岩石・岩盤の伝熱パラメーターの測定について

Some measurements of heat conduction parameters with rocks

はじめに

地下における伝熱現象は温泉学や地熱などの分野におい て研究がなされてきたが,それは土木技術者,研究者にと って必ずしもなじみ深いものではなかった。しかし,最近 における工学的諸問題の多様化,拡大に伴って,例えば, エネルギー問題に関連して,液化ガス地下備蓄,地熱利用, 放射性廃棄物の地下処分,地下帯水層の蓄熱利用など新し い工学的諸問題が提示されつつある。

一般に、地下地盤における熱輸送現象は大別すると、沖 積地盤における伝熱と岩盤におけるそれに分けられよう。 従来、前者にかかわる粒状多孔媒体における伝熱現象の研 究は必ずしも少ないとは言えない。例えば、基礎的でかつ 総括的なものとして、A.V. Luikov (ルイコフ、1966)¹⁰, M.A. Combarnous & S.A. Bories (コンバルヌス・ボリ ス、1975)²⁰ らのものが知られ、地盤の伝熱実験に関して、 D. Kunii & J.M. Smith (クニイ・スミス、1971)³⁰, 松 本・大久保 (1977)⁴⁰, 佐藤 (1982)⁵⁰ らのものがある。更 に、横山ら(1974)⁶⁰, 佐藤ら(1982)⁷⁰ の帯水層への注水・ 揚水熱交換に関する研究が見られる。これらいずれの研究 も粒状多孔媒体、沖積地盤における伝熱に関するものであ って、岩石・岩盤を対象にしたものはほとんどない。

このような背景にあって,本報告は,岩石・岩盤の伝熱 パラメーターについて述べ,それらパラメーターの中でも 特に温度伝導率を放射伝熱形式によって簡便に測定する方 法を新しく提案し,具体的に4種類の岩石を用いて決定し た。ここで述べた測定法は原理も装置も大変簡単であり, ボーリング孔などを利用して現場にも応用しやすいもので あると考えたので,ここに報告する。

1. 岩石・岩盤の伝熱パラメーター

まず, 岩石・岩盤の伝熱の特色, 伝熱形態について明ら かにしておこう。

一般に,物質の伝熱は,大別して伝導,対流,ふく射に 分けられる。伝導は物質自体を温度が高い方から低い方へ 伝わるものであり,気体,液体に温度差があると伝導のほ かに対流によっても多くの熱が運ばれる。対流には温度差

March. 1984

を伴った密度変化による自然対流と流体自体の運動による 強制対流がある。更に、ふく射は上述2者とは全く違った 伝熱形態をとり、熱エネルギーが光と同様に電磁波となっ て輸送されるものであるから、伝熱速度は光の速度に等し く、極めて速く伝わる。このような伝熱の三つの形態は個 個に起こるものでなく、程度の差はあるものの一般には同 時に起こるものである。

上述のような伝熱の3態をふまえて,岩盤の場合におけ る伝熱について考えてみることとしよう。通常,岩盤は割 れ目(節理),断層のようなものを含む岩体やその集合体 と見ることができ,普通の多孔媒体,地盤と比べるといく つかの特色がある。基本的に岩盤は割れ目状の間隙と岩石 固体部分からなっていると考えられるので,図-1に示し たような割れ目系をもつ岩盤モデルを導入し,その伝熱様 式について考えてみる。この場合,

- (i) 乾燥岩盤
- (i) (水による)飽和岩盤
- (ii) 浸透流のある岩盤

のいずれかによって,伝熱形態が違ってくることが次に述 べることによって分かる。

図-1中,(a)は上述(i),(i)の場合における熱の伝わり 方をまとめて描いたものである。左側に一様熱源を与えた 場合,岩石自身の伝導,岩石と空気あるいは水の間の熱交 換,空気あるいは水自体の伝導,更に,割れ目間隙が大き い場合には,伝熱や熱交換に対流とふく射による伝熱が加 わることになる。通常はふく射や対流による伝熱は小さい から,岩盤のようなものの伝熱においては岩石中の伝導が 支配的になる。

一方,図一1中,(b)は(a)の場合に浸透移流による伝 熱が付加されたものとなり,岩石中の伝導と浸透移流によ

図―1 岩盤の伝熱モデル

^{*}埼玉大学助教授 工学部

^{**㈱}三菱金属中央研究所(埼玉大学研究生)

