二資料--461 -----

拘束浸透流の解析における境界要素法とフラッグメント法の適用

Application of Boundary Element Method and Method of Fragments to Analysis of Confined Flow System of Finite Depth

鈴木音彦(すずき おとひこ)
 (執新技術研究所 代表取締役)

加藤 誠 (かとう まこと) 東京農工大学助手 農学部

大 越 進 一 (おおごし しんいち) 太陽コンサルタント㈱

1. まえがき

浸透流の解析に有限要素法のような数値計算法が 多用されている。しかし,数値計算結果を実測結果 あるいは実験結果と比較して解析法の評価を行った 報告はあまり多くない。ここでは,これまで研究成 果の発表が少ない「透水性基盤に築造された下面に 2列の部分貫入遮水壁を有する不透水性ダムの下を 回る飽和拘束浸透流」を取り上げ,砂模型実験の結 果と,C.A. Brebbia (ブレビア)の境界要素法およ び図式解析法の一つである N.N. Pavlovsky (パブ ロフスキー)のフラッグメント法による解析結果を 比較検討したのでこれを報告する。

実験方法とその結果

2.1 実験装置

実験装置の概要を図ー1に示す。実験装置は長さ 150 cm,高さ50 cm,幅20 cmの鋼製箱形水槽であ り,長辺方向の一面は鋼板の代わりに10 mm厚の 透明アクリル板を張り,色素を用いて可視化し,砂 地盤内の流線を観察測定できるようにした。この水 槽の長辺の両端からそれぞれ 25 cm 内側の位置に, 一方は高さ 40 cm, 他方は高さ 30 cm, 幅は両者と もに 20 cm のアクリル製の給・排水用の流量調節堰 を設け,それら 2 枚の流量調節堰の間の長さ100 cm, 幅 20 cm の空間に層厚 30 cm の模型砂地盤を作製し た。

模型地盤用の砂は豊浦標準砂 を ふ る い 径 0.420 mm と 0.105 mm でふるい分けしたものを用いたが, その土粒子の比重は $G_s=2.641$, 定水位透水試験に よる透水係数は $k=1.785\times10^{-2}$ cm/s(15℃) であっ た。なお粒度調整した砂は水中に長期間放置し, 随時攪拌して空気を除去しながら保存した。

下面に2列の部分貫入遮水壁を有する不透水性ダ ムの模型は,まず部分貫入遮水壁を水槽の所定位置 に固定した。次に透水性基盤を作成するために約3 時間煮沸して溶存空気を除去した水を水槽に満たし, 砂を1回に約5cmの厚さに投入して表面を"こて" を用いて締め固めながら所定の層厚の砂地盤を形成 した。ダムの部分は,2列の部分貫入遮水壁の間の

図ー1 実験装置と各諸元

57

資料—461

部分貫入遮水壁の 貫入深さ (cm)		浸 透 流 量 q (cm³/s)								
		中時	フラッグ	境界要素法						
上流側 d_1	下流側 d_2	美 颖	メント法	流入面上	遮水壁下	流出面上				
5	20	1.179	1.205	1.186	0.881	1.188				
10	20	1.146	1.115	1.111	0.823	1.118				
15	20	1.070	1.022	1.023	0.702	1.029				
20	20	0.949	0.904	0.920	0.594	0.912				
5	15	1.422	1.455	1.403	1.031	1.408				
10	15	1.317	1.319	1.294	0.952	1.302				
15	15	1.186	1.182	1.168	0.794	1.175				
20	15	1.121	1.021	1.021	0.659	1.017				
5	10	1.653	1.689	1.651	1.196	1.655				
10	10	1.486	1.503	1.488	1.081	1.499				
15	10	1.321	1.403	1.311	0.874	1.319				
20	10	1.161	1.130	1.123	0.716	1.114				
5	5	1.851	1.928	1.863	1.331	1.880				
10	5	1.649	1.689	1.646	1.181	1.667				
15	5	1.394	1.455	1.420	0.938	1.437				
20	5	1.213	1.204	1.194	0.904	1.190				

表-1 浸透流量の実験値と計算値

注)境界要素法における「遮水壁」は上流側の遮水壁を示す。

地盤上に硬練り粘土を敷き詰め,盛り上げて形成した。

また,水槽背面に5cm方眼に直径5mmの円孔 を95個あけ,その円孔に砂の流出を防止するための メッシュ間隔74µmのフィルターを水槽の内側に取 り付けた。一方,他端には塩化ビニール管を連結し, この塩化ビニール管を鉛直に設置したガラス管製の 水マノメーターに接続して,模型地盤内の動水ポテ ンシャル測定装置とした。

