各種のせん断試験による砂の内部摩擦角

Angle of Internal Friction of Sand by Various Types of Shear Tests

龍	岡	کُ	_~ *	プラ	ダン	テージ	≯ B.S.**
Lam 林		Woon 焕	Kwan 群***	堀	并	のり宣	^{ゅき} 幸****

1. はじめに

同一の豊浦砂(粒子比重 $G_s=2.64$, 平均粒経 $D_{50}=0.16$ mm, 均等係数 $U_c=1.46$, 細粒分0%)を空中落下させて 作成した後飽和化した試料を用いて, 表一1に示すような 各種のせん断試験を行ってきた結果をまとめ,砂のせん断 抵抗角(または内部摩擦角) $\phi=\arcsin \{(\sigma_1'-\sigma_3')/(\sigma_1'+\sigma_3')\}$ maxに及ぼす(1) σ_3' の大きさ,(2) $b=(\sigma_2'-\sigma_3')/(\sigma_1'-\sigma_3')$ の値,(3)構造異方性,(4)破壊パターンの影響を論ず る。本来,同一の供試体に対して(1)~(4)によらずに一定の ϕ の値が得られるときに, ϕ をせん断強度を表すパラメー ターとして用いる意義があるが,実際にはそうはなってい ない。しかし,(1)簡明な型の破壊規準である,(2)多くの安 定解析は二次元問題として,すなわち $\sigma_1' \ge \sigma_3'$ だけを用 いて行うので,多くの場合 ϕ を用いるのが好都合である。

図一1 平面ひずみ圧縮試験による
ø

**東京大学助手 生産技術研究所

φ の拘束圧依存性

拘束圧が高くなると一般的に砂の¢は減少してゆく。し かし、ある程度の拘束圧以下では、少なくとも飽和してい る、あるいは空気乾燥している粒子の破砕性が小さいきれ いな砂の¢の拘束圧依存在は大変小さく、いわゆる粘着力 係数=0と考えてよいようである。このことを最も強調し ているのは Hettler (ヘトラー)ら¹⁴⁾であり、三軸圧縮での Karlsruhe (カールスルーエ)砂の¢は実に $\sigma_3'=4 \text{ kgf/cm}^2$ まで σ_3' によらないことを示している。豊浦砂でも三軸圧 縮、平面ひずみ、ねじりせん断で共通して、大略0.5 kgf /cm²以下の σ_3' では¢は σ_3' によらない(文献5の図一3. 2.7参照)。図-1(a),(b)、図-2は平面ひずみ圧縮試 験の結果である。

一方, 砂の ϕ は $\log \sigma_{m'}$ ($\sigma_{m'}$ は平均主応力)に比例す

るという経験式の提案もある (Bolton¹⁵⁾)。恐らくある程度以 上の拘束圧に対してだけこの考 え方は適切であろう。実際にあ る拘束圧以下で砂の∮が拘束圧 に依存しないのならば,(1)飽和 したあるいは空気乾燥した砂の 斜面の浅いすべりの解析,(2)模 型実験の解析が著しく簡明にな ろう"。

3. Øの異方性

砂の ϕ の異方性は小田^{16),17)}, Arthur (アーサー)¹⁸⁾の先駆的 研究によって明らかにされてき た。実際図—1を見ても δ =23°, 34°の時の密な豊浦砂の ϕ は, δ =90°の時の緩い豊浦砂の ϕ よりも小さい。すなわち、 ϕ に 対する影響因子としての構造異 方性は間隙比とほぼ同等である。

そこで、平面ひずみ圧縮の場合で $\sigma_{s}'=0.05\sim4 \text{ kgf/cm}^{2}$ に対する豊浦砂の ϕ を(σ_{s}' , δ , e)の関数とした経験式を 求めた。ここで eは $\sigma_{s}'=0.05 \text{ kgf/cm}^{2}$ の等方応力状態の 時に測定した値である。まず、ある一定の $\sigma_{s}'=(\sigma_{s}')_{0}$ 以

55

^{*}東京大学助教授 生産技術研究所

^{***}応用地質株式会社 東京事業本部 (元東京大学大学院生)