No. 1443

る伝熱が支配的となる。特に,この場合は,例えば温水が 岩石と割れ目中を浸透するわけであるから,岩石自体の伝 導速度より,浸透移流による伝熱の方が大きいと,熱は複 雑な割れ目系を移流分散しながら岩盤中に拡散伝熱するこ とになる。

次に,岩盤の伝熱を考える際に重要となる伝熱パラメー ターについて簡単に述べておく。

上述したように岩盤の伝熱はその伝熱過程によって、三 つの伝熱形態が大変複雑に絡まり合うが、いま一様な岩石 を考えれば、伝熱量Qは Fourier (フーリエ)の法則から、

となる。ここで, K: 熱伝導率, x: 距離, T₁, T₂: 温度, A: 断面積, t: 時間である。

言うまでもなく,この熱伝導率Kは岩種によって固有の 値を示し実験的に決定している。

更に, Fourier の一次元伝熱方程式はKが一定なら

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2} \qquad \kappa = \frac{K}{c \cdot \rho}$$
(2)

となる。ここで, *c*: 比熱, *ρ*: 密度, *κ*: 温度伝導率(あるいは熱拡散係数)である。

式(2)は円筒座標系で表すと,

となる。ここに, r: 放射方向座標である。

以上に示した式(1)~(3)から分かるように一様な岩石の場合の伝熱量は、密度 ρ 、比熱c、および熱伝導率Kによって支配されるので、これらが伝熱パラメーターとなる。しかしながら、岩盤の場合には割れ目系があるから、割れ目中の流体を含めて、 ρ 、c、Kを水、岩石、割れ目を含む岩盤としての値を用いて取り扱う方が実際的である²⁰。

実際上,岩盤中の伝熱問題を解こうとすると,岩種による温度伝導率の違いを知っておかなければならない。この 温度伝導率の決定は実験によらざるを得ないわけであるが, 室内実験,現地試験のいずれの場合でも,原理的に次の2 通りの決定の仕方が考えられる。

(1) 熱伝導率 K, 比熱 c, 密度 ρ の測定値から式(2)で算 定

(2) 伝熱方程式の解と温度測定・実測結果から直接決定

いま、これら二つの考え方を簡単に説明すると、(1)は何 らかの方法で岩石・岩盤のK, ρ , cを測定しておき、 $\kappa = K/\rho c$ から算出する方法であり、本報で後述するような定 常伝熱実験で κ を知ることができるから大変簡便である。 一方、(2)は、例えば実験的に再現しやすい境界・初期条件 の下で伝熱方程式の解を得ておき、解を求めた際の条件と 同じ条件下で実験・試験を行い温度を測定する。そこで、 解曲線と測定値が合致するように温度伝導率を直接決定し ようとするものである。どちらの方法が良いとは一概にい えないが,現地岩盤への応用,実用性という観点からする と本報で取り上げた(1)によるものの方が簡便で有効であろ う。

2. 実験装置と実験方法

本報では、岩石の熱伝導率を室内実験によって得る方法 として最も簡単でしかも現地岩盤の伝熱測定にも応用しや すい方法として,一次元放射伝熱によるものを採用した。 図-2は今回採用した放射伝熱の実験条件を示したもので ある。既に1.で述べたと同様に、(i)乾燥岩石、(i)飽和岩石。 (i)浸透流のある岩石の場合を実験するわけで、図中(a)に 示したように、乾燥と飽和岩石の場合は同じ条件である。 試料は長さら、半径Rの円柱状で中心に半径 ro の小孔をも つ。原理的にはこの中心孔中に一定の熱量を与え、半径R の試料外壁温度を一定に保ちつつ、中心孔内と試料中の温 度の経時変化を所定の位置で測定する。すると図-2(a) の下側に示したように、中心孔内と試料中、試料外周壁の 温度は時間とともに変化し、やがて中心孔内の温度、試料 中の温度分布は外周壁境界の値とつり合って定常状態に至 る。孔内温度 T_0 ,外周壁温度 T_R はそれぞれ T_{0c} , T_{Rc} に なる。

一方,図ー2(b)は浸透流のある岩石の伝熱実験であり、 試料外周圧力 $P_{\mathbf{R}}$ を一定に保ち、中心孔内圧力 $P_{\mathbf{0}}$ を $P_{\mathbf{R}}$ よ り高くして浸透流を起こさせる。この場合にも温度の経時 変化は(b)図の下側に示したように(a)図の場合と同じよ うになる。