2.2 実験方法

実験は,ダムの下面に設けた2列の部分貫入遮水 壁の間隔を20cm およびダムの上下流水 位 差 を 10 cm に固定し,2列の部分貫入遮水壁の貫入深さを 変数として表-1に示すような16とおりの組合わせ について行った。

測定項目は、模型砂地盤内の95箇所の間隙水圧と

図-3 実験と境界要素法から得られた等動水ポテン シャル線図の例(*h*=10 cm)

模型砂地盤からの排水量と水温および流線形状であ り,各実験において排水量および間隙水圧の変動状 態によって浸透流が定常状態になったことを確認し た後,測定を行った。

2.3 実験結果

実験結果としての浸透流量の測定値を表一1,流 線網の例を図-2,間隙水圧の測定値から求め た等動水ポテンシャル線図の例を図-3の破線 で示す。

3. 境界要素法と解析結果

3.1 有限要素法と境界要素法

地下水の飽和浸透流に関する一般的な解析方 法は自由水面以下の地下水領域について,ポテ ンシャル関数あるいはそれと共役な流線関数に 関するラプラスの微分方程式で表される支配方程式 を数学的手法か実験的手法で解くことにより,浸透 領域内の動水ポテンシャル分布あるいは流線分布を 求め,その結果から必要とする領域の動水勾配ある いは浸透流量を求めるものである。動水ポテンシャ ル分布を求める数学的手法としては,古くから等角 写像による厳密解法やリラクゼーション法などの数 値解法が用いられてきた。近年はコンピューターを 駆使する数値解法として有限要素法が多用されてい る。有限要素法は構造解析や異方性の問題,非線形 問題に極めて有効な解析法¹⁾である。

この有限要素法は「場」を支配する偏微分方程式 を解くために,解析領域内部を細かい要素に分割し た離散化要素について汎関数を停留化し,定式化す る方法であるが,要素分割の仕方によって精度がか なり大きく変動することがあるので適用に当たって は細心の注意が必要であるといわれている。一方, 最近,新しい数値解析法として Brebbia によって境 界要素法が用いられ始めたが,この方法は「場」の 特性を示すラプラスの方程式を,グリーンの公式を 用いて境界上に集約した形で積分方程式に変換し, 適切な境界条件のもとで解く方法である。すなわち

「場」の特性を「場」を取り囲む境界上の積分方程 式に帰着させ、境界のみを要素分割し、離散化させ て定式化するものである。したがって複雑な形状の 境界値問題も単純な要素を用いた境界で表すことが 可能であり、高い精度の解析結果が期待できると考 えられる^{2),3),4)}。また境界のみを要素分割するので 要素数が有限要素法に比較して非常に少なく、パー ソナルコンピューターの容量でも十分に対応可能な 問題が多いという利点がある⁵⁾。しかし、この方法 も研究が進むにつれ、隅角部境界での要素分割方法 が解析精度に大きな影響を与えることが明らかにな り、計算法等に改良が進められている。

3.2 境界要素法の概要

定常二次元浸透流問題の支配方程式は,動水ポテ ンシャルを ¢ としたラプラスの微分方程式(1)で表さ れ,動水ポテンシャル ¢ は式(2)で表される。

$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}$	=0	(1)
$\phi = k(p/\rho g \pm y)$		(2)

ここで k は透水係数, p は水圧, ρ は水の質量, g は重 力加速度, x は横座標, y は縦座標。

図一4 境界要素法説明図

また、境界条件は次式のように与えられる。

境界 Γ_1 の上で $\phi = \phi_1$ 境界 Γ_2 の上で $\partial \phi / \partial n = 0$ または定数 $\left. \right\}$ (3)

境界要素法は式(3)の境界条件を満足するように式 (1)を解く手法で,その概略は次のようである。

式(1)をグリーンの公式を用いて境界上の未知数の みを含む積分方程式に変換する。これはいわゆる Dirichlet(ディリクレ)の問題であり、図ー4に示 すように xy 平面上に閉曲線Cで囲まれた領域Sを 考え、C線上で関数 u の値が与えられているとし、 S内の点P(x, y)における u の値を定める問題であ る。

いま無限に広がる媒体の中の一点 P に負荷が作用 したとき、別の点Qでの動水ポテンシャルv(P, Q)が次式を満足するような二点関数をとると、

 $\nabla^2 v(P,Q) + \delta(P,Q) = 0 \dots (4)$ となる。ここで $\delta(P,Q)$ は Dirac(ディラック) のデ
ルタ関数で、 $\delta(P,Q) = \delta(|\overline{PQ}|)$ である。