^{****}労働省産業安全研究所研究員(元東京大学研究生)

表一1 東京大学生産技術研究所で行われた豊浦砂のせん断試験

試験の種 類:略称	供試体寸法 (cm)	端面条件 ほか	圧密方法: 試験時応力 径路	(o ₁ '/o ₃ ') _{max} の時の応力状態					
				σ3΄ (kgf/cm²)	ьD	^م	£ ³	その他	参考文献
三軸圧縮: TC-1	高さ(H)=15, 直径(D)=7 (円柱)	上下端面面剛, 摩擦面はメン プレン。 o ₁ '面はTC では剛, T Eではフレ キシブル。	等方: σ ₃ '一定, σ ₁ '増加	0.029~4.0	0.0	0		σ ₃ ′ が小さい時は メンプレン力に 対する応力補正 が必須。	Fukushima and Tatsuoka(1984) ²⁾ Tatsuoka, et al (1986) ³⁾ 龍岡(1987) ^{43, 5)}
三軸圧縮: TC一II	高さ(H)=幅 (W),長さ(L) =7.8 ^⑤ (立方体)			1.0	0.0	0°, 30°, 60°, 90°	_@	この場合, δ=90°-ω 図-7(a), 9 (a)参照	Lam and Tatsuoka (1987)°, (1988) ⁷⁾
三軸伸張: TE [©]	H=19.6, D= 9.5(円柱)		等方: σ ₁ '=4.0 kgf/cm ² (一 定), σ ₃ ' 減少	≈1.0	1.0	90°	90°	通常の三軸伸張 図-7(a),図 -9(a)参照	Lam and Tatsuoka (1987 ⁶), 1988 ⁷)
	正方形断面(D =7.8), H= 2.0, 7.8, 16 (直方体)					90°	90°		
						90° 30°, 60°	0°, 30°, 60° 90°		
平面ひずみ 圧縮: PSC—I	H=10.5, W= 4, L(σ ₂ '方向) =8 (直方体)	上下側面剛, 摩擦除去。 $\sigma_2' 面は剛で摩擦除去。\sigma_3' 面はメンプレン。$	等方: σ ₃ '一定。 σ ₁ '増加	0.05~4.0	0.16~0.4 ⁷	0°, 23°, 45°, 56°, 67°, 79°, 90°	90°	$\delta = 90^{\circ} - \omega$	Tatsuoka, et al. (1986)", 龍岡 (1986)", (1987)"
平面ひずみ 圧縮: PSC-II	$H=10.5, \ \textcircled{5}$ W=5.5, L=10.5			1.0	e, w, その 値による。 0.2~0.55	0°, 30°, 60°, 90°	90°	図—9(a)参照	Lam and Tatsuoka
						0°, 30°, 60°, 90°	0	(1986)°', 1987''	
	(直方体)					90°	30°, 60°		
ねじりせん 断: TS	H=20, 円筒外径(10), 円筒内径(6), (中空円筒)	円筒の内圧 と外圧が等 しい。	等方:σa', σ _r ' 一定, ^τ at增加	0.08~0.79	0.5	45°	- 90°	$\sigma_t = \sigma_\tau(\boxtimes -5)$	Tatsuoka, et al. (1986)*), 龍岡 (1987)*),5)
			異方:σa', σr' 一定, ^τ at ^増 加	0.31~0.43	0.27~0.47	47°∼59°			
ねじり単純 せん断: TSS		せん断中に 円筒の外圧 が内圧より も大きくな る。	K ₀ 圧密: σa'=1.0kgf/ cm ² (一定), τ _{at} 增加	0.36~0.45	0.25~0.29	40.0°~43.5°	90°	円筒内径,外径 が一定に保たれ る。 $\sigma_t' \Rightarrow \sigma_r'(図$ 一5)	堀井ら ¹⁰⁾ , プラダン ら ¹¹⁾ , Tatsuoka (1987) ¹²⁾

注:① $b=(\sigma_2'-\sigma_3')/(\sigma_1'-\sigma_3')$,②,③ 図-9(a)参照。 $\xi=90^\circ$ のとき $\omega=90^\circ-\delta_o$ ④ $\omega=0^\circ$ のとき ξ は定義する必要はない。