図-3,4はその実験装置であって,(a)乾燥あるいは飽和 岩石の場合,(b)浸透流のある場合とに分けて示してある。 まず,図-3中,装置は次の各部からなる。①電気抵抗器 (0~130ボルト),②電流計(最小目盛0.05アンペア),③ 電圧計(最小目盛1.00ボルト),④棒状ヒーター(長さ 220 mm,発熱部長さ180 mm,径13 mm,図-3の右側に 示した),⑤岩石試料(高さ0.18m,直径0.28m,試料形

土と基礎, 32-3 (314)

図一3 乾燥および飽和岩石の伝熱実験装置

状は製作の都合上断面が 八角形の 柱状とした), ⑥サーミ スター針(長さ 240 mm, 径 3.2 mm, 図-3 の右側に示 した), ⑦温度自動記録装置(タカラ K 700), ⑧冷却水循 環パイプ(径 12 mm のビニール製パイプ), ⑨断熱材(発 泡スチロール)である。

実験としては,岩石試料中心にせん孔した直径0.03mの 孔中にある棒状電気ヒーターより一定熱量を与え,岩石試 料外周壁境界を冷却水循環パイプによって一定温度にして おき,試料の中心孔壁,外周壁,および試料中の温度の経 時変化を計る。

実験手順は次のようである。まず,岩石試料を作り,試料の中心から $r_1=0.015$ m, $r_2=0.035\sim0.045$ m, $r_3=0.075\sim0.0775$ m, $r_4=0.137\sim0.140$ m (外周壁上) に直径4 mm,深さ70 mm のサーミスター針挿入孔をせん孔し,冷却水循環パイプを岩石試料周囲に取り付ける。次に,岩石試料の中心孔に棒状電気ヒーター,所定の温度測定箇所にサーミスター針をそれぞれ挿入固定して,試料上下面に断熱材を密着させる。そこで,サーミスター針と温度記録計,電気抵抗器,電流計,電圧計を結線した後,電気抵抗器により所定の熱量を棒状電気ヒーターから岩石中に与

March, 1984

えると同時に温度自動記録装置を作動させ,岩石試料の温 度の経時変化が計測・記録される。

一方,図-4に示した各部の名称①~⑨までは図-3の 実験装置と同じであるから, @~③を説明すると, @高圧 $ガスタンク (<math>p_{max}=150 \text{ kgf/cm}^2$), ①圧 力 タ ン ク (高さ 0.52m, 直径0.22mの円筒形でゴムバルーンが挿入してあ る), @オーバーフロー円筒 (長さ 0.20m, 直径 0.36m), @メスシリンダーである。

実験としては,図-3に示した乾燥および飽和岩石の伝 熱実験のときの試料中心孔からヒーターによる加熱に加え, この中心孔に水圧を加え,浸透流を起こさせつつ試料中の 温度の経時変化を計測する。

実験手順は次のようである。岩石試料を作り,サーミス ター針の取付けから試料中心孔に棒状電気ヒーターを挿入 するまでの手順は上述した図一3の場合と同じである。次 に,試料を断熱材にのせ⑫オーバーフロー円筒をセットし, 断熱材に接着剤を用い接着する。試料中心孔に挿入した棒 状電気ヒーターは圧力タンクにつながるパイプと連結でき るような短管の付いたワッシャーで固定し,更に接着剤に よって密封する。しかる後に,オーバーフロー円筒に蒸留 水を徐々に入れ,岩石試料を飽和させる。そこで,電気抵 抗器により所定の熱量を棒状電気ヒーターから試料に与え 温度自動記録装置を作動させて実験を開始する(浸透流は あらかじめ起こさせておき定常状態にしておく)。

