもあるが、多少の訓練と数多くのペッドを測定して 解析することによって,ある程度は避けることができると 思われる。

なお、以下の構造変化については特に断わりがない場合

はHサンプルについての結果である。

4.2 電子顕微鏡写真の測定と解析

粘土の構造については各種の実体モデルが提案12)されて いる。しかし、これらのモデルは粘性土のある特定な部分 の構造形態を説明したもので、あくまで定性的なものであ り、土の力学的性質と直接結びつくものでない。そこで、 骨格構造の配列を定量的に表示する方法として、配向の程 度を表す指標がよく用いられる。 圧密荷重の作用 方向 に 平行な面 (鉛直断面) の写真を撮影した。そして, 端部 (edge) が卓越したペッド (図-5(b) の白いペッド) に 着目した。この理由は偏平な粒子が多い場合端部の卓越し たペッドの方が配向性を表現するのにより有効であると考 えられるからである。具体的には Curray¹³⁾の方法を応用 して、図-6のようにペッドの長軸方向と荷重面のなす角 θ_i と長軸の長さ l_i を測定し、ペッドの配向度Mを次式で 求めた。

$$M = \frac{100}{\Sigma l_i} \sqrt{(\Sigma l_i \sin 2\theta_i)^2 + (\Sigma l_i \cos 2\theta_i)^2} \quad (\%)$$

M=0%はランダムの配向を,M=100%は見かけの長 軸が基準軸に完全に配向していることを示す。

図-7は川崎の配向分布図,図-8は圧密圧力と配向度の関係を示した。初期状態では $\theta \leq |15^\circ|$ のペッドが多く,この状態で配向度が50%程度である。自然状態の粘性土について多くの測定例をまとめると $M=10\sim70\%$ であり、ランダムなものはない。また、繰り返した状態でもM=13%であるといわれている¹⁴⁾。偏平な土粒子は堆積した段階で既に多少の配向が生じ、その後外力の作用によって配向が助長されると考えられる。更に荷重が増加すると $\theta=0^\circ$ 付近にペッドが集中することが図から分かる。このように圧密荷重の増加に伴い、ペッドは次第に荷重面に平行に配列する。そして 102.4 kgf/cm² では $M=77\sim91\%$ になる。Mに関してデーターのばらつきはあるが、12.8 kgf/cm²程度までは配向の増加割合が大きく、それ以降はやや鈍る。通常の圧密試験で圧力を 400 kgf/cm² に増加させても完全配向にはならない¹⁵⁾。しかし、102.4 kgf/cm² でも局部的

March, 1981

には *M*=100% に近いと思われる部分もある。完全配向に 近い状態にするには極めて高い圧力と長い時間を必要とす るものと思われる。

一方、Vサンプルの構造変化について若干触れておく。 図-8の×印は川崎のVサンプルである。 $p=0.4 \text{ kgf/cm}^2$ でM=35%であったものが、一たんランダム化し、再び配向を増すことを示している。この理由は初期に鉛直面に平行なペッドが多く、圧力の増加に従いランダム化して、次第に荷重面に配列するためである¹⁶⁰。そして 12.8 kgf/cm²の圧力でもHサンプルと同じにはならず、圧密試験の結果からも考えて、102.4 kgf/cm² でも両者は一致しないものと思われる。

図-9は一つの荷重段階の載荷時間を,一次圧密の終了 (8~16分),1日,7日の3種類で圧密試験を行い,配向 分布を求めたものである。供試体の初期構造は同じである が,載荷時間が配向に影響することは明らかである。ここ で注目すべき点は8~16分の短い載荷時間でも非常に配向 が進行し,1日載荷の分布に近いことである。つまり,過 剰間隙水圧の消散過程において,間隙水の排出により土の 体積が減少するので,当然構造が変わることが予想される が,この間の構造変化が著しいことである。そして,二次 圧密域でクリープ的な変形が生じ,配向を増す。12.8 kgf/ cm²までの圧力に対するMの値は1日載荷に比較して,7 日載荷は数パーセント大きく,一次圧密終了後の載荷は数 パーセント小さい。