式(4)とグリーンの公式

$$\int_{S} (u\nabla^{2}v - v\nabla^{2}u) dS - \int_{c} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) dc = 0 \quad \dots (5)$$

から,

$$u(P) = -\int_{c} \left[u(Q) \frac{\partial v(P, Q)}{\partial n} - v(P, Q) \frac{\partial u(Q)}{\partial n} \right] dc$$
.....(6)

を得る。これはグリーン関数を利用したディリクレ の問題の解であり,式(4)の二次元ラプラス微分方程 式の基本解は次式で与えられる。

59

資料-461

										$^{\sim}$											
-	98	3	7	6	5	4	3	2	1 70			//	66 53	3 52	51	50	49	48	47	46	45
10 4		-	-	-	-	-	-	6	30 • 7:	69	68	67	65 54	1					-		44
11	C	5	0	0	٥	0	0	0 7	'9 •• 7	20	0	o 6	4 •• 5	50	0	0	0	0	0	0	43
12	¢	c	ο	0	0	٥	0	07	81	73 o	·O	0 6	3••5	5 0	0	0	0	0	0	0	42
13		o	o	0	0	o	o	0	77 - 7 76 75	⁷⁴ o	·0	o 6	2 - 5	70	0	o	0	٥	0	0	41
14	(S	0	0	٥	o	٥	0	0	٥	0	o 6	1 📥 5: 60 59	80	0	0	0	٥	0	0	40
15		o	0	٥	0	o	o	.0	0	o	0	٥	0	0	0	0	٥	0	0	0	39
16			10		01									00				0.4	0.5	200	 38
1	17 1	8	19	20	21	22	23	Z4	25	26	27	28	29	30	J	3Z	বর্ত	54	35	30	31

図-5 境界要素法解析の条件 •1~•9まで φ=10, •45~•53まで φ=0, •10~•44まで ∂φ/∂n=0, •54~•80まで ∂φ/∂n=0

10.0	10.0	10.0	10.0	10.0 3.53		3.09.0.0	0.0	0.0	0.0	0.0
9.99				9.92 3.52	3.35	3.09 0.02				0.19
9.54	9.48 0	9.28	8.96	8.73 3.85	3.75	2.511.91	1.0	0.61	0.43	0.38
9.20	9.09 0	8.72	7.98	6.505.52	4.62	2.62	1.63	1.04	0.74	0.65
9.08	_					•	•			0.75
9.08	8.94	8,50	7.58	5.94	4.14	2.79	1.81	1.18	0.85	0.74

図-6 境界要素法解析の一例(図中の数値は動水ポテンシャル値)

 $v(P, Q) = \frac{1}{2\pi} \log \frac{1}{r(P,Q)} \dots (7)$ ここで, r(P,Q) は内点Pと境界上の点Qの距離 したがって, 内点Pのポテンシャル u(P) について $u(P) = -\frac{1}{2\pi} \int \left[u(Q) \frac{\partial}{\partial r} \left(\log \frac{1}{r(Q)} \right) \right]$

$$-\log \frac{1}{r(P,Q)} \cdot \frac{\partial u(Q)}{\partial n} ds \dots (8)$$

となるような境界積分方程式を誘導することができ る。これを離散化して数値計算によって解けば境界 要素法による解が得られることになる。

3.3 境界要素法による解析条件

境界要素法による解析条件は実験と同一とし、境 界要素は図-5の黒丸で示したような線形要素に分 割した。また図中の白丸は線形要素の各節点の動水 ポテンシャルが求められた後に定めた内部の点の位 置であり、これら点の上の動水ポテンシャルを算出 した。ここで図-5の境界上の節点番号の1~9に は上流側砂地盤表面、すなわち侵入面境界としての 境界値動水ポテンシャルを与え、節点番号の45~53 には下流側砂地盤表面、すなわち流出面境界として の境界値を与えた。その他の境界要素については、 垂直方向の動水勾配 ∂¢/∂n=0を与えた。また部分 貫入遮水壁の貫入最下端部は遮水壁が 10 mm 幅で 2個の隅角部(特異点)をもっているので, 各隅角部を節点とする線形要素として取り 扱った。

浸透流量の計算は,上流側や下流側の部 分貫入遮水壁の貫入下端から水槽底までの 鉛直断面を通る流量,および浸入面の浸入 量や流出面での流出量を求め,これらに水 槽幅を乗じて全浸透流量とする方法を採っ た。