参考のため,写真-1には図-4に示した浸透流のある 岩石の伝熱実験装置の全景を示し,写真-2には岩石試料 を示した。

写真-1 浸透流のある場合の伝熱実験装置の全景

写真一2 岩石試料

No. 1443

試 料 岩石名	試験条件		密 度 (kg/m³)	空隙率 (%)	比 熱 (kcal/kg・℃)	透水係数 (m/s)	熱伝導率 (kcal/m・h・℃)	温度伝導率(m²/h)	
								本実験結果	文献 10) による
白岩 河凝灰	乾	燥	2.11×10 ³	19.7	0.194(0.812)		1.192(1.386)	2.91×10 ⁻³	2.50×10^{-3}
	湿	潤	2.31	19.7	0.220(0.921)		1.498(1.742)	2.95	2.90
	移	流	2.31	19.7	0.220(0.921)	1.15×10 ⁻⁸	1.700(1.977)	3. 35	2.05
江岩 持 凝 灰	乾	燥	2.20	14.6	0. 195(0. 816)		1.354(1.575)	3.16	1.48
	湿	潤	2.34	14.6	0.212(0.887)		1.627(1.892)	3.28	2.00
	移	流	2.34	14.6	0.212(0.887)	8.12×10 ⁻¹⁰	1.628(1.893)	3.28	2.00
大岩 谷 凝	乾	燥	1.34	42.7	0.299(1.252)		0.688(0.800)	1.72	1.20
	湿	潤	1.77	42.7	0.372(1.557)		0.869(1.011)	1.32	2.00
扊	移	流	1.77	42. 7	0.372(1.557)	4. 17×10 ⁻¹¹	1.072(1.247)	1.63	
新山 小岩 松 安	乾	燥	2.37	9.60	0.186(0.779)		1.205(1.401)	2.73	2.10
	湿	潤	2.46	9.60	0.206(0.862)		1.408(1.638)	2.78	2.60
	移	流	2.46	9.60	0.206(0.862)	1.98×10-9	1.418(1.649)	2.80	2.85

表一1 実験ケースと結果

注)比熱,熱伝導率のカッコ内の値はSI単位の値で、その単位はJ/kg・K,w/m・Kである。

多孔質な福島県産の白河、江持 凝灰岩,神奈川県産の新小松安 山岩、および栃木県産の大谷凝 灰岩である。それぞれの岩石の 物性は表一1にまとめて示して あり, 密度および空隙率の値は 建設省土木試験基準(案)。) によ り求めた。また、比熱 c の値は、 容積 0.0025 m3 (縦 0.16m, 横 0.20m, 厚さ0.08m)の断熱材 でできた箱に 0.0015 m3 の蒸留 水を入れ, 蒸留水の中に 100℃ の0.5~0.6 kgの岩石を入れて 約0.5時間程度放置した後,水 の温度を計り、次式から求めた ものである (佐藤, 1982)"。

実験に使用した岩石は比較的

$$c = \frac{m_w(T_2 - T_1)}{m_s(T_0 - T_2)} \cdots \langle 4 \rangle$$

ここに, *mw*, *ms*: 各々水, 岩 石の質量, *T*₀: 岩石の初期温 度, *T*₁, *T*₂: 各々水の初期, 終 期の温度である。

実験結果と温度伝導 率の値

表-1に示した4種の岩石そ れぞれについて,乾燥,飽和, 浸透のある場合の合計12ケース が実験された。まず,各岩石の 境界(試料中心孔壁 n=0.015 m,外周壁 n=0.137~0.14 m) での温度の経時変化が図-5 (a)~(d)に示してある。図中,

土と基礎, 32-3 (314)

縦軸に温度 $T(\mathbb{C})$, 横軸に 経時時間 t(h) をとり, n, nでの温度の経時変化を乾燥, 飽和, 浸透流のある場合に分 けて示してある。4種の岩石のいずれの場合にも温度の経 時変化は 中心孔壁, 外周壁とも時間の 経過とともに 増加 し, やがて一定値(定常値)になっている。つまり, 中心 孔内では熱量が一定に保ってあるから,時間とともに孔内 温度は上昇し, やがて供給熱量は試料外周へ放散される熱 量とつり合って定常状態になるわけである。次に,乾燥, 飽和, 浸透流のある場合の3者を比較すると,新小松安山 岩の場合を除いて, いずれも浸透流のある場合の方が伝熱 速度が最も大きいことは興味深い。その理由として, 岩石 自体の伝熱速度より浸透流による強制対流が大きいことが 考えられる。