以上の結果から圧密過程におけるペッド挙動を推定する と次のようになる。圧密圧力の作用により、ペッドの長軸 と荷重面のなす角 θ が大きいペッドは次第に θ の小さくな

No. 1223

る方向に回転し、より安定な位置や構造に移行する。そし て、圧力が大きくなるほど θ =0° 付近に集中する。このペ ッドの回転および移動は一次圧密域においても生じ、更に 二次圧密域でも進行してより安定な構造へ移行する。その 結果として配向度が増加する。また、載荷時間が配向に影 響を及ぼす。

4.3 X線回折

X線回折は粘土鉱物の同定や定量を行うのに有効な方法 である。X線回折のある底面反射強さは単一物質の場合, その粘土鉱物の存在量に比例する。この性質を利用して土 粒子の配列性を定量的に表すことができる。図一10は高畠 産のカオリンについて同様な圧密試験を行った供試体のX 線回折曲線である。水平面(荷重面)のカオリナイトの反 射強さは鉛直面に比べて大きい。これは水平面に面(face), 鉛直面に端(edge)を出している粒子が多いことを示して いる。配向度を定量的に求める方法として, Odom¹⁷⁾(オ ドーム), Gillott¹⁸⁾(ギロット)の方法を多少修正し, 図 一11のようにしてその面積を算出して, 次式から Fabric Index (FI)を求めた。

 $\mathrm{FI} = \frac{2H_v W_v}{H_v W_v + H_h W_h} \times 100\%$

FI=1 はランダム、0 は完全配向を意味する。 $M \ge$ FI は配向度が逆になるので、X線回折による配向度Nを次式で表した。

N=100(1-M) (%)

高畠カオリンを 102.4 kgf/cm² まで圧密した供試体の*M* と*N*の関係を図ー12に示した。図中の記号は初期構造が多

少異なることを示している。*MとNと*は一致せず,*M*よ りも*N*の方が小さい傾向にある。これは配向度の測定対象 が異なっているためと思われる。すなわち,*M*は土粒子 の集合体としてのペッド,*N*はそれよりも微小な粘土鉱物 であるためである。配向度の観点から,*MとN*は妥当な 対応関係にあるといってもよいと思われる。土質工学的な 面からみるとX線回折は反射が明りょうに現れる粘土鉱物 を含んだ粘土しか適用できないこと,また直接骨格構造を 観察し,工学的な現象を説明することができないことなど から,電子顕微鏡写真の方が好都合のように考えられる。 しかし,写真からの配向度の測定は経験と多くの労力を必 要とする欠点がある。

4.4 間隙分布

土の構造を考えるうえで,土粒子の幾何学的配列と表裏 一体の関係をなすものが間隙分布特性である。間隙径や分 布などについては Lafeber¹⁹ (ラフィバー), Diamond²⁰ (ダイアモンド),西田と青山²¹⁾らによって試みられ,間隙 分布特性は土の構造を表現する一つのファクターであると 指摘されている。

そこで, 圧密試験後の供試体について水銀圧入試験を行 った。水銀圧入試験は供試体内の間隙に水銀を圧入させ, 圧入力から間隙径, 圧入量から間隙体積を求める方法であ る。

測定結果の代表例を図-13の加積間隙曲線で示した。圧 密圧力の増加につれて大きい間隙が減少し、小さい間隙が 増加することがよく分かる。沖積粘土はカオリンよりその 傾向が著しく、間隙径の分布範囲が広い。これは沖積粘土 は粒度分布が大きく、またカオリンは粒径がそろっている ためである。図-13において、間隙分布のヒストグラムを 描くと対数正規分布になる。したがって、ピークを示す間 隙径が存在し、その間隙径は圧力の増加につれて、カオリン

