=報告-2046 =

しらす補強盛土の降雨時の挙動

Behavior of Steep Reinforced Embankments of Shirasu during Rainfall

調 修 二 (しらべ しゅうじ) 基礎地盤コンサルタンツ㈱福岡支社 主任

1. まえがき

ジオテキスタイル工法は地盤工学の分野において 近年注目され始めており,試験段階ではあるが施工 事例¹⁾もかなり多くなっている。また,設計法^{2),3)} も数多く開発されつつあるが統一された段階には至 っていないのが現状であると考えられる。

ジオテキスタイル工法を盛土に対して用いる場合 には, 急勾配のり面を造成することが用途目的とし て多い。九州南部地方に広く分布するしらすは、自 然状態では相当なせん断強度を発揮し、しかも、容 易に締め固めできることから盛土材料として多用さ れている。ところが、しらすは土粒子の比重が極め て小さく、独特な粒子形状を有していることから、 水に対して著しく弱く、しらす盛土では梅雨期や台 風期に災害が発生することも多い。この原因は、雨 水の盛土への浸透によって盛土材の自重が増加する こと・サクションが低下することから見掛けの粘着 力が減少することおよび浸透力の作用等によって盛 土のり面付近のしらすが破壊することから盛土の安 定性が損なわれるためと考えられる。そこで、しら すに対してジオテキスタイル工法の適用に期待が注 がれているが、経験的にも未解明な部分が多く、将 来設計法を確立するためにも、しらす補強機構を把 握しておく必要がある。

本文では、ジオテキスタイルとしてポリマーグリ ッド (SR-55) を敷設した高さ2mの実物大のしら す盛土に対して実施した降雨浸透試験結果における ポリマーグリッド (以下グリッドと略す)に発生す るひずみ・のり面変位・盛土内の土圧分布・飽和度 分布から、しらす盛土におけるジオテキスタイル工 法の適用性について考察する。 新 英 司 (あらた えいじ) 建設省九州技術事務所 所長

2. 試料および実験方法

2.1 実験に使用した試料

実験に使用したしらすは, 鹿児島県川内市の土取 り場から採取した中硬質しらす⁴⁾であり, その基本 的物性を表—1に示す。このしらすは, 砂分とシル ト分を合わせた構成比が全体の90%内外であり, 平 均的な中硬質しらす⁵⁾よりも礫分が10%程度少なく, 貧配合な粒度特性にある。透水係数は, 室内透水試 験より $k=2.9\times10^{-3}$ cm/s が得られており, 粒度分 布を反映して平均的なしらすの試験結果⁶⁾より大き い。また, 図—1に締固め曲線を示すが, 最適含水 比よりも乾燥側では含水比の変化に対して乾燥密度 はほぼ一定で最大乾燥密度が明りょうに現れず, し

表一1 しらすの物理特性値

粉	礫		分	(%)	2~ 6
4112	砂		分	(%)	67~69
度	シ	ルト	分	(%)	21~25
特	粘	土	分	(%)	4~ 6
性	均	等	係	数	17~30
	曲	率	係	数	1.2~1.8
日	本 統	一 土	質分	類	sv
土	粒	子の	比	重	2.40
自	然	含	水	比	16.7~21.1

July, 1990

報告-2046

らす特有の締め固めやすい性質が良く現れている。

2.2 盛土形状と実験方法

実験は、図-2のように高さ2m、広さ10m×10 mのコンクリート製実験槽を用いて行った。実験槽 内に築造した盛土は,高さ2m,天端幅4m,長さ 10m,のり面勾配1:1.0と1:0.5の形状を有して おり, 盛土中央には敷幅2mでグリッドを2段敷設 している。盛土の築造は、締固め度85%を目標とし て人力により1層 30 cm の仕上げ厚さを 目途 に 80 kgf ランマーを用いて転圧した。 盛土のり面には降 雨による土砂流出防止とのり面保護を兼ねて土のう を積み上げており、盛土下端には盛土に自由な変形 を生じさせることを目的に古タイヤを利用したタイ ヤマットを敷設し、盛土との境界にはビニールシー トを敷いて土砂流出を防止している。

実験は、この盛土天端に 0.5 tf/m² ごとの一定荷 重を保持時間 30分で 5.0 tf/m² までの荷重を作用さ せる荷重載荷試験と5.0 tf/m²の荷重を保持した状 態で降雨強度 25 mm/hの人工降雨を24時間連続し て与える降雨浸透試験によっている。ただし、本文 では降雨浸透試験を中心に述べる。実験中には下記 に示す項目について計測している。

1) ひずみゲージによるグリッドのひずみ変化,2) 変位計によるのり面変位の変化,3) 土圧計による 盛土内の鉛直土圧の変化,4) 電気抵抗式水分計に よる降雨時の盛土内の飽和度の変化,5) 三角ノッ チによる地表面流出量の変化

グリッドとしらすとの引抜き特性 3.