図-5の下側に示した図は縦軸に温度 T(C), 横軸に試 料中心からの距離 $r(\times 10^{-2}m)$ をとり, 乾燥, 飽和, およ び浸透流のある場合の各々の定常状態における温度分布を 示したものである。乾燥の場合が最も温度勾配が半径方向 に急であり, 浸透流のあるそれは温度勾配が緩やかである ことが注目される。この定常状態の温度分布から岩石の伝 熱が含水程度と浸透流の有無によって変わることが明確に 示されたものと思う。

図一6には白河凝灰岩の場合の一例であるが,乾燥,飽 和および浸透流のある場合の試料各点における温度の経時 変化を示した。これらの温度の経時変化からも,浸透流の ある場合の伝熱では流れによって伝熱が促進され,温度の 経時変化の立上りが早いという特徴のあることが分かる。 いずれの試料の経時変化も浸透流のある場合は6時間程度 でほぼ定常状態に達している。

次に, 図一5に示した各岩石の温度の経時変化に注目し

図-6 乾燥, 飽和および浸透流のある場合の各点における温度の経時変化(白河凝灰岩の場合)

て,熱伝導率Kを求めてみる。放射方向定常状態にある場合,岩石試料内の温度分布は図一2を参照して式(3)の定常解から

となる。ここに, T: 任意の位置の温度, T_{oc}: 中心孔壁の 温度, T_R: 試料外周壁での温度, r: 中心から任意の距離, R: 試料半径, r₀: 中心孔半経である。

また,放射方向伝熱量Qは

$$Q = 2 \pi K \frac{(T_{0c} - T_R)}{\log_e(R/r_0)}$$
(6)

とかける。ここに、 K: 熱伝導率である。

図-5の温度の経時変化が定常状態に至る10~14時間後 の T_{0c} と T_R の値は実験から決まり, 伝熱量 Q は棒状電気 ヒーターに与えられる電流(A)と電位(V)から電気量(W $=A \times V$, $1 W = 1 \forall \neg - \nu / s$, $1 cal = 4.186 \forall \neg - \nu) \epsilon$ 求めることにより与えられるから,熱伝導率Kを式(6)から 算定することができる。このようにして求めた熱伝導率の 値と、この熱伝導率と密度、比熱の値を用いて温度伝導率 を算定したものを表一1に併せて示す。また,式(5)の境界 温度 Toc, TR を与えて, 定常状態における温度分布 を 描 いたものが図-5の下側の図であり、理論と実験は良く-致していると考えてよかろう。更に、本実験から求めた温 度伝導率の値は大谷凝灰岩が1.32~1.72×10-3 m²/h と小 さい値を示すが、 ほかは 2.73~3.35×10-3 m²/h とあまり 大差がないことが分かる。表一1には参考のため直接温度 測定結果から求めた値を示した。これらの結果は佐藤・佐 々木(1983)10)によるものであり、今回の実験のような放射 方向伝熱ではなく、非定常一様伝熱によって得られたもの である。今回得られた値はこれらより多少大きいようであ るが,ほぼ一致していると見てよかろう。

次に、本報で述べた放射伝熱実験を応用し現地のボーリ ング孔(注水や揚水を行わず浸透流を起こさせない場合) で熱伝導率を決定しようとする際に、どのように考えれば よいかを述べる。ボーリング孔にケーシングを施さないい わゆる素掘りの状態で(孔内に水がある場合は完全防水型 のものを使用する),本実験で用いたような棒状電気ヒー ター(測定区間の上下部へ熱が逸散しないような断熱用パ ッカーの付いたもの)を測定位置まで挿入し、固定する。 計測は地山の初期温度 To, 棒状電気ヒーターによる加熱後 十分時間が経過し定常状態に達したときの熱量Qと孔<u>壁</u>温 度 Toc の三つについて行う。また、室内実験で得られた放 射方向温度分布(図-5)から分かるように、電気ヒータ ー発熱部長さ *l*=0.18 m では試料外周壁 (r≒0.14 m) の温 度 T_R がほぼ初期温度 T_0 になることから、試料半径 R = l. TR≒T₀とし、式(6)により熱伝導率Kを算定することがで きる。白河凝灰岩(図-5(a)の場合)の測定値を例にと れば、実測では R=0.138 m, $r_0=0.015$ m, $T_{0c}=54.0$ °C,

