室内ベーン試験に関する実験的研究

An experimental study of the laboratory vane shear test

1. まえがき

最近の室内ベーンせん断試験による研究は試作あるいは 開発した試験装置を用いた研究報告がほとんどである。な ぜなら,従来の室内ベーン試験装置では研究用として不十 分であり,測定誤差の生ずる危険も高いと考えられるから である。そこで,研究用室内ベーン装置として,あるいは 原位置地盤内の粘性土のせん断強度を間接的に推定する試 験装置として三軸ベーン試験装置が開発されている。筆者 は本研究のため試作した三軸ベーン試験装置と普及型の2 種類(上部回転機構,下部回転機構)の室内ベーン試験装 置¹⁾の合計3種類のベーン試験装置を用いて粘性土のせん 断強度に関する実験的研究を実施した。三軸ベーン試験の 研究成果については柴田²⁾らによって報告されているので 決して目新しいものではなく,彼らの成果に付加的な説明 や資料を追加している。

実験装置と試験法

2.1 三軸ベーン試験装置の機構

図-1は三軸ベーン試験装置を示している。ここでは原 理の概略について説明し、詳細な点については2.2節の実 験方法で述べる。円筒形圧密箱より作成した土試料をシン ウォールチューブ (内径 75 mm, 肉厚 1.2 mm, 長さ 100 cm)を使って採取し押し出し、この試料を直径5cm、高 さ10cmに成形して、供試体をペデスタル上の一部突き出 されたベーンに貫入し, セットする。セットが完了すると 供試体に負荷 (σ_{1c} , σ_{3c}) を加える。このときの側液は蒸留 水であり、軸荷重には散弾を用いている。負荷を加えたの ち,ベーンを試料底部から中央部(貫入深さ5cm)まで貫 入して実験を開始する。このときのベーンの軸はギアー・ ボックスとの組合わせにより無段変速機で回転され、トル クが与えられる。試料に作用する軸荷重と側圧は任意に変 えることができ、このときに作用する軸荷重は力計によっ て測定され,圧縮量は軸圧縮量測定装置(変位計)により求 めることができる。測定トルクはレバーで目盛盤に示した 値として読み取る直接法と回転ロッドから電気的に取り出 し自記装置に記録する間接法の二方法を併用することがで きる。 今回使用した測定器は最大トルク1kgf・cm, 最小 目盛 20 gf・cm のレバー式である。本装置は応力制御方式

*阿南工業高等専門学校 助教授

図-2 三軸ベーン試験装置のセル内機構

とひずみ制御方式の両方式による圧密非排水試験が可能で ある。図ー2は三軸ベーン試験装置のセル内機構を示した ものである。図ー2に示す装置は、ベーンを供試体の底部 から中央部(ベーン 貫入深さ5cm)まで 貫入してただち にせん断試験を始める方法と、ベーンを貫入したため生ず

No. 1422

表一1 土試料の物理的性質

		粒度			コンシステンシー			日本統一	
試 料 名	比重	粘土分	シルト分	砂分	液性限界	塑性限界	塑性指数	分類法	産 地
		<0.005mm	0.005~0.074mm	0.074~20mm	w_L	wp	I_p	分類	
川島粘土	2.84	9.9%	48.8%	33.3%	74.1%	30.0%	44.1%	СН	川島町瓦焼用粘土
大谷粘土(I)	2. 69	19.9	65.5	6.6	47.5	25.9	21.6	CL	堀江町大谷の瓦焼用粘土
大谷粘土(Ⅱ)	2.72	19.0	52.5	28.5	40.1	24.9	15.2	CL	堀江町大谷の田地より採取
新野粘土	2.68	23.0	32.2	22.8	43.1	22.5	20.6	CL	新野町工事現場より採取

図-3 実験に用いた羽根のタイプ

る過剰間隙水圧の消散(ベーン貫入における試料の圧密) をまってから行う方法の2種類の実験に用いることができ る。更に、三軸ベーン試験時における残留強度と供試体中 の排水量の経時変化を調べるために用いられる。図-3は ベーンの形状と寸法を示している。すべて4枚羽根であり、 直径 $D \times H$, (D/H)が8×16 mm(0.5), 12×12 mm(1.0), 12×8 mm(1.5), 16×8 mm(2.0)の4種類を選んで使用し ている。ベーンシャフトが土試料と接触する部分ではシャ フト表面の摩擦抵抗をできるだけ少なくするために直径を 細く加工している。

