大規模埋立に伴う三成分コーン(CPTU)の利用

The Use of Piezocone (CPTU) in Land Reclamation Works

1. まえがき

近年,関西国際空港を始めとして大規模な埋立造成が各 地の沿岸部および沖合水域において盛んに行われている。

埋立予定地に粘土層が堆積している場合,支持力検討の 際に必要となる粘土の非排水強度や,埋立荷重による圧密 の進行状況(圧密度)を把握することは,施工計画・施工 管理のために必要不可欠な項目である。

しかし、埋立規模が拡大するにつれて調査地点数が増え、 検討すべきすべての地点について従来法の不攪乱試料によ る室内力学試験を実施するには、膨大な調査費用・時間が 必要となる。このような状況に対処するために、従来の調 査手法の一部を機動性に富み精度の良い原位置試験に替え て、土質調査を行うことが考えられる。

本文に示す三成分コーンは、電気的センサー(先端抵抗, 間隙水圧,周面摩擦)を内蔵した電気式コーン貫入試験機 で、一般に CPTU 試験装置と呼ばれている。この種のコ ーン試験機は従来のメカニカルコーンの機動性に加えて、 精度の高い計測と貫入による地盤の間隙水圧変化を測定す ることが可能であり、特に粘性土の力学特性を迅速にかつ 精度良く知る事ができる原位置試験法として注目されてい る¹。

このようなコーン試験装置の登場によって,近年欧米で は飽和粘性土や砂質土地盤において,コーン貫入試験 (CPTU 試験)が積極的に実施されており,豊富な現場デ ータが得られている。これらのデータを基に,CPTU 試験 より地盤の力学定数・設計定数を求める種々の経験式が提 案されている^{20,80,40}。 我が国においても CPTU 試験の有 効性が認識され徐々に利用されつつあるが,欧米に比較す るとその利用頻度は依然として低いのが現状である。

そこで本報告では大阪湾岸の沖積粘土層を対象に行った CPTU 試験の結果から,

- ① 粘土の非排水強度と先端抵抗との関係
- ② 圧密進行中の粘土層の圧密度を推定する方法¹¹⁾
- ③ サンドドレーン施工地盤の調査において重要な,調査孔と砂杭との距離を弾性波探査から推定した例

*神戸大学助手 工学部土木工学科 **川崎地質梯 大阪支店 技術部技術課課長代理 ***川崎地質梯 大阪支店 技術部長

July, 1989

を紹介し、CPTU 試験の積極的な利用を提案したい。

2. 使用機器概要

2.1 コーン貫入部本体

今回使用したコーン貫入部本体は,先端抵抗,間隙水圧, 周面摩擦を計測する検出部(図一1)と,検出された信号 を処理する電気回路部より構成される。また本体の後方に はボーリングロッドとの接続部がある。

先端コーンの寸法は、コーン先端角度 60° , 直径 44 mm, 断面積 15.2 cm^2 で、フリクションスリーブの表面積は 200 cm^2 である。コーン断面積は、特に軟らかい粘土を対象と した場合に計測精度が 上がるように 標準的な 10 cm^2 より 約50%大きくした。

検出部には,先端抵抗,周面摩擦抵抗計測用の2種類の ロードセルと間隙水圧測定用の圧力変換器が内蔵されてい

る。各検出部の仕様を以下に示す。

- (1) 貫入抵抗検出部 荷重容量 3 tf 最大貫入抵抗 197 kgf/cm²
- (2) 周面摩擦抵抗検出部
- 荷重容量
 1.2 tf
 最大周面摩擦抵抗 6 kgf/cm²

(3) 間隙水圧検出部

最大圧力 10 kgf/cm²

電気回路部には,印加電圧供給回路と出力信号増幅回路 が内蔵されている。印加電圧供給回路は,地上部より送ら れてくる電圧が低下し,それに伴い出力信号が変動しない ように貫入部本体内部に設置した。

図-1 コーン貫入部本体 (検出部)

No. 1932

間隙水圧の測定は、コーン直後の円筒形のポーラスメタ ルを介して行う。現場での間隙水圧部およびポーラスメタ ルの飽和には、グリセリン液を使用した。

また CPTU 試験機では、先端抵抗に及ぼす間隙水圧の 影響を次式により補正する必要がある5)。 式中の a 値はコ ーンの有効軸断面積から決まるが、本機においては室内で 検定試験を実施しa=0.7である事を確認している。