グリッドによる盛土補強効果の大小は、グリッド としらすとの引抜き特性によって左右される。そこ で、グリッドとしらすとの引抜き特性が拘束荷重あ るいは飽和度の増大によってどのように変化するか を調べるために図一3に示す装置によって引抜き試 験を実施した。供試体は盛土実験と同一の乾燥密度 $0.995 \, \text{g/cm}^3$ となるように 締め固めて作成しており, 試験条件は供試体の飽和度を17%,40%,58%(含) 水比で 8.5%, 20%, 29%) に設定して、上載荷重 を盛土実験の応力状態に合わせて0.3~1.0kgf/cm² に設定した。試験結果の整理は、まずグリッドに加 えた引抜き力と供試体外側で測定されたひずみによ りグリッド自体の応力~ひずみ関係を求める。次に, 供試体内側で測定されたひずみと引抜き力の関係よ り、供試体内側に発生している応力を求め、供試体 内側での変位量との関係より図-4に示す整理方法 によって、グリッドとしらすとの間に働くせん断ば ね係数として、引抜き抵抗の大小を評価した。

図一5にせん断ばね係数と上載荷重との関係を示 す。これより、せん断ばね係数は上載荷重に比例し て増加する傾向を示す。また、上載荷重が0.5kgf/ cm² 以上では自然含水比付近の飽和度であるS_r=40 %のときにせん断ばね係数が最大値を示す。このこ

⑥ ロードセル

変速ギア

土と基礎, 38-7(390)

図-5 引抜きばね係数と上載荷重強度との関係

とから、しらすとグリッドとのかみ合い効果を示す 指標であるせん断ばね係数は上載荷重に大きく影響 を受け、しかも、自然含水比状態に近い飽和度のと きにかみ合い効果が最も発揮されることとなり、そ れより高い飽和度領域では土中水分の増加によるサ クションの低下により、また、それより低い飽和度 領域では、土中水分の減少により土の塑性的な性質 が顕著になって粒子間結合力が弱くなることからし らすとグリッドとのかみ合い効果が低下すると解釈 される。また、福田らⁿによる実験結果に対して2 倍程度のかみ合い効果が得られており、しらすは一 般的な砂よりかみ合い効果が大きいことが明らかと なった。

4. 降雨浸透試験結果

4.1 盛土内の飽和度の変化

雨水浸透による盛土内の飽和度の変化は,伊勢田 ら⁸⁾によって開発された電気抵抗式水分計によって 計測している。雨水の浸透による土中の水分変化を 迅速かつ的確に捉えるためには水分量の変化を何ら かの物理量に変換して測定する必要があり,我が国 では、テンシオメーター法⁹⁾,中性子水分法¹⁰⁾,電 気抵抗法¹¹⁾などが用いられている。この中で,今回 用いた電気抵抗法は,図一6のようにセンサー部が 一対の電極のみで安価に作成できること,測定場を 乱さないで測定できること,急速な水分変化に対し て時間遅れなく連続測定が可能なことなどの利点を 有していることから採用しており,較正試験結果は 図-7のように今回の試験範囲内の飽和度領域では

十分な精度を有していることが示される。

図-8は代表箇所における飽和度の経時変化であ る。雨水浸透の特徴は,盛土表面の飽和度が上昇し, 次第に内部へと進行していき盛土下部の中心付近で

65

報告-2046

最も雨水の浸透が遅いことおよび雨水浸透後の飽和 度は60~70%であり,湿潤前線はそれより上部の土 を完全飽和させながら進むのではなく一定の間隙空 気を残存した状態で進行していくことが挙げられ, これは久楽¹²⁾が実施した実験および伊勢田ら¹³⁾の実 験とも符合するものである。また,降雨停止後の浸 透水の挙動としては,盛土表面では降雨停止ととも に急速に飽和度が低下し,約8時間で降雨前の自然 状態まで回復するのに対して,盛土下部では飽和度 の回復がほとんど認められないことが特徴として挙 げられる。