2.2 実験方法と使用した土試料

徳島県下の四地区から採取した4種類の粘土を2000µm ふるいでふるい, 水を加えて スラリー状態にして 直径 40 cm, 高さ70 cm の円筒形圧密箱に入れ 載荷装置で 荷重を 加えて 圧密圧力 0.37 kgf/cm² の 4 種類(川島粘土, 大谷 粘土(Ⅰ), (Ⅱ), 新野粘土)の圧密試料と圧密圧力0.58 kgf/cm²の3種類(川島粘土,大谷粘土(Ⅱ),新野粘土) の人工圧密試料をそれぞれ作成した。このときの土試料の 物理的性質を表-1に示す。なお、上、下部回転機構の室 内ベーン装置,および試験方法についての説明は文献1)に 報告されているのでここでは省略する。三軸ベーン試験は 通常の三軸試験と同様の操作で行う。つまり,三軸セル内 のペデスタル上に一部突き出ているベーンを, 直径5cm, 高さ 10cm に成形した供試体内に貫入させセットする。セ ットが完了すると負荷 (𝒶, 𝒶)を加え, そののちベーン を貫入深さ5cm まで貫入して実験を開始する。 このとき の鉛直圧 Gic は土中で 受けている土かぶり圧に等しい最大 圧密主応力と考え, 側圧 Øsc は土中の水平方向の圧力であ る最小圧密主応力として考え、圧密圧力比を $K=\sigma_{3c}/\sigma_{1c}$ で表している。ベーン回転速度は主に 1.75×10-3 rad/s を 中心として用いているが, 3.3節に後述している三軸ベー ン試験から求める残留強度の実験では、回転速度を1.75× 10-3, 6×10-3, 32.46×10-3 rad/s の三段階の速度を用い ている。今回の実験ではベーン貫入時に生ずる過剰間隙水 圧,あるいは負荷 (σ_{1e} , σ_{3e})したため供試体内部に発生す る過剰間隙水圧の消散に対する研究は含まれていないが、 次回に報告するつもりである。

試験結果と考察

3.1 ベーン上, 下端面のせん断応力と側面のせん断応 カについて

等方圧密された土試料を用いてベーン上,下両端面での せん断応力 r_{H} と回転角度 θ およびベーン側面でのせん断 応力 r_{F} と回転角度との関係について調べてみる。

Cadling の基本式

式(2)が求められる。

圧密圧力 0.58 kgf/cm² によって 作成した 新野粘土と大谷 粘土(II)の 2 試料について下部回転機構のベーン試験機に よりトルク値 M を求めて 式(2)を適用してみる。 図ー4は Aas³, 柴田^{2),4)} の研究による方法でグラフ上に $\frac{2M}{\pi D^2 H}$ と D/H との関係をプロットした 解析例である。 この場合の 係数 α については α =0.33 (長方形分布)を用いている。 その結果,新野粘土では τ_V =0.08 kgf/cm², τ_V/τ_H =0.45, τ_H =0.18 kgf/cm² が求まり,大谷粘土(II)では τ_V =0.05 kgf/cm², τ_V/τ_H =0.30, τ_H =0.17 kgf/cm² が求まる。含 水比は破壊時の含水比を平均したものを示している。この 方法を用いて,各回転角度において発揮される τ_V , τ_H を

計算すると、図ー5が得られる。 図中の $C \sim \theta$ 曲線は式(1) で $\tau_{\nu} = \tau_{H} = C$, $\alpha = 1/3$ とおいて 得られた 慣用計算式から 求めた曲線である。この図によればベーン上、下両端面の せん断応力 τ_{H} がベーン側面のせん断応力 τ_{ν} より か な り 大きいことが分かる。 このように、 τ_{H} が大きな値を示す ことは柴田⁴,太田⁵⁰らの報告によっても認められている。 また、図-5から、慣用計算式による Cが最大値となるの は $\theta = 10 \sim 30^{\circ}$ の角度付近となっている。

3.2 三軸ベーン試験から求めたせん断強度と圧密圧力 比の関係について

実験室において原位置地盤内の応力状態のせん断強度を 推定するため、三軸ベーン試験によってせん断強度を求め ている。実験用供試体としては4種類の粘土のうち川島粘 土と大谷粘土(II)の2種類について、2種類の圧密圧力 (0.37,0.58kgf/cm²)をそれぞれ載荷し、作成した人工圧