 $q_t = q_c + u_{\max}(1-a) \cdots (1)$

 q_t :全先端抵抗(補正値)(kgf/cm²)

qc: 見かけの先端抵抗値(計測値)(kgf/cm²) umax: 間隙水圧 (kgf/cm²)

a:コーンの有効軸断面積/全断面積比

2.2 計測システム

出力信号は、 電源コードを 介して 地上計測部へ 送られ る。地上部のシグナルコンディショナーで再度調整増幅さ れ, A/D 変換器 (12 bit) を経てパーソナルコンピュータ ーのフロッピィーディスクに収録される。海上調査など通 常の電源が確保しにくい場合は、ハンドヘルド型コンピュ ーターを利用した。

2.3 貫入方法

コーン本体の貫入は,10 ton コーン (ダッチコーン)用 貫入装置を利用し、1 cm 毎秒の速度で実施した。また、 油圧式スピンドルの通常のボーリングマシンと \$ 40.5 mm の通常のロッドでも貫入ができるようにした。貫入量は、 磁ひずみ型の変位検出器を利用し、1ストロークの貫入量 を積算して求めた。磁ひずみ型の変位検出器は、貫入装置 の形式にかかわらず、着脱が簡単であり、振動による影響 を受けにくい。

計測間隔は、一定時間間隔と、一定貫入量のいずれかの 方式で行い,実質的には1データ/0.5~1 cm 程度である。

3. 非排水強度と先端抵抗との関係

今回の CPTU 試験は、いずれも大阪湾岸域の埋立地お よび沖合いの沖積粘土を対象として実施した。粘土の圧密 状態は、未圧密から正規圧密状態にある。CPTU 試験から 非排水強度 Su を推定する方法として、 次式が提案されて いるの。

図-2 コーン支持力係数 Nkt と塑性指数 Ip の関係

La Rochelle (ラ・ロッシェ) 6^{8} はカナダ 粘土について 図-2の●印に示すような $N_{kt} \sim I_p$ の関係を得ている。

一方, Robertson(ロバートソン)らⁿ によれば, N_{kt} は 4~20 の範囲であるとされ、その平均値として Nkt=15 が 実用に適すると報告されている。

今回の CPTU から得られた N_{kt} 値を, 図一2の結果と 比較するが、今回の実験では Su を一軸圧縮試験から決定 したため、Chandler (チャンドラー)⁹⁾ が提案した次式を 利用して原位置ベーン強度に換算した Su を用いた。

 $V_r = 0.55 + 0.008 I_p \dots (3)$

 $V_r: 原位置ベーン強度 (S_u)_r と三軸試験強度$

 $(S_u)_{k0c} \mathcal{O} \not\vDash (= (S_u)_{fv}/(S_u)_{k0c})$

 $I_p: 塑性指数$

La Rochelle らによれば、 カナダの 鋭敏粘土 の N_{kt} 値 は、一定値になると言われているが、図のように我が国に 多い高塑性粘土($I_p=40\sim80\%$)では、より小さな値とな るようである。

圧密進行中の粘土層の圧密度推定法 4.

4.1 従来の方法

従来から、埋立工事に伴う圧密度の検討には、以下に示 すような手法を単独、もしくは複数で用いることが多い。 (1) 埋設型の間隙水圧計を圧密対象層内に多数設置し、

20

 $u_{\rm max}$ (kgf/cm²)

10 0

 f_s (kgf/cm²)

計測された過剰間隙水圧の消散から圧密度を判断する。

- (2) 地表面および層別沈下計を設置し、計測された沈下 量の時間変化から判断する。
- (3) 施工後にチェックボーリングを実施し、不攪乱試料 による室内試験の結果から判断する。

いずれの手法も埋立工事の施工管理には有効な手法であ るが,問題点も多い。例えば,(1)や(2)の場合,一般には数 年にわたる長期的な計測が必要で,埋設機器,特に間隙水 圧計の耐用年数に疑問がある場合は,設置個数を増やし計 測中の故障に対処しなければならず,設置費用が大きくな る。一方,(3)は実際の地盤内の土性の変化を把握できるた めに信頼性に富むが,調査・試験・解析に時間がかかり, 調査頻度を多くすることは費用の増大につながる。また, 大規模埋立工事のように調査範囲が大きくなると調査・試 験に要する時間や費用は膨大なものとなる。