⑤ この他の寸法でも行われているが、ここではこの寸法のデーターだけを示す。文献 12)の図−8(a)での∮は端面摩擦に対して補正した値。ここではこの補正はしていない。

⑥ ゆは供試体のネッキングによる局所的断面積減少に対しての os' の補正をし、また図-2を用いて os'=1.0 kgf/cm² に対しての値に補正。

⑦ σ₃'=0.05 kgf/cm² でのみ測定。bは e, ω(δ) による。同一寸法で σ₃'=0.5kgf/cm², e=0.65~0.81, ω=0°(δ=90°)の時, b=0.25~0.30, e=0.70 では b=0.255 (中村⁴⁵)。

図−2 平面ひずみ圧縮試験における ∲~σ₃'関係

下では ϕ は一定(ϕ_0)とする(図一2)。ここで(σ_3)。はeに比例すると仮定すると、

 $(\sigma_{3'})_{0}=4.0 \times (e-0.6)$ (1) となる。 $\sigma_{3'} \ge (\sigma_{3'})_{0}$ では、 ϕ は log $\sigma_{3'}$ に比例して減少する とし、係数 $a=-d\phi/d \log \sigma_{3'}$ は e に比例するとすると、 $a=10^{\circ} \times (1-e)$ (2) となる。一方,σ₃'≦0.5 kgf/cm² ではδ=90° のとき

$$R(\delta, e=0.70) = \begin{cases} 1.0-4.02 \times 10^{-5} (\delta-90)^2 & (\delta=26^{\circ} \sim 90^{\circ}) \\ 0.89-7.83 \times 10^{-5} \times \delta^2 & (\delta=0 \sim 26^{\circ}) \end{cases} \cdots (4)$$

$$R(\delta, e=0.80) = \\ \begin{cases} 1.0-4.18 \times 10^{-5} (\delta-90)^2 & (\delta=34^{\circ} \sim 90^{\circ}) \\ 0.9-3.33 \times 10^{-5} \times \delta^2 & (\delta=0 \sim 34^{\circ}) \end{cases} \cdots (5)$$

以上をまとめると、(4)、(5)式のRを用いて、 ϕ は次のように定式化される。 $0.05 \text{ kgf/cm}^2 \leq \sigma_3' \leq (\sigma_3')_0$ では、

 $\phi(\delta, e, \sigma_3') = \phi_0(\delta, e) = 59.47^{\circ}(1.5-e) \times R...(6)$ $(\sigma_3')_0 \le \sigma_3' \le 4.0 \text{ kgf/cm}^2 \text{ ctl},$

土と基礎,35—12(359)

NII-Electronic Library Service

4. 平面ひずみ圧縮と三軸圧縮の φ の比較

 ϕ の異方性のためにこの比較は単純ではない。図-3を 見ると三軸圧縮と平面ひずみ圧縮の ϕ の差は δ =90°のと きに最も大きいが、 δ =30°では両者の差は著しく小さくな っている。このことは、各種の ϕ を比較した図-4を見て も分かる。すなわち、 δ =90°では ϕ (PSC-I)(〇; a-a 線)は ϕ (TC-I)(□; b-b 線)より著しく大きいが、 δ =30°では ϕ (PSC-I)(△, ∇ ; c-c線)は ϕ (TC-II)(□; d-d 線)よりわずかに大きいだけである。

より一般的には、空中落下して作成した試料は堆積面に 直交する方向(図一9(a)のn)が構造の対称軸であり、 ϕ はこのnの方向(図一9では角度 ω , ξ で表されている) の関数である。今まで使ってきた δ は ξ =90°の時の90° $-\omega$ に等しい。したがって、 ϕ は少なくとも(e, σ_{3} , ω , ξ , b, 破壊パターン)の関数となり、e, σ_{3} を固定しても ϕ を(ω , ξ , b, 破壊パターン)の総合的な関数として表 す必要がある。