No. 1443

 $T_R=19.8$ ℃, Q=115.38 kcal/h・m であるから式(6)より, この場合の Kの値を K_e とすると, K_e=1.192 kcal/m・h・ ℃となる。一方, R=l=0.18 m, $r_0=0.015$ m, $T_R=T_0$ (測定位置の初期温度)=17.4℃, $T_{0c}=54.0$ ℃, Q=115.38kcal/h・m の場合, そのときの Kの値を K_a とすると, K_a =1.246 kcal/m・h・℃となる。よって, K_a/K_e=1.045 とな り、近似値の差異は比較的小さい。

このようにして,ボーリング孔内の深度に応じて簡単に 熱伝導率が決まるから,あらかじめボーリングコアを採取 しておき,その岩石の比熱 c,密度 ρ を計っておけば温度 伝導率 κ は式(2)から $\kappa = K/c\rho$ より求まる。

なお、参考のため、伝熱にかかわる無次元量のオーダー について考えて見る。まず、プラントル数 $P_r = \nu/\kappa$ (ν :水 の動粘性係数、両境界温度の平均温度における値とする) は飽和岩石の場合、白河凝灰岩 0.869、江持凝灰岩 0.859、 大谷凝灰岩 1.57、新小松安山岩 0.994 である。次に、ペク レ数 $P_e = vd/\kappa$ (v:真の流速であって (r_0+R)/2 における 浸透流速、d:単位岩石の空隙相当管の直径)は同様に白 河凝灰岩 2.08×10⁻³、江持凝灰岩 1.78×10⁻³、大谷凝灰 岩 5.68×10⁻⁵、新小松安山岩 1.58×10⁻³となる。

むすび

本報では岩石,岩盤を対象に伝熱形態およびそのパラメ ーターについて述べ,伝熱パラメーター,特に温度伝導率 (熱拡散係数)を新しく提案された装置によって測定・決 定した。使用された装置は一次元放射伝熱によるものであ り,原理的に大変簡単であって,熱伝導率を現地ボーリン グ孔内で測定しようとする場合も応用し得よう。

今回実験に使用した岩石は,いずれも比較的多孔質な白 河・江持・大谷凝灰岩と新小松安山岩である。実測された 熱伝導率 $K=0.688\sim1.700$ kcal/m・h・C の範囲にあり,温 度伝導率 $\kappa=1.32\sim3.35\times10^{-3}$ m²/h の範囲に あった。ま た,これらの測定値は別の非定常一様伝熱実験による結果 と比較したが、いずれも妥当な値であることが確認された。

なお,本実験を進めるに当たって埼玉大学客員教授林泰 造先生から有益な示唆を賜った。ここに心よりお礼申し上 げる次第である。

参考 文献

- Luikov, V.: Heat and Mass Transfer in Capillary-Porous Bodies, Translated by P.W.B. Harrison and Translation edited by W.M. Pun, Pergamon Press, pp. 5~519, 1966.
- Combarnous, M.A. & S.A. Bories: Hydrothermal convection in saturated porous media, Advanced in Hydroscience, edited by Ven te Chow, Academic Press, Vol. 10, pp. 232~307, 1975.
- Kunii, D. & J.M. Smith: Thermal conductivities of porous rocks filled with stagnant fluid, J. Soci. Petro. Eng., pp. 37~42, March, 1961.
- 4) 松本順一郎・大久保俊治:土の伝熱特性に関する実験的研究、 土木学会論文報告集,257号,pp.53~60,1977.
- 5) 佐藤邦明: 飽和多孔体および温水浸透流における温度伝導率 の実験的決定, 土木学会論文報告集, 320号, pp. 57~65, 1982.
- 6) 横山孝男・梅宮弘通・安彦宏人:人工涵養による帯水層の蓄 熱利用,日本地下水学会誌,Vol. 17, No. 2, pp. 55~67, 1975.
- 7) 佐藤邦明・遠近潮見:井注水による地下水涵養に伴う帯水層の伝熱,第2回水資源に関するシンポジウム前刷集,pp.405~410,1982.
- 8) 建設省, 土木試験基準(案)上, pp. 98~100, 1970.
- 9) 佐藤邦明:多孔媒体中の熱輸送に関する実験的研究,土木学 会第26回水理講演会論文集, pp. 595~600, 1982.
- 佐藤邦明・佐々木康夫:岩盤熱水浸透流における温度伝導率の実験的研究,土木学会第27回水理講演会論文集,pp.253~258,1983.

(原稿受理 1983.5.23)

土と基礎, 32-3 (314)