= 報文-2190 -----

東京湾横断道路大口径鋼管杭鉛直載荷試験

Vertical Loading Test on Large-Diameter Steel-Pipe Piles for Trans-Tokyo Bay Highway

樅	山	好 幸 (もみやま よしゆき) 日本道路公団課長	本	間	政 幸 (ほんま まさゆき) 東京湾横断道路㈱ 係長
片	山	猛 (かたやま たけし) 鋼管杭協会	丸	Щ	隆(まるやま たかし) 鋼管杭協会

1. はじめに

東京湾横断道路では,航路部橋梁の基礎および木 更津立坑部の基礎形式として,それぞれ φ1600mm, φ2000mmの大口径鋼管杭を採用している。大口径 鋼管杭の支持力機構については不明確な点が多く, また載荷試験の事例も少ないことから,設計・施工 に先立ち現位置で載荷試験を実施し,杭の打込み性 と極限支持力を確認した。本報文は,平成元年9月 から平成2年11月まで実施した橋梁部と立坑部での 試験工事とその解析結果について報告するものであ る。

2. 試験概要

航路部橋梁の水中橋脚は,鋼管 杭 基 礎 ($\phi 1600$ mm) で計画されており,平成元年9月に2本の試験杭 (T_1 杭, T_2 杭)を打設した。 T_1 杭は,ディーゼルハンマー (KB-80) で D_{ss} 層まで打設し, T_2

表一1 試験杭仕様·試験項目

								試 験	項	目	
試 験	試験杭	杭 径	杭長	肉 厚	杭重量	先端バンド	動的詞	式験項目	静的	的試験項	頁目
		(mm)	(mm)	(mm)	(tf)	(mm)	打擊記録	杭体内応力	鉛直載荷	引抜き	長期載荷
橋梁音		1 600	50 950	24	53	外, $L = 300$ t = 9	0	0) (2 400)) (1 300)	(1 100)
(その1)	T ₂	1 600	57 050	24	54	バンド無し	0	0	(2 400)		
立 坑 音 (その2)	Т	2 000	62 000	34	107	外, $L=300$ t=9	0	0	(4 200)) (1 700)	

()内は計画最大荷重, tf

表一2 打擊記録·動的支持力

		試						最 終	打 撃			動的支	持 力(ti	f)
試	験	験	材質	根入れ長	ハンマー	総打撃数	貫入量	リバウ	ラム高	杭体内	道示式(手書き)	道路	LI:Love -+
		杭		(mm)	(ラム重量, tf)	(回)	(mm)	ント重 (mm)	(m)	(kgf/cm^2)	(1)*	(2)*	公団式	THEY I
橋梁	部	T_1	SKK50	26 650	ディーゼル (8.0)	2 670	2.0	7	1.5	1 080	2 76 0	1 686	1 868	2 798
(その	1)	T2	SKK50	37 750	油 圧 (12.0)	5 472	0.2	15	1.4	870	3 690	2 463	2 174	2 077
立 坑 (その	部 2)	Т	SKK50	30 600	スティーム (50.0)	1 173	9.9	15	1.5	1 238	4 490	4 144	2 374	1 821

* (1): $e_0 = 1.5 \cdot W_h / W_p$ (2): $e_0 = (1.5 \cdot W_h / W_p)^{1/2}$

 W_h : ラム重量 W_p : 杭重量

報文-2190

杭は,油圧ハンマー (PMJ-200)を用い,完全管内 掘削を実施しながら D_{4c} 層まで打設した。2本の 試験杭に対して,平成元年11月に鉛直載荷試験を実 施し, T_1 杭については平成2年10月から11月にか け,長期載荷試験および引抜き試験を行った(その 1試験)。一方,立坑部では,平成2年3月に試験 杭(T杭)をスティームハンマー(MRBS-5000) でN値50以上の D_{3S} 層まで打設し,同5月に鉛 直載荷試験と引抜き試験を実施した(その2試験)。