5. 単純せん断, 平面ひずみ圧縮, 三軸圧縮の *φ* の比較

これも ϕ の異方性のために複雑な関係にある。最近, K_0 圧縮された中空供試体を用いて内径と外径を常に一定に保 ちながら排水状態で鉛直圧一定のままねじりせん断するこ とがかなり精度高くできるようになった^{10),11)}。この試験 では常に水平断面の形と大きさは一定に保たれているので 単純せん断ひずみ条件は満たしている(図一5)。図一6 はe=0.70のときの $\sigma_1'/\sigma_3' \sim \omega(=90^\circ - \delta) \sim \gamma_{\max}(=\varepsilon_1 - \varepsilon_3)$ 関係を示したものである¹¹⁾。 $\omega=90^\circ - \delta$ 一定の径路は平面

ひずみ圧縮試験 (PSC-I)⁸⁰ によるものである。なお,こ こに示す応力径路はすべて連続的に記録されたデーターに 基づいており、〇印は $\gamma_{max}=1$, 2, ……,10%の点を表し ている。TSS の径路は①の径路での点Bから出発すると して作図した。この図からねじり単純せん断試験(TSS) による径路は平面ひずみ圧縮試験での径路が形づくる曲面 上を移動していることが分かる。すなわち,この(σ_1'/σ_3' ~ ω ~ γ_{max})関係には、この試験の範囲で主応力方向の連 続的回転の影響がほとんど見られない。恐らくこれはねじ り単純せん断試験においてせん断初期に極めて急速に σ_1' 方向が回転し、 $\gamma_{max}>1\%$ ではほとんど回転していないか らであろう。

以上のことから図—3,4に示すようにねじり単純せん断 試験 (TSS) での ϕ が,類似の σ_{3} , $\delta=90^{\circ}-\omega$, bの平面 ひずみ圧縮試験 (PSC—I) の ϕ とよく似ているのは納得 できる。すなわち,単純せん断試験も一種の平面ひずみせ ん断試験であると考えてよい。

 δ =90°(ω =0°)の場合の三軸圧縮の ϕ (\Box)印,線 b-b) と TSS の ϕ がよく一致しているのは偶然である。すなわ ち、ねじり単純せん断試験と三軸試験では $b \geq \delta$ の両方が 異なり、この両者の影響が打ち消し合っているためと思わ れる。

一面せん断試験や単純せん断試験では通常水平面上の直 応力 σ_a' とせん断応力 τ_{at} しか測定しない(図一5(b))。 従来時としてこの2つの応力から内部摩擦角として

を用いることがあった。しかし、図ー4に示すようにねじ り単純せん断試験では ϕ^* は $\phi = \arcsin \{(\sigma_1' - \sigma_3')/(\sigma_1' + \sigma_3')\}$ max よりも相当小さい。なお、 ϕ^{**} は (σ_1'/σ_3') max の 時の arctan (τ_{at}/σ_a') であり、図中に示すいくつかのデー ターでは ϕ^* よりも若干低い。これは ϕ^{**} または (σ_1'/σ_3') max が発揮された後に更に τ_{at}/σ_a' が増加し、 ϕ^* また は (τ_{at}/σ_a') max が発揮されたからである。

 $\phi^{**} < \phi$ となる理由は水平面が最大応力傾角の面になっ ていないためである。このことは、次の2つの条件によっ て求まる(9)式によって説明できる(詳しくは文献19)参照)。 (1)水平方向は伸び縮みしない($i_t=0$),(2)破壊時には σ_1 方 向と i_1 方向は一致する。

$$\phi^{**} = \arctan\left(\frac{\sin\phi\cos\psi}{1-\sin\phi\sin\psi}\right) \dots (9)$$

ここで、ψ は破壊時のダイレイタンシー角であり

$$\psi = \arcsin\left(-\frac{\dot{\varepsilon}_1 + \dot{\varepsilon}_3}{\dot{\varepsilon}_1 - \dot{\varepsilon}_3}\right) \qquad (10)$$

で定義される。(9)式による ϕ^{**} の値は図ー4では一印(線 f-f)で示されているが、測定値より若干大きいことが分 かる。これは上記の2つの条件の内2番目の条件が満たさ れていないためである。実際、 ϕ が発揮される時には σ' 方向よりも ϕ_i 方向の方が水平方向に角度4だけ近い。 この時(9)式は

$$\phi^{**} = \arctan\left(\frac{\sin\phi\cos(\psi - 2\varDelta)}{1 - \sin\phi\sin(\psi - 2\varDelta)}\right) \cdots \cdots \oplus (1)$$