4.2 グリッドのひずみ変化

図-9は、グリッドのストランド部に貼付したひ ずみゲージによって計測したグリッドの軸方向ひず み分布を降雨時間3,6,12,18,24時間に対して 図示している。降雨開始以前の5.0tf/m²載荷時の ひずみは引張りひずみが優勢であるが、発生ひずみ の最大値は 0.14% と小さく,引張り力に換算して 180 kgf/m となる。この値は、グリッドの設計強度 の8%に相当し、降雨24時間後では設計強度の19% に相当するひずみしか発生しておらず、当初の設計 強度に対してかなり安全側のものであったと考えら れる。次に, 降雨時の挙動としては, 雨水浸透によ る盛土の変位、特に沈下量の増大によって上段のグ リッドのひずみは増大傾向を示すのに対して、下段 のものは変位量が相対的に小さいことから降雨時間 18時間までほとんど変化を示しておらず、雨水浸透 による盛土の不安定傾向が盛土上部より進行するこ

図-10 土圧の経時変化

とを示唆している。また,降雨時間18時間以降に急激なひずみ増加が生じており,これは盛土全体が飽 和度60~70%でほぼ一様になったときと一致してお り,この時点より盛土の不安定化が盛土全体に及ん でいる結果であると考えられる。

4.3 盛土内の鉛直土圧の変化

図-10は、盛土築造後を初期値としたときの盛土 内の鉛直土圧の経時変化を図示したものである。雨 水浸透による盛土内の鉛直土圧の変化は、盛土中央 で著しく、のり面付近ではほとんど変化していない。 ただし、5分のり面側の下段のものは盛土中央のも のと同じく経時的な増加傾向を示す。これは、浸透 した雨水によって盛土内の飽和度が上昇して盛土自 重の増大を招き、圧縮変形を促進させることおよび、 5.0 tf/m²の載荷重によって生じていた盛土上段中 央部の集中応力が徐々に下方へ分散される結果であ ると言える。一方、1割のり面付近では、5分のり 面付近に比べて鉛直土圧が相対的に小さいことから 雨水浸透による変形係数の低下率が大きく、盛土自 重の増加による鉛直土圧の増大を相殺する結果であ ると考えられる。

4.4 のり面変位の変化

図-11は、降雨継続時間と水平変位の関係を示し ており、図-12は、降雨継続時間と沈下量の関係を 図示したものである。降雨前の5.0 tf/m²載荷時の 変位挙動のなかで特徴的な事項としては、沈下量に 比べて水平変位量は1/6~1/7を示してしらすのポア ソン比が小さいことが挙げられ、このことがグリッ ドに発生するひずみが極めて小さいことと大きく関 係している。降雨後の挙動も降雨前と同様であり、 雨水の浸透による水平変位の変化はわずか数mm内 外であるのに対して、沈下量は雨水の浸透に伴って

土と基礎, 38-7 (390)

図-12 時間と沈下量の関係

徐々に増加しており,降雨開始から18時間後の鉛直 変位の増加量は12~13 mmを示しており,この値 は降雨前の5.0 tf/m²載荷時の変位量の2倍に相当 する大きなものである。なお,降雨浸透による盛土 自重の増加に相当する増加荷重は盛土底面で0.8 tf /m²程度である。このことから,雨水浸透による盛 土の変位挙動は,雨水浸透による盛土自重の増加よ りも飽和度の上昇による変形係数の低下およびサク ションの低下によるせん断抵抗力の減少に支配的で あると考えられる。

5. 雨水浸透とのり面崩壊

ここでは,4.で示した実験事実と土のせん断強度 ・変形特性の関係から雨水浸透によるのり面崩壊と グリッドの働きについて考察する。

図-13 流出量と時間の関係

写真-1 5分のり面崩壊状況

写真-2 5分のり面崩壊時の補強部の状況

降雨浸透試験では,降雨開始18時間後よりのり面 の変位量が急増し,合わせてグリッドのひずみが増 大した。また,降雨流出量は図一13に示すようにこ の時点より急激に増加し,流出水は土砂を含んで濁 水となった。さらに,盛土天端ののり面付近では入 間が立つことができないくらいに支持力が低下して おり,盛土表面の土は水の中に浮いた状態であるこ とが確認されている。その後,写真-1および写真 -2に示すように無補強部分のしらすと土のうの間