上記のような問題点を補完し、埋立工事に伴う粘土層の 圧密度の検討をより迅速に精度良く実施する方法として、 原位置試験(例えば CPTU 試験)の利用が考えられる。 ここでは、現在圧密進行中の地盤で実施された CPTU 試 験から、粘土層の圧密度を判定する上で非常に有効と考え られる結果が得られたので、以下に報告する。

4.2 圧密度の推定方法

(1) CPTU 試験結果

図-3は、載荷盛土によって未圧密状態にある地盤で実施された、CPTU 試験の結果の一例を示したものである¹⁰⁰。図中の圧密降伏応力 (p_e)は、乱さない試料の標準圧密試験から得られたものである。また、図中の標高は平均海面高さを ± 0 m としたもので、調査時の地盤高さは標高+3.5mであった。粘土層の中央部で p_e の値が小さくなる弓形の分布を示しており、調査地盤が未圧密状態にあることが分かる。

一方 CPTU の結果に注目すると、全先端抵抗 q_t は粘土 層中央部で小さくなり、圧密降伏応力の分布と類似した弓 形の形状を示す。また貫入中の間隙水圧 u_{max} も q_t と同様 な傾向を示している。このような弓形の q_t と u_{max} の傾向 は、正規圧密状態の粘土層における CPTU の結果とは大 きく異なる。正規圧密の粘土層における CPTU の結果の 一例を図一4に示したが、 q_t および u_{max} ともに深度方向 にほぼ直線的な分布となる。したがって、未圧密地盤と正 規圧密地盤とでは、CPTU 試験結果に相違がみられる。

次に図-3の*印で示した3箇所の深度で,コーンを貫 入後約24時間放置し,間隙水圧の変化を測定した例を示 す。このような試験は一般にコーン水圧消散試験として知 られる。図-5は各深度で計測された間隙水圧の消散過程 を示したものである。間隙水圧は圧密沈下曲線と同様な時 間変化を示し,約24時間後にはほぼ消散し,平衡状態の水 圧値に達していることが分かる。一方,調査地点では埋設 型間隙水圧計によって,粘土層内の水圧分布が長期間観測

図一4 正規圧密状態の粘土層における CPTU 結果

図-5 各深度での間隙水圧の消散過程(コーン水圧消散試験)

されている。図-6は CPTU と間隙水圧計からの測定結 果を比較したもので、○印は間隙水圧計から得られた水圧 を示し、●印は CPTU からの水圧を示している。図のよ うに両者は同様な値を示すとともに、地盤内に静水圧(u₀) 以上の高い間隙水圧が残留していることが確認できる。

以上のように、CPTU 装置を押込み型の間隙水圧計として使用できることは明らかで、CPTU の消散試験を深度方向に数箇所で実施すれば、地盤内の過剰間隙水圧分布(圧

No. 1932

密度)を推定できることが分かる。しかし,粘土層内の複数の深度で約24時間の消散試験を実施することは,時間的に非常に不経済である。

そこで、コーン貫入中のデータ(*q*t および *u*max)を利用 して、未圧密粘土層内の過剰間隙水圧を推定する方法につ いて検討した。

(2) 貫入中の CPTU 結果を用いた圧密度の検討 正規圧密地盤と未圧密地盤で行った CPTU の結果を比

図—9 $S_u \ge q_t - \sigma_{v0}$ の関係

較するために、 $q_t - \sigma_{v0}$ 、 $\Delta u (= u_{max} - u_0)$ 、 $S_u 03 種類 の$ パラメーターを用いて検討すると、図一7~9が得られる。 なお、図中の結果は異なる調査地点から得られたもので、 S_u は乱さない試料の一軸圧縮試験から求めたものである。 図中の〇印は正規圧密地盤での結果、●印は未圧密地盤で の結果を示す。

図から正規圧密地盤での Δu は, $q_u - \sigma_{v_0}$ および S_u の増加に伴って、ほぼ直線的に増大することが分かる。

一方,未圧密地盤では、図一7,8に見られるように、 正規圧密地盤に比べて大きな Δu が発生していることが分 かる。しかし 図一9の $q_t - \sigma_{v0} \ge S_u$ の関係では、地盤の 圧密状態の違いにかかわらず、ほぼ同じ直線関係を示して いる。

以上のことから、コーン貫入中に発生する間隙水圧は、 対象とする地盤の圧密状態の違いによって異なる反応を示 すが、 図一9のように $q_i - \sigma_{v0}$ に代表される貫入抵抗は、 粘土の非排水強度 S_u のみに依存すると考えられる。