図-13 加 積 間 隙 曲 線

は0.14µmから0.098µmに、川崎は0.5µmから0.15µm に、志木は0.5µmから0.2µmに減少する。カオリンにつ いて間隙径を考慮して間隙量を間隙比に換算して、e~log p曲線に示したのが図一14である。図から圧密に伴う間隙 の減少する様子が理解できる。すなわち、0.15µm以上の 比較的大きな間隙は直線的に減少するが、102.4kgf/cm² の圧力でも約1/3残る。0.08µm以下の間隙も同様である。 これに対して、0.1~0.15µmの間隙は最終的に1/10に著 しく減少する。前述のピークの生じる間隙径はこの範囲に ある。したがって、この部分の間隙径は圧密沈下に大きな 役割を演じている。沖積粘土についても大きく影響される 間隙径は粒度組成によって異なるが、ほぼ同様なことがい える。実際には大きな間隙は小さい間隙に、小さい間隙は より小さい間隙に移行し、その過程において、間隙分布に 関する特性が現れる。

図-14 圧密圧力に対する間隙径分布図(カオリン)

間隙の存在形態はペッド間の間隙,ペッド内の間隙,ペ ッドとペッドの接触部付近の間隙に分けられる。電子顕微 鏡写真から求めたペッド間の間隙を立体に換算した間隙比 を図-14の×印で示した。ばらつきは大きいが,水銀圧入 から求めた間隙径 d=0.12µm に近い。また,写真測定の 結果によればペッド内間隙は 0.12~0.01µm 以下である。 ペッドとペッドの接触部の間隙もこれとほぼ同じ程度と予 想される。したがって,圧密沈下量の大半はペッド間の間 隙であり,それ以外の部分の間隙もかなりある。その割合 は圧力によって変わるが,概略前者が 7 割,後者が3 割程 度といえる。また,Hサンプルの除荷時の膨張が大きいの は,主にペッド内の膨張に起因し,そのほかにペッド間の 接触部の弾性変形によるものと推定される。

5. まとめ

以上の実験および解析結果をまとめると次のようになる。 1)粘土の構造的な異方性は圧密特性に影響する。すなわ ち,体積圧縮係数にはあまり影響しないが,透水係数と 圧密係数に影響し,その結果,時間-沈下量曲線に差が 生じる。水平方向の透水係数は鉛直方向のそれの2倍程 度に及ぶこともある。

- 2) 圧密過程における構造(ペッド)変化は圧力の作用に より、ペッドの傾斜角が小さくなる方向に移動し、より 安定な位置や構造に移行する。圧力が大きくなるほど荷 重面に平行な位置に集中し、配向度を増す。102.4 kgf/ cm²の圧力で配向度は80~90%程度である。
- 3) 一次圧密域においてもペッドの配向度は増加し,また, 載荷時間が長いほど配向度を増す。
- 4) 圧密に伴い間隙分布は著しく変化し、大きな間隙は小 さい間隙に移行する。そして、沈下量の約7割程度はペ ッド間間隙に依存している。
- 5)以上のことはカオリンと2種類の沖積粘土に対して程 度の差こそあれ、共通していえることであり、人工的な カオリンの結果が自然界の粘土にも適用できる可能性が