December. 1983

密土試料を用いている。図-6,図-7は供 試体に作用する 最小圧密主応力 🕫 を変化さ せた場合についてのせん断強度 最大値 いと 鉛直面上のせん断強度最大値^でrfの関係をプ ロットしたものである。図-6は P=0.37kgf/cm²の圧密土試料から求めた測定結果で あり、このときの圧密圧力比Kは 0.25~1.0 の範囲内で変化させている。図からも分かる ようにKの値が小さくなるにつれて c_f , τ_{Vf} は減少する傾向を示す。川島粘土に比べて大 谷粘土(Ⅱ)ではせん断強度最大値 G および 鉛直面上のせん断強度最大値でアナが全体的に 小さくでている。図-7は P=0.58 kgf/cm² の圧密土試料から求めた測定結果である。K 値が小さくなるにつれ、すなわち Osc が小さ くなれば Cr, Tvr も減少し, K値が大きくな るに従って, すなわち Ose が大きくなれば Cr, τ_{VI} も増加する傾向を示している。 図-6, 図一7に示すグラフの直線関係について調べ てみると慣用計算式より求めたらとてアナとの 直線関係はほぼ同じ傾向を示すが、P=0.37 kgf/cm²の圧密土試料から求めた cf と ty との関係について整理してみると川島粘土で は cf=1.0 trf, 大谷粘土 (II) では cf=0.9 τ_{Vf} となり近似的に $c_{f} = \tau_{Vf}$ の関係が確かめ られる。P=0.58 kgf/cm²の圧密土試料から 求めた らと ないの関係について,川島粘土 では ら=1.3でアテ, 大谷粘土(Ⅱ)では ら=1.5 *vr*となり,明らかにせん断強度の違いが現 れている。

次に, Cadling の式を検証するために柴田²² は次式を求めている。式(1)において,

 $(1+\alpha \cdot D/H)$ (3)

 $\tau_{V} = \tau_{H} = \tau_{f}$ とおき、両辺を圧密圧力 σ_{1c} (三軸ベーン試験時の供試体にかかる鉛直圧)で割れば、

 $\pi D^2 H$

No. 1422

図-8 係数(α)の分布形に対する $\tau_f/\sigma_{1c} \ge D/H$ との関係

式(3)が得られる。

式(3)において係数 α が一定でベーン寸法比 D/H と圧密 圧力 σ_{1c} を変化させても求められる τ_f/σ_{1c} 値が同一ならば, 式(1)を適用するための必要条件が満足されると述べている。

図-8は4種類の土試料のうち川島粘土と大谷粘土(Ⅱ) について、 ベーン寸法比 D/H を変化させたときの τ_f/σ_{1c} と D/H の関係について グラフ上にプロットしたものであ る。端面のせん断応力の分布を長方形、だ円形、三角形に してみても、 τ_f/σ_{1c} 値はD/Hの値には無関係であり、式 (1)を適用してもよいという必要条件が満たされている。表 --2はベーン試験方法の違いである上,下部回転ベーン試 験と三軸ベーン試験から,式(3)を用いてそれぞれの ^て f / ^σ 1e 値を求め比較したものであり、係数αはα=0.33の長方形 分布形より求めた数値である。 試験方法の違いによる *」/ oic のくい違いの比率を調べてみると川島粘土では上,下 部回転ベーン試験値と三軸ベーン試験値では1.9%,大谷 粘土では上部回転ベーン試験値と三軸ベーン試験値では 7.4%, 下部回転ベーン試験値と三軸ベーン試験値では 0 %となることから、三種類の試験装置による試験結果を比 較するとデーターの平均値は小数点2けた目までは著しく 差はないが,小数点3けた目に多少のくい違いが現れてい る。しかし、試験方法にかかわりなく、ほぼ一定の τ_f/σ_{1c} 値がえられていることが判明した。

3.3 三軸ベーン試験による残留強度について

粘性土の残留強度は現在移動を続けている地すべり斜面 の安定解析あるいは地すべり防止対策に用いる強度定数を 求めるためにときどき論じられる⁶⁾。また,柴田⁴⁾は次の ように述べている。残留強度はせん断応力 τ のピークが過

表一2	上,	下部回転ベーン試験と三軸ベーン試験から求めた
	Tr/	の。値の比較表

	庄 密 /	王力 0.37k	川島粘土	大谷粘土(1)	
回転機構		D/H	$D \times H(mm)$	τ_f / σ_{1c}	τ_f/σ_{ic}
Ŀ		0.5	15×30	0.15	0.07
	部	1.0	20×20	0.15	0.06
	1112	1.5	25×17	0.17	0.06
	_	2.0	30×15	0.14	0.06
ፑ		0.5	15×30	0.14	0.08
	密	1.0	20×20	0.16	0.06
		1.5	25×17	0.14	0.06
		2.0	30×15	0.17	0.07
三軸ベーン K=1.0		0.5	8×16	0.14	0.06
		1.0	12×12	0.15	0.07
		1.5	12× 8	0.16	0.07
		2.0	16× 8	0.17	0.07