ここで正規圧密粘土と未圧密粘土の違いを考えてみる。 未圧密粘土では現在消散しつつある過剰間隙水圧の影響で、 全応力 σ_v が有効応力 p_o より大きく、一方正規圧密粘土で は両者は一致する。しかし、図一10に示すようにいずれも 現在の有効応力 p_o のもとで正規圧密ライン上に位置する ため、基本的に両粘土は p_o に対して同じ正規圧密状態に あると考えられる。

一般に 正規圧密状態の粘土の非排水強度 S_u とせん断に より発生する間隙水圧 Au_s との関係は、非排水三軸試験の 間隙水圧係数 Aのように、一義的な関係を示すと考えられ るため、 未圧密粘土においても Au_s はその時の 粘土の S_u によって決まると考えられる。

したがって、未圧密地盤でのコーン貫入中に発生する間隙水圧 umaxを、以下のように分けて考える。

ここで, uo:静水圧,

4us: せん断により発生する間隙水圧 (非排水強度と関係づけられる)

土と基礎, 37-7 (378)

∆uc: 過剰間隙水圧

$(\Delta u = \Delta u_s + \Delta u_c)$

具体的な duc の求め方は、以下のようである。

- (a) コーン先端における静水圧(uo)を求める。
- (b) 正規圧密粘土の *u* と *q_t*-*σ₀₀ の関係を求める。
 大阪湾岸域の沖積粘性土の場合,図-7 に示すよう
 に次式で近似できる。 正規圧密粘土では <i>duc*=0 であ
 るから,

- (c) (5)式に未圧密地盤での CPTU 試験から得られる *q_t* -*σ_{v0}* を代入し、*Δu_s* を求める。
- (d) (4)式より未圧密地盤の *Δuc* が次のように 計算 できる。

先の図-3のデータを用いて過剰間隙水圧 *Δu*eを推定した結果を示すと図-11のようである。推定値はコーン水圧 消散試験の値とほぼ一致している。

上述した手法を用いて、他の未圧密地盤での過剰間隙水

図-11 過剰間隙水圧 *Δuc* の推定結果(コーン水圧消散試験結果との比較)

図-12 過剰間隙水圧 *Aue*の推定結果(圧密試験から予測した過剰間隙水圧との比較)

圧を推定した例を示すと図—12のようである。図中の実測 Δu_e は、室内圧密試験結果から間接的に求めたものである。 すなわち、実測 Δu_e は、全鉛直応力 (p_0) と圧密降伏応力 (p_c) との 差 ($\Delta u_c = p_0 - p_c$) としている。 図から分かるよ うに、推定値は妥当な結果を示すと考えられる。

5. 弾性波探査による調査孔と砂杭の距離推定例

サンドドレーンを施工した埋立造成地盤では、砂杭間の 粘性土の圧密促進状況を把握することが、地盤改良効果を 評価する上で必要である。このような粘性土は、排水層す なわち砂杭までの距離の違いによって圧密状況が水平方向 に変化するため、改良効果の判定には、ボーリング調査や CPTU を実施した地点から砂杭までの距離を知ることが 重要となる。

ー般には、チェックボーリングによって砂杭位置を確認 するなどの方法がとられているが、その作業は試行錯誤に 近い状況になる。ここでは、砂杭までの距離の測定法とし て、通常のボーリング孔で弾性波探査(孔内マルチチャン ネル反射法)を実施した例を示す。

5.1 現場状況および試験方法

直径 0.5m の砂杭が 3.5m ピッチで打設された埋立造成 地内において試験を実施した。今回利用した孔内マルチチ ャンネル反射法は,一つの発震点に対して複数(6成分) の受震点で反射波を検出する方法で,受震,発震点間の距 離(オフセット距離)を一定にすることにより複数の反射 面を検出するとともにその間の弾性波速度を算出すること ができる。

今回は、図-13に示すようにオフセット距離を1.0mから3.5mにとって、0.5m間隔で設定した6個の受震セン サーで反射波を検出した。

5.2 試験結果

図ー14は、プロファイル記録に種々の補正処理を施し、 見かけ上オフセット距離が0mであるように反射波形を補 正したものである。図には、A~Fの6つの反射波形が認

図-13 孔内マルチチャンネル反射法のモデル

No. 1932

図-14 プロファイル記録(補正後:オフセット距離0m)