March, 1981

The Japanese Geotechnical Society

No. 1223

見いだされた。

本研究を行うにあたって御助言いただいた埼玉大学の芥 川真知教授,関陽太郎教授,また実験などに協力していた だいた岡米男,竹内信次の各氏に厚く感謝の意を表します。

なお、本研究は昭和53、54年度文部省科学研究費補助金 (一般研究D)を得て進められたものであることを記し謝

意を表す。

参考文献

- Quigley, R. M. and Thompson, C. D.: The Fabric of Anisotropically Consolidated Sensitive Marin Clay, Canadian Geotechnical Journal, Vol. 3, No. 2, pp. 61~ 73, 1966.
- 2) 村山朔郎・平山英磨: X線回折による圧密時の粘土構造に関 する研究,京都大学防災研究所年報,第17号 B, pp. 1~14, 1974.
- 3) 岡田富士夫・山内豊聡・松田 滋:一次元圧密の海成堆積粘 土の構造変化について、九州大学工学集報、Vol. 47, No. 6, pp. 707~711, 1974.
- Matsuo, S. and Kamon, M: Microscopic Reseach on the Consolidated Samples of Clayey Soils, Proc., Int. Symp. Soil Structure, pp. 194~203, 1973.
- McConnachie, I: Fabric Changes in Consolidated Kaolin, Géotechnique, Vol. 24, No. 2, pp. 207~222, 1974.
- 6)風間秀彦・吉中龍之進・久保島信行: 圧密過程におけるカオ リンの構造変化,第8回土質工学研究発表会講演集,pp. 97 ~100.1973.
- 7) 風間秀彦・岡 米男・石井三郎: 圧密過程における土粒子構 造と間ゲキ変化,第13回土質工学研究発表会講演集, pp. 197 ~200, 1978.
- 8) 風間秀彦・黒崎 秀・小川正治: 圧密時の透水係数の異方性, 第15回土質工学研究発表会講演集,pp. 193~196, 1980.
- 9) Yong, R. N. and Warkentin, B. P: Soil Properties and

Behavior, Elsevier Scientific Pub. Co., pp. 141~159, 1975.

- 10) 例えば, Duncan, J. H. and Seed, H. B.: Anisotropy and Stress Reorientation in Clay, Proc., ASCE, Vol. 92, No. SM 5, pp. 21~50, 1966.
- 11) 松尾新一郎・嘉門雅史:粘土の構造に関する用語について, 土と基礎, Vol. 24, No. 1, pp. 59~64, 1976.
- 12) Collins, K. and McGown, A.: The Form and Function of Microfabric Features in a Variety of Natural Soils, Géotechnique, Vol. 24, No. 2, pp. 223~254, 1974.
- Curray, J. R.: Analysis of Two Dimentional Orientation Data, Jour. of Geology, Vol. 64, pp. 117~136, 1956.
- 14) Matsuo, S. and Kamon, M. : Microscopic Study on Deformation and Strength of Clays, Proc., 9 th ICSM-FE, Vol. 1, pp. 201~204, 1977.
- 15) 風間秀彦・石榑保則・沢野 裕: 圧密過程におけるカオリン の構造変化(その2),第9回土質工学研究発表会講演集, pp.77~80, 1974.
- 16) 風間秀彦・竹内信次・黒崎 秀: 圧密に伴う沖積粘土の微視 的構造の変化,第35回土木学会年次学術講演会講演概要集, Ⅲ, p. 81, 1980.
- 17) Odom, I. E.: Clay Fabric and Relation to Structural Properties in Mid-Continent Pennsylvanian Sediments, Jour. of Sedimentary Petrology, Vol. 37, No. 2, pp. 610 ~623, 1967.
- 18) Gillott, J. E.: Fabric of Leda Clay Investigated by Optical, Electron-Optical, and X-Ray Diffraction Methods, Engineering Geology, Vol. 4, No. 2, pp. 133~153, 1970.
- Lafeber, D. : Soil Structure Concepts, Engineering Geology, Vol. 1, No. 4, pp. 261~290, 1966.
- Diamond, S.: Pore Size Distributions in Clays, Clays and Clay Minerals, Vol. 18, pp. 7~23, 1970.
- 西田一彦・青山千彰:花コウ岩風化層の間隙径分布と水分吸 着特性について、応用地質、Vol. 20, No. 1, pp. 3~12, 1979.

(原稿受理 1981, 1,16)

入門シリーズ

1.土質工学入門

172ページ 会員特価 1,200円 定価 1,500円

2.土質・基礎工学へのコンピュータ利用入門

277ページ 会員特価 2,000円 定価 2,500円

3. 土質・基礎工学のための地質学入門

199ページ 会員特価 2,000円 定価 2,600円

4.構造物基礎入門

301ページ 会員特価 2,300円 定価 2,900円

B6判 送料各1册 300円

申込み先 社団法人 土 質 工 学 会

東京都千代田区神田淡路町2-23 菅山ビル 〒101 ☎03-251-7661(代) 郵便振替 東京4-40786