表-1は,試験杭の仕様と試験項目をまとめたものである。また,試験杭の打設記録を表-2に示す。

載荷試験は,道路公団試験方法に従い行った。載 荷方法は,その1・その2試験とも反力杭方式とし, 反力杭は試験杭と同径とした。加力装置は,その1 試験では杭頭に 500 tf (ストローク 250 mm) 油圧 ジャッキを4台配置し,その2試験では 850 tf (ス トローク 500 mm) 油圧ジャッキを6台配置し,主 桁,副桁,上部反力梁を介してストランドで反力杭 に反力を伝える構造とした。

3. 載荷試験結果

図-1から図-3に鉛直載荷試験の杭頭荷重(P) と海底部沈下量(S_0)の関係を示す。また,降伏荷 重と極限荷重に対する軸力分布を図-4と図-5に 示す。その1試験の T_2 杭は,完全管内掘削杭のた め杭先端に荷重が伝達していないことがわかる。表 -3に,各試験で得られた降伏荷重,極限荷重をま とめた。

4. 考察

4.1 先端支持

(1) 支持層への根入れ比と地盤の支持力度

今回実施した載荷試験結果から求めた杭の支持層 への根入れ比(L/D)と杭先端地盤の極限支持力度 (q_a)を表-4に示す。その1試験では TP-37.7 m 以深に存在する洪積砂層(D_{3s})を,その2試験で は TP-37.4 m以深の洪積砂層(D_{3s})を支持層とし ている。また、この結果とほかの載荷試験結果^{4),6)}

衣一3 極限何里時の周囲摩擦刀・光端	支持刀
---------------------------	-----

計除枯		EQ	▶ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	斯 阻 共 音 (+f)	極限荷重時の分担			
마시 원자 10년	#*V	题火			周面摩擦力(tf)	先端支持力(tf)		
	鉛	直	1 150	1 600	1 280 (80%)	320 (20%)		
\mathbf{T}_1	長期	載荷		1 100*2	869 (79%)	231 (21%)		
	引打	友き	970	1 200	978 (81%)	222 (19%)		
T ₂ *1	鉛	直	1 400	1 700	1 700(100%)	0 (0%)		
т	鉛	直	2 600	3 300	2 666 (81%)	634 (19%)		
1	引	友 き	1 100	1 700*2	1 269 (75%)	431 (25%)		

*1 完全管内掘削杭 *2 極限状態に達していないため、最大荷重表示

土と基礎, 40-2 (409)

表一4 杭先端地盤の極限支持力と支持層への根入れ比

	杭 径	支持層への 根 入 れ 長	載荷試験によ る極限支持力	周面 摩擦 力 の計算値	杭の投影 断 面 積	杭先端地盤 の設計N値	杭先端地盤の 極限支持力度	支持層への 根 入 れ 比	a./N	閉そく 率
机	D (mm)	L (m)	R_u (tf)	$U\Sigma L_f \ (ext{tf})$	$A (m^2)$	\overline{N}	q_d^* (tf/m ²)	L/D	<i>44/1</i>	(%)
 T1	1 600	8.3	1 600	925	2.056	40	328	5.2	8.2	27
T	2 000	17.6	3 300	1 762	3. 198	40	481	8.8	12.0	40

*ここで $q_d = (R_u - U\Sigma L_f)/A$

図-4 軸力分布(その1試験, T₁・T₂杭)

図-5 軸力分布(その2試験, T杭)

を,道路橋示方書の手法により図—6に整 理した。図—6から,今回実施した ϕ 1600 mm と ϕ 2000mmの大口径鋼管杭では,支 持層への根入れ比 (L/D)が5以上あって も十分な先端閉そく効果は発現していない ことがわかる。