図-15 孔内マルチチャンネル反射法で推定した砂杭の深度方 向および平面的な位置関係

められた。この内Aは,最初の明りょうな波であることから,最も近接した砂杭からの反射波であると判断され,B からFは,その他の砂杭からの反射波と考えられる。

これらの反射波の走時時間と地盤の弾性波速度によって 各反射面までの距離を算出し,砂杭の深度方向および平面 的な位置関係を推定すると図一15となる。

試験位置から各砂杭までの距離は、A:1.5~1.9m, B:1.8~2.1m, C: $\pm 2.8m$, D: $\pm 2.9m$, E:3.3~ 3.7m, F: $\pm 3.9m$ となり、平面上の位置関係も推定でき る。なお、砂杭までの距離の推定精度は、地盤の弾性波速 度に左右されるため、弾性波速度の精度について今後検討 する必要がある。しかし、上記のような相対的な砂杭の位 置関係の深度変化を把握できることは有用であると考えら れる。

このように, 孔内マルチチャンネル反射法は, 試験位置 と砂杭の関係を立体的に測定することができるため, CPTU と併用実施すると,砂杭を打設した改良地盤におけ る改良効果の評価を、より詳細に実施できるものと考える。

また,本体に組み込んで貫入させることにより,深度ご とに反射面(砂杭)までの距離とその地層の弾性波速度を 求める事ができる。

6. あとがき

大阪湾岸部の沖積粘土を対象に実施した CPTU 結果から,全先端抵抗と非排水強度の関係,過剰間隙水圧の推定 方法,更に試験位置から砂杭までの距離の測定方法につい て述べた。

内容をまとめると以下のようである。

- CPTU より非排水強度を 推定するのに 必要なコーン支持力係数 (*N_{kt}*)は,我が国の粘土が欧米と違って高塑性(*I_p*>40)であるためか,欧米の提案値より小さくなる。
- 2. CPTU の静的貫入試験結果から未圧密地盤の 過剰 間隙水圧分布を,迅速にかつ精度良く求める方法を提 案した。
- 3. 孔内マルチチャンネル反射法を利用して, 試験位置 から砂杭までの距離を測定できることを示した。

参考文献

- J. De Ruiter: The Static Cone Penetration Test, Stateof-the-art-report, Proc. of ESOPT II, Vol.2, pp. 389~ 405, 1982.
- G.E. Horvitz, D.R. Stettler, J.J. Crowser: Comparison of Predicted and Observed Pile Capacity, Cone Penetration Testing and Experience, ASCE, pp. 431~433, 1981.
- M. Jamiolkowski, R. Lancellotta, L. Tordella, M. Battaglio: Undrained Strength from CPT, Proc. of ESOPT II, Vol. 2, pp. 599~606, 1982.
- K. Senneset, N. Janbu, G. Svanø: Strength and Deformation Parameters from Cone Penetration, Proc. of ESOPT II, Vol.2, pp.863~870, 1982.
- M.M. Baligh, A.S. Azzouz, A.Z.E. Wissa, R.T. Martin, M.J. Morrison: The Piezocone Penetrometer: Cone Penetration Testing and Experience, ASCE, pp. 247~ 263, 1981.
- 6) T. Lunne, H.P. Christoffersen, T.I. Tjelta: Engineering Use of Piezocone Data in North Sea Clays, Proc. of XI ICSMFE, San Francisco, pp. 907~912, 1985.
- P.K. Robertson, R.G. Campanella: Guidelines for Use, Interpretation and Application of the CPT and CPTU, Soil Mechanics, Series, No. 105, Dept. of Civil Eng., Univ. of British Columbia, 1986.
- P. La Rochelle, M. Zebdi, S. Leroueil, F. Tavenas, D. Virely: Piezocone Test in Sensitive Clays of Eastern Canada, Proc. of ISOPT-I, Vol.2, pp.831~841, 1988.
- Richard J. Chandler: The In-Situ Measurement of the Undrained Shear Strength of Clays Using the Fieled Vane, Vane Shear Strength Testing in Soils, ASTM STP 1014, pp. 14~45, 1987.
- 田中泰雄・谷本喜一・田村建一郎:未圧密地盤における三成 分コーン貫入試験,第23回土質工学研究発表会発表講演集, 2分冊の1, pp.155~156,1988.
- 11) Tanaka, Y. and Sakagami, T.: Piezocone Testing in Under-Consolidated Clay, Can. Geotech. J., 1989 (to be published).

(原稿受理 1989.4.7)

土と基礎, 37-7 (378)

46