ぎたのち,tが一定値に落ちつくまで大きい変形を与えて 求まるものであるから,大変形の与えられない通常のせん 断試験機ではこれを求めることは困難である。しかし、ベ ーン試験は回転角度に制限がないので大変形を与えること ができ、容易に残留強度を求めることができる。本報告で は残留強度について4種類の土試料についてすべて実験を したが、ここでは代表土試料として川島粘土の測定結果を 示す。ベーンを 90°回転したならばそれ以後はせん断円筒 面が生じるにもかかわらず,図-9(a),(b)のグラフで は r が更に大きくなっている場合もあり、回転角度 300° 付近からせん断抵抗なが現れる傾向もあるがこの原因につ いては明確にするところまで至っていない。ベーン回転速 度を増加させる段階においててが大きくなるときと、小さ くなるときの変化が現れているが、この原因としては変速 機の速度を切り変えるときに生じる回転チェーンのずれが ベーン回転に影響を与えたため、せん断強度に変化が生じ たと思われる。 図-9(a)はベーン寸法比 D/Hを一定に して, 圧密圧力比Kを変化させ, せん断応力 r と回転角度 θ の関係をプロットしたものである。D/H=2.0のグラフ (上図) では τは K=0.75, 0.80 の方が K=0.50, 0.66に 比べて大きくでている。ところが D/H=0.5のグラフ(下 図) では $\theta=0\sim660^\circ$ の範囲内において τ にはこの傾向が 見られない。D/H=0.5, D/H=2.0の両グラフとも $\theta=$ 760~2260°では、回転速度が増加してもやはりてはK値 の大きい方が明らかに大きな値を示していることが分かる。 図一9(b)は圧密圧力比を一定にして、ベーン寸法比を変 化させて、せん断応力と回転角度の関係を示した図である。 D/Hの違いから求めた τ には著しい傾向は見られず, K =0.66から求めた τ よりも K=0.80から求めた τ の方が 全"的に大きな値を示していることが分かる。図中の含水 比は土試料の破壊時の値であり、約29~34%の範囲であっ た。試験終了後におけるせん断面付近の平均含水比は試験 前の供試体全体の平均含水比に比して0.6~1.0%程度減少 していた。図-9によると、初期の小回転角(0~600°)の

土と基礎, 31-12 (311)

び $\tau_V = \tau_H = C$ の慣用計

算式から求められる C~

θ曲線では せん断応力の

ピーク値は $\tau_H > \tau_V$ とな

ることが分かる。ベーン

上下両端面と側面ではせ

ん断応力の大きさの違い

した土試料について、圧

密圧力比Kを 0.25~1.0

の範囲内で変化させて

 $C_{f}, \tau_{Vf} \sim \sigma_{3c}$ の関係を求

めでみると, K値が小さ

くなるにつれ、すなわち

03c が小さくなれば Cf,

でアナ も減少し, K値が大

きくなるにつれ, すなわ

ち 🕫 が大きくなれば Cf,

る上,下部回転ベーン試

験と三軸ベーン試験から

それぞれ求めた*て*ƒ/σıc値

は試験方法にかかわりな

く,ほぼ一定の *て* / / 1c 値

が得られることが判明し

一速度でベーン累積回転

量を多くし、 τが一定値

を示すまで回転させるこ

とにより残留強度を求め

参考文献

1) 米津 聖:室内ベーン

試験に関する実験的考

察, 土と基礎, Vol.28,

ることができる。

た。

でアナも増加している。

が認められる。

うちは、ベーン寸法比の違いや、圧密圧力比の違いがせん 断抵抗τヘ与える影響が大きい。ところが200°くらいまで τが増大するもの、300°あたりからτが低下するものなど いろいろである。つまり、三軸ベーン試験から残留強度を 調べる場合には、同一回転速度でベーンの累積回転量を多 くしててが一定値に落ちつくまで実施すべきと思われる。

4. 結論

以上の実験結果から得られる結論は次のとおりである。

December, 1983

- No.4, pp.39-46, 1980. 2) 柴田 徹:粘土のベーンせん断強度に関する研究,土木学会 論文集, 第138号, pp. 39-48, 1967.
- 3) Aas, G.: A study of the effect of vane shape and rate of measured values of in-situ shear strength of clays, Proc. ICSMFE, Vol. 1, pp. 141-145, 1965.
- 4) 柴田 徹・田河勝一:粘土のベーンせん断強度に関する2.3 の考察, 京都大学防災研究所, 年報第11号, pp. 1-12, 1968.
- 5) 太田秀樹・大竹 勉・森田悠紀雄:ベーン試験特性と他試験 との比較, ベーン試験に関するシンポジウム, 土質工学会, pp. 71-76, 1980.
- 6) 河上房義:土質力学, 森北出版, pp. 146-147, 1983. (原稿受理 1983.1.20)

39