3.4 境界要素法による解析結果

境界要素法によって算出した動水ポテン シャルの値の一部を例として図ー6に示す。 なお,この場合の実際の計算は要素数と内 点数が図示の数の4倍を対象として行った。 また,境界要素法によって算出した動水ポ テンシャルから作図した等動水ポテンシャ ル線を図-3の実線で示す。

ャル値) 次に浸透流量 q は,ポテンシャル関数と 流線関数が共役関係にあることから,等動 水ポテンシャル線図をもとに流線網を作図して計算 することができるが,ここでは浸透断面の要素にお ける動水ポテンシャルの勾配,すなわち動水勾配 $\partial \phi / \partial n$ を求め,その値に砂地盤の透水係数 k を乗じ て浸透流速 $v = k(\partial \phi / \partial n)$ を求め,この流速に流路 断面積 Aを乗じた $q = A \cdot v$ として算出した。これら の計算結果を表—1に示す。

4. フラッグメント法と解析結果

4.1 フラッグメント法の概要

フラッグメント法は有限深さの透水層に関する拘 東流の流量計算に有効な方法である。この方法は図 ー7に示す部分貫入遮水壁の貫入下端から下部不透 水層表面までの浸透領域において等動水ポテンシャ ル線が直線と仮定し,図-7の①, @, @の部分を フラッグメントと称し,いずれのフラッグメントに

図一7 フラッグメント法による流量計算の説明図

土と基礎, 38—6(389)

図-8 フラッグメント法における
 Øを求めるための
 図表 (M.E. Harr による)

おいても流量は等しいとする。いま,流量をq,透 水係数をk,各フラッグメントの水頭損失を h_m ,形 状係数を Φ_m とすると,流量qは次式で表される。

すなわち,

となるので,形状係数や水頭差を構造物の設計条件 から求めれば,浸透流量を計算することができる。 なお,形状係数 Ø はフラッグメントの形と大きさの みによって決まる無次元量でフラッグメントの種類 によって分類設定されているが^{6),7)},ここでは,こ の解析に用いたもののみについて述べる。

4.2 フラッグメント法による解析条件

まず解析領域を図一7に示すような3個のフラッ グメントに分ける。この3個のフラッグメントの① 2.0 ・:境界要素法 ×:フラッグメント法 (5,fu) 三 盛 1.5 0.5 0.5 0.5 1.0 計算値(cm³/s) 図-9 浸透流量の実験値と計算値の比較

の部分には図-8の(**a**), ①の部分には(**c**), …の 部分には(**b**)を対応させて,それぞれの形状係数 $\varphi_1, \varphi_2, \varphi_3$ を求める。これらを用いて浸透流量qは 下記のように計算される。

 $q = k \cdot h/\Phi$ (13)

ここで、①、(0, 0)の $\phi = K/K'$ は第一種完全楕円積分から求められる値であり、K、K'は完全楕円積分表⁸⁾から母数mを介して求めることができる。

4.3 フラッグメント法による解析結果 この方法による計算浸透流量を**表一1**に示す。

なお浸透流量計算例として $d_1=10$ cm, $d_2=20$ cm, k=1.785×10⁻² cm/s の場合を示す。 図—1, 8 を参照して, s'=10, s''=20, T=30, L=20, h=10 であるから,

$$\begin{split} \varphi_{1} &: m = \sin \frac{\pi s'}{2 T} = \sin \frac{10 \pi}{2 \times 30} = 0.50, \quad m^{2} = 0.250, \\ \varphi_{1} &= \frac{K}{K'} = 0.782, \\ \varphi_{3} &: m = \sin \frac{\pi s''}{2 T} = \sin \frac{20 \pi}{2 \times 30} = 0.866, \quad m^{2} = 0.750, \\ \varphi_{3} &= \frac{K}{K'} = 1.279, \\ \varphi_{2} &= s' + s'' > L, \quad a' = T - s' = 20, \quad a'' = T - s'' = 10, \\ b' &= \frac{L + (s' - s'')}{2} = 5, \quad b'' = \frac{L - (s' - s'')}{2} = 15, \\ \therefore \quad \varphi_{2} &= \ln \left[\left(1 + \frac{b'}{a'} \right) \left(1 + \frac{b''}{a''} \right) \right] = 1.139 \\ \Sigma \varphi &= \varphi_{1} + \varphi_{2} + \varphi_{3} = 0.782 + 1.139 + 1.279 = 3.200 \\ q &= \frac{kh}{\varphi} = \frac{1.785 \times 10^{-2} \times 10}{3.200} \\ &= 5.578 \times 10^{-2} \, \mathrm{cm}^{3} / \mathrm{s/cm} \end{split}$$