となり、 ϕ^{**} は(9)式による値よりも小さくなる¹⁹⁾。

図ー4を見ると、 ϕ^* (線 e-e) は δ =90°の時の三軸圧 縮による ϕ (線 b-b) よりも相当小さい。一方、従来時と して一面せん断での(8)式による $\phi^* \ge \delta$ =90°の時の三軸圧 縮による ϕ の比較が行われた。実際に $\phi^* < ($ 三軸圧縮によ る δ =90°のときの ϕ)であるということは次のことを意 味している。仮に図-5(b)のような供試体で、 $\phi^*=($ 三軸 圧縮による δ =90°のときの ϕ)であったならば ϕ^* は過大 評価されており、これはその一面せん断試験ではせん断面 の τ_{at} 、 σ_a' の値が正確に測定されていない、などのその一 面せん断試験機特有の問題によるためであろう。

図-6 ねじり単純せん断試験 (TSS) と平面ひずみ圧縮試 験 (PSC-I) での σ₁′/σ₃′~ω~γ_{max} 関係の比較¹¹)

三軸圧縮,平面ひずみ圧縮,三軸伸張の¢の 比較

まず図-7に示す σ_1' , σ_2' , σ_3' 方向が堆積面に平行か直 交している場合($\omega=0^\circ$ または 90°, $\xi=0^\circ$ または 90°)を 考える。この場合でも比較を複雑にしているのは,(1)強度 異方性と,(2)特に三軸伸張試験で顕著な ϕ の破壊モード依 存性である。前者は供試体に対して定義した 3 つの主応力 ($\sigma_{y'}=$ 堆積面に直交する直応力, $\sigma_{x'}$, $\sigma_{z'}$;堆積面方向の 直応力)の空間で考えればそれなりに整理がつく。すなわ ち,図-7(b)は $\sigma_{x'}$, $\sigma_{y'}$, $\sigma_{z'}$ 3 主応力空間内の $\sigma_{x'}+\sigma_{y'}$ + $\sigma_{z'}=-$ 定の π 面上を表していて,番号①~⑦の応力状態 では,それぞれ($\sigma_{x'}$, $\sigma_{y'}$, $\sigma_{z'}$)の(σ_1' , $\sigma_{2'}$, $\sigma_{3'}$)の組 み合わせ方が異なる。

ところが(2)の問題は相当難しい。測定された ϕ の値の客 観性にかかわる問題であるからである。つまり、図-8に 例示するように ϕ が供試体の形状に著しく支配されるから である^{6)~7)}。ここで、 α は図-7(b)における π 面上の $\sigma_{y'}$ 軸からの角度で

$$\tan \alpha = \frac{\sqrt{3} (\sigma_z' - \sigma_x')}{(\sigma_y' - \sigma_x') + (\sigma_y' - \sigma_z')} \quad (0 < \alpha < 180^\circ),$$
$$\tan \alpha = \frac{\sqrt{3} b}{2-b}, \quad b = \frac{\sigma_z' - \sigma_3'}{\sigma_z' - \sigma_z'} \quad (0 < \alpha < 60^\circ) \quad \dots (12)$$

である。つまり、 $\alpha = 60^{\circ}$ の三軸伸張試験 (b = 1.0) では $\sigma_{y'} = \sigma_{z'} = \sigma_{1'}, \sigma_{x'} = \sigma_{s'}$ であり、 $\alpha = 180^{\circ}$ の三軸伸張試験 では $\sigma_{x'} = \sigma_{z'} = \sigma_{1'}, \sigma_{y'} = \sigma_{s'}$ である。この場合、 $H/D \ge$ は ($\sigma_{s'}$ 方向の剛な端面間の距離)/($\sigma_{1'}$ 方向のフレキシブ ルな側面間の距離) と定義される。

図-8を見て分かるように, *H*/*D*=2.0の場合はすべり 面が上下端面と全く交差しない破壊モード(図-8では NOと表現してある)が表れ,この時の∮が最も小さい。