July, 1990

67

報告---2046

でのり面崩壊を生じた。ところが、グリッドで補強 した部分は崩壊した部分からのもたれによる若干の 変形を生じたのみで安定を保った。この現象は次の ように説明される。雨水の浸透によって盛土内の飽 和度は徐々に増加し、やがて盛土内は飽和度60~70 %の疑似飽和領域で満たされる。このとき、サクシ ョンの減少によってしらすの見掛けの粘着力・引張 り強さが低下することから、盛土表面は不安定化を 増し,のり面変位の増大を招く。また,のり面変位 が増大すれば、それに伴って土の間隙が大きくなる とともに透水性が良くなり雨水が浸透しやすくなる と考えられる。このことは、のり面崩壊が生じる 以前に降雨流出量が激減していることから説明でき る。この状態のもとに降雨が継続するとのり面付近 に宙水が生じ、土粒子は宙水の中に浮いた状態とな り、細粒分が流出して土のうとしらすとの付着力を なくしてのり面崩壊を生じると考えることができ る。一方、グリッドで補強された部分は、土のうを グリッドで巻き込むことによって盛土表面の緩みを グリッドが引き留めるためにのり面崩壊を抑制でき. のり面の維持が可能になると考えることができ、無 補強部分ののり面崩壊が生じる以前にグリッドのひ ずみが全体に増大していることから説明できる。し かし、グリッド自体はしらす粒子の流出防止に対す る効果は少なく, 土のうとグリッドとの併用はのり 面維持上も重要である。なお、今回の実験では補強 部分でのしらす粒子の流出は無補強部分より少なく、 グリッドが浸透水の水道になる可能性は少ないと判 断される。

6. まとめ

しらす盛土へのジオテキスタイル工法の適用に際 してその補強効果を明らかにするため,実物大の盛 土を築造して荷重載荷試験と降雨浸透試験を実施し た。これより,しらす盛土は,自然状態では大きな せん断強度を有することからグリッドに明りょうな 引張りひずみが生じるのは一部分であり,盛土全体 としては無補強でも相当な安定性を有していること が明らかとなった。ところが,降雨時には飽和度の 上昇によってせん断強度,特に粘着力と引張り強さ が低下するため,のり面付近で不安定化が増大し, 無補強部分でのり面崩壊を生じる結果となった。こ れに対して,グリッドで補強した部分では,しらす とグリッドとのかみ合い効果が一般の砂よりも2倍 程度大きいことも関係して何ら変状は生じなかっ た。このように,自然状態では良好な盛土材料であ るしらすに対しても降雨履歴によるのり面の不安定 化を防止するためにはジオテキスタイル工法が有用 であると考えられる。

謝辞

本実験を実施するに際して御指導・御助言いただ いた九州産業大学山内豊聰教授に深甚の謝意を表し ます。また,引抜き試験を実施していただいた三井 石油化学工業㈱西村淳一氏ならびに本実験を実施す るに際して終始ご協力いただいた建設省九州技術事 務所の関係者に謝意を表します。

参考文献

- 山内豊聰・尾曲伝吉・福田直三・池上政宏:ポリマ ーグリッドを応用した急勾配補強盛土の設計と実際, 第30回土質工学シンポジウム, pp.13~18, 1985.
- Jewell, R.A., Paine, N. and Woods, R.I.: Design methods for steep reinforced embankments, Symp. Polymer Grid Reinforcement in Civil Engineering, pp. 1~12, 1984.
- D. Leshchinsky, E.B. Perry: A design procedure for geotextile-reinforced walls, Geotechnical Fabrics Report, pp. 21~27, 1987.
- 4) 建設省九州地方建設局:しらす地帯の河川・道路土 工指針(案), pp. 2~3, 1985.
- 5) 土質工学会編:土質試験法, pp.700~701, 1979.
- 6) 調 修二・松雪清人・江崎三男・山根史郎:地山し らすの透水性について,第5回応用地質学会九州支 部研究発表会, pp.13~18, 1988.
- 7) 福田直三・三浦哲彦・山内豊聰:延伸プラスチック グリッドによる擁壁土圧の軽減効果,土と基礎, Vol. 32, No. 6, pp. 21~26, 1984.
- 8) 伊勢田哲也:地中浸透水検出装置について,先端技術研究成果報告書, pp. 39~43, 1984.
- 9) Ralph, A.L., Philip, F.L.: A self-adjusting nullpoint tensiometer, Soil Sci. Soc. Amer., Vol. 26, pp. 123~125, 1962.
- 安間正虎・小田桂三郎・岐部利幸:電気抵抗法による土壌水分測定の研究(第1報),関東東山農試研報
 9, pp.83~96, 1956.
- 山田芳雄・長 智男:中性子による土壌水分測定法, 畑かん研究集録, pp. 343~346, 1963.
- 12) 久楽勝行:盛土構造物の崩壊と対策に関する研究, 九州大学学位論文, pp. 40~42, 1983.
- 伊勢田哲也・調 修二:不飽和土の浸透特性に関する実験的考察,第23回土質工学研究発表会講演集, pp.1831~1832,1988.

(原稿受理 1989.11.17)

土と基礎, 38-7 (390)