June, 1990

61

資料—461

幅 20 cm の浸透流路に対する 総流量は 20×5.578×10⁻² =1.115 cm³/s となる。

5. 考察

5.1 動水ポテンシャル分布について

境界要素法と模型実験から得られた等動水ポテン シャル線を図-3に実線と破線で示したが、両者の 類似性は極めて高く、ほとんど同値を示している。 この結果から、境界要素法に対して先に設定した解 析条件は実用的に十分であると考えられる。

5.2 浸透流量について

(1) 境界要素法と実験との比較

境界要素法と模型実験から得られた動水ポテンシ ャル分布が類似しているため,浸透流量に関しても 図-9の黒丸で示すようにほぼ同値となり,その相 関係数は 0.996 であった。

ここでは,浸入面,流出面および上流側の部分貫 入遮水壁の貫入下端から水槽底面までの鉛直断面上 の3箇所について浸透流量の計算を行ったが、浸入 面および流出面上での計算値と実験値は高い近似性 を示し、上流側部分貫入遮水壁の貫入下端から水槽 底面までの鉛直断面上の計算浸透流量は、浸入面お よび流出面における計算浸透流量の64.0~75.4%で あった。一般に, 図-2の流線形状のような楕円浸 透流においては,浸透流線の方向が全面にわたって 直線状の等動水ポテンシャル面を形成する浸入面と 流出面に直交するので、浸入面と流出面の動水勾配 の計算が比較的容易であるため計算精度が高く、し たがって浸透流量の計算精度が高くなる。一方、部 分貫入遮水壁の貫入下端から下部不透水層面までの 浸透領域では、等動水ポテンシャル線が、例えば図 -3における $\phi=8$ 線のように 複雑な 曲線となるた め、それぞれ隣接する等動水ポテンシャル線のすべ てに直交する線上について行う動水勾配の計算が難 しいので精度が低下しやすく、その結果として浸透 流量の計算精度が低下する傾向がある。このように 部分貫入遮水壁の貫入下端から下部不透水層面まで の浸透領域において浸透流量を計算する場合の断面 の設定方法については、著者の一人が過去に検討し、 精度を高める方法についての提案を行っている^{9,10)}。 ここではフラッグメント法による値と比較するため,

敢えて鉛直断面について計算した。

(2) フラッグメント法と実験との比較

フラッグメント法による浸透流量の計算結果は, 図-9の×印に示すように実験結果と非常に高い近 似性を有し,その相関係数は0.993であった。この 結果からフラッグメント法が実用上の浸透流量計算 法として有効な方法であることが分かる。しかし, この方法は浸透流量算定のみに用いられるもので, パイピングやボイリング現象に対する安定解析に必 要な浸透領域内の任意点における動水勾配を求める ことは不可能である。

6. む す び

以上の検討から次のように結論される。

- (1) 拘束流型浸透問題の解析法として、境界要素 法は有効な方法であり、比較的小容量のコンピ ューターの使用で解析が可能であると考えられ る。
- (2) 拘束流型浸透問題において浸透流量のみを算 定する場合には,簡易なフラッグメント法が有 効な方法であると考えられる。

参考文献

- 1) 例えば, Zienkiewiez O.C. & Cheund Y.K.: The finite element method in structural and continuum mechanics, McGraw Hill, 1967.
- 2) 登坂宜好:境界要素法の数理,数理科学 12, pp.1 ~16, 1982.
- ブレビア:境界要素法入門, 培風館, pp.1~94, 1980.
- 4) 神谷紀生:有限要素法と境界要素法,サイエンス社, pp. 85~108.
- 5) 例えば、戸川隼人・下関正義:パソコンによる境界 要素法入門、サイエンス社、1983.
- Harr M.E.: Groundwater and seepage, McGraw Hill, pp. 151~159, 1962.
- Griffiths D.V.: Rationalized charts for the method of fragments applied to confined seepage, Géotechnique, Vol. 34, No. 2, pp. 229~238, 1984.
- 8) 例えば,林 桂一:高等函数表,岩波書店.
- 9) 鈴木音彦:透水性地盤における鋼矢板の下を廻る浸 透流に関する模型実験(1), 土と基礎, Vol. 13, No. 4, pp. 9~17, 1965.
- 10) 鈴木音彦:部分貫入遮水壁を有する長方形堤体の浸 潤線の計算法について, 鹿島建設技術研究所年報, Vol. 23, pp. 41~48, 1974.