土と基礎, 35-12 (359)

H/*D*=2.0と1.0の時に はすべり面が上か下の端 面と交差する破壊モード (SINGLE と表現してあ る) が表れ、 øは NO の 場合より大きくなる。 H/D=0.25 の時はすべ り面が上下両方の端面と 交差している破壊モード (DOUBLEと表現してあ る) が表れ, この時のø が最も大きい。応力~ひ ずみ曲線を見ると、1.0 と2.0の場合は供試体を 写真撮影して求めたネッ キング部の断面積を用い て応力計算をしてから図 -8に示す
Øの値を求め てある。また, H/D が 大きいほど小さいひずみ

図ー7 σ_1' , σ_2' , σ_3' の方向が堆積面と平行か直交している時の ϕ , (a)試験法の説明, (b)実験結果

の時にピーク応力状態が表れ,供試体が一様に変形すると きと比較すると早すぎる破壊が生じているように見える。

表-1に示す各種の試験のうち 三軸伸張試験だけが σı' の作用面がメンブレンである。図-8に示すような破壊モ ードの相違によるこのような著しい変形・強度特性の変化 は、b=1.0である理由によるものなのか、σı'の作用面が メンブレンであるためなのか、その両方によるためなのか、 現在の段階ではよく分かっていない。

次に、π面上でσ3'=1.0 kgf/cm², e_{0.3}(σ3'=0.3 kgf/cm² のときに測定した e)=0.70 のときの 三軸圧縮, 平面ひず み圧縮、三軸伸張試験でのøを比較してみる(図-7(b))。 この図は σ_y 抽に対して左右対称であるので 左半分だけを 示す。強度異方性と三軸伸張試験における破壊モードの違 いによる∮の相違のため、複雑な形の破壊包絡線になって いる。しかし、α=0~60°、60°~120°、120°~180°のそ れぞれにおいて次の特徴が見られる。(1) b=0 (三軸圧縮) から b=0.2~0.3 (平面ひずみ 圧縮) になるにつれて ¢ は 必ず増加してゆく。(2) b=1.0 (三軸伸張) でのすべり面が 上下端面と交差せず、ネッキングが生ずる破壊モード (NO で表されている)はほかの試験法で生ずる破壊モードとは 著しく異なるので、この場合の∮を取り除いてみて考える と、b=0.2~0.3からb=1.0になるとゆは一定か、増加す る。(3) b=1.0 (三軸伸張) でのNOの破壊モードの φ で もb=0.0 (三軸圧縮) でのタよりも小さいことはない。

図ー9に示すように σ_1' , σ_2' , σ_3' の方向がいずれかが堆 積面に平行でない場合も含めた場合の ϕ はどのようなもの になるであろうか。図ー9(b)の3つの場合の $\sigma_3'=1.0$ kgf/cm², $e_{0.3}=0.70$ のときの ϕ をbと角度(ω , ξ)の関数

図-8 三軸伸張試験(TE)における φの供試体破壊モー ド依存性^{6)~7)}

として、三次元的に示したのが図-9(c)である。この場 合、実線はb=1.0(三軸伸張)ですべり面が上、下端面の 1つと交差する破壊モード (SINGLE)の時の ϕ を用いて 描いた。また、番号(-7)は図-7(b)中の番号に対応し ている。bの影響は ($\xi=90^\circ$, $\omega = 60^\circ$) (または $\delta = 30^\circ$)

59

の時最も小さく、($\xi = 0^\circ$, ω =90°)の時に最も大きい。 このように見ると、 ϕ は常に (b, 角度 ξ , ω , 破壊モード)の関数として総合的に考えな ければならないことが分かる。

7. あとがき

同一の供試体でもせん断方 法によって著しく異なった ϕ が得られる。 ϕ を境界値問題 に適用しようとするときに, (e, σ s')のほかに(b, 強度 異方性, 破壊モード)の影響 を考慮しなければならない。 とりわけ破壊モードの影響の 取扱いはよく分かっていない。

謝辞

参考文献に挙げた方々のほか,試験装置の設計・製作に携った本研究所佐藤剛司氏,山田真一氏(現在基礎地盤コンサルタンツ),大河内保彦氏(現在東急建設),(1)~(7)式を導くのに協力していただいた黄景川氏に感謝する。

参考文献

- Tatsuoka, F., Molenkamp, F., Torii, T. and Hino, T.: Behavior of lubrication layers of platens in element tests, Soils and Foundations, Vol. 24, No. 1, pp. 113~ 128, 1984.
- Fukushima, S. and Tatsuoka, F.: Strength and deformation characteristics of saturated sand at extremely low pressures, Soils and Foundations, Vol. 24, No. 3, pp. 30~48, 1984.
- Tatsuoka, F, Goto., S. and Sakamoto, M.: Effects of some factors on strength and deformation characteristics of sand at low pressures, Soils and Foundations, Vol. 26, No.1, pp.105~114, 1986.
- 4) 龍岡文夫:土のせん断変形・強度およびその試験法,土質工 学会,わかりやすい土質力学原論講習会テキスト(2月), pp.1~44,1987.
- 5) 龍岡文夫:講座「海洋・海岸工学と土質」3.海底・海岸土層 の工学的性質, 3.2 海砂, 土と基礎, Vol.35, No.2, pp. 81~87, 1987.
- 6) Lam, W-K, and Tatsuoka, F.: Triaxial compression and extension strength of sand affected by strength anisotropy and sample slenderness, ASTM, STP 977, Advanced Triaxial Testing of Soil and Rock (to appear), 1987.
- 7) Lam, W-K. and Tatsuoka, F.: Effects of initial anisotropic fabric and σ_2 on strength and deformation characteristics of sand, Soils and Foundations.
- 8) Tatsuoka, F., Sakamoto, M., Kawamura, T. and Fukushima, S.: Strength and deformation characteristics of sand in plane strain compression at extremely low pressures, Soils and Foundations, Vol. 26, No.1, pp.

図-9 (a), (b) ω , ε の定義, (c) $e_{0:3}=0.7$ のときの(b, ω , ε)の関数としての ϕ (TE, TS, TSSの ϕ は(7)式を用いて補正した $\sigma_{3}'=1.0$ kgf/cm²に対する値)

65~84, 1986.

- Tatsuoka, F., Sonoda, S., Hara, K., Fukushima, S. and Pradhan, T.B.S.: Failure and deformation of sand in torsional shear, Soils and Foundations, Vol. 26, No. 4, pp. 79~97, 1986.
- 10) 堀井宣幸: プラダンT.B.S.・龍岡文夫: 中空ねじりによる砂 の自動単純せん断試験,第22回土質工学研究発表会講演概要 集, pp.363~366, 1987.
- 11) プラダン, T.B.S.・堀井宣幸・龍岡文夫:ねじり単純せん断 における砂の変形特性,同上, pp.355~358, 1987.
- Tatsuoka, F.: Discussion of Bolton, Geotechnique, Vol. 37, No.2, pp.219~225, 1987.
- 13) 中村伸也:砂の平面ひずみ圧縮試験における供試体内のひず み分布,東京大学修士論文,1987.
- Hettler, A. and Vardoulakis, I.: Behaviour of dry sand tested in a large triaxial apparatus, Geotechnique, Vol. 34, No.2, pp.183~198, 1984.
- Bolton, M.D.: The strength and dilatancy of sand, Geotechnique, Vol.36, No.1, pp.65~78, 1986.
- Oda, M.: The mechanism of fabric changes during compressional deformation of sand, Soils and Foundations, Vol.12, No.2, pp.1~18, 1972.
- Oda, M.: Anisotropic strength of cohesionless sands, Jour. GE Div., Proc. ASCE, Vol. 107, No. GT9, Sept., pp. 1219~1231, 1981.
- Arthur, J.R.F. and Menzies, B.K.: Inherent anisotropy in a sand, Geotechnique, Vol. 22, No.1, pp. 115~129, 1972.
- Tatsuoka, F.: On the angle of interface friction for cohesionless soils, Soils and Foundations, Vol. 25, No. 4, pp.135~141, 1985. (原稿受理 1987.5.9)