(2) 杭実肉厚断面の極限支持力

杭の先端支持を、先端補強バンドを含む 杭の実肉厚断面 (A_p) による抵抗で考えた 際の極限状態での先端支持力度 (Q_a) を表 -5 に示す。表-5 から Q_a は、 T_1 杭、T 杭それぞれ 1 810 tf/m²、2 380 tf/m² とな る。山肩ら⁵⁰ は、杭先端の極限支持力度を 40 N (N: 杭先端 N 値) で表しており、

表一5 杭の先端支持力度

	杭の実肉 厚断面積	杭の極限時の先端支持力	先 端 支持力度	逆算N值
杭	$egin{array}{c} A_p \ (\mathrm{m}^2) \end{array}$	(載荷試験結果) R_p (tf)	$rac{R_p/A_p}{(\mathrm{tf}/\mathrm{m}^2)}$	$N = \frac{R_p}{40 A_p}$
\mathbf{T}_1	0.1767	320	1 810	45
Т	0.2668	634	2 380	59

報文-2190

表-6 土層ごとの極限周面摩擦力度,地盤定数 (φ 1600 mm, その1 試験)

		土質調查結果 N値 c(tf/m ²)		周面摩捕	察力度(載荷詞 <i>fi</i> (tf/m ²)	(験結果)	極限時の各層の周面摩擦力 <i>R_f</i> (tf)			
区 分	/督/字 (m)			T1 杭鉛直	T2 杭鉛直	T1 杭引抜き	T1 杭鉛直	T2 杭鉛直	T ₁ 杭引抜き	
As	6.3	12		8.4	8.1	6.0	266	256	190	
Ac	10.6	2	8.0	7.1	7.2	6.0	378	383	320	
D_{3s}	3. 15	70 (220)		14.3	8.3	10.2	226	131	162	
D _{3c}	1.65	28	18.0	17.1	8.9	14.0	142	73	116	
D _{3s}	3.45	70 (124)		15.5	10.9	11.0	268	295	190	
D _{4c}		26	24.2	—	26.2		-	562	-	
				周面	摩擦	力 (tf)	1 280	1 700	978	
				先 端	伝達荷	重(tf)	320	0	222	
					計	(tf)	1 600	1 700	1 200	

()内N値は換算N値。上限を70とした。

図-8 極限支持力に対する杭実肉厚部先端支持力の 分担率⁴⁾

今回の2事例について, N 値を逆算 すると T₁ 杭 で 45, T杭で59となる。

一般に、杭径の増加に従い閉そく効果は低減して いくことが考えられるが、このことは図一7に示す 杭径(D)と極限状態での先端支持力度(Qa)の関 係からも言える。図一7の縦軸 Qa は、軸力分布か ら求めた杭先端の極限支持力を杭の実肉厚断面積で 除した値であり、先端閉そく効果が大きい程 Q_a も 大きな値を示す。杭径 1000 mm 付近を境に先端閉 そく効果が現れていることがわかる^{4),6)}。

同様に、杭の極限支持力のうち、杭の先端実肉厚 部での支持力分担比率を、杭径(D)をパラメータ ーにして図-8に示す。この分担率は、杭径(D) が大きくなるにつれて小さくなっており、杭径の増 加に従い閉そく効果が低減していることがわかる。

4.2 周面摩擦抵抗

(1) 地層ごとの周面摩擦力度

区分	層厚	土質調査結果 		周面摩 (載荷試 <i>fi</i> (tf,	擦力 度 験結果) /m ²)	極限時の各層の 周 面 摩 擦 力 <i>R_f</i> (tf)		
	(m)	N值	$c (tf/m^2)$	T 杭 鉛 直	T杭 引抜き	T 杭 鉛 直	T杭 引抜き	
As	3.8	9		7.6	3.1	182	74	
D _{3e}	3.3	23	7.7	7.3	1.1	152	23	
D_{3s}	3.8	38		8.4	3.9	201	92	
D _{3c}	2.2		14.5	14.0	1.9	193	26	
D_{3s}	8.1	70 (133)		17.5	5.1	891	261	
D _{3c}	2.5	35	17.3	18.5	12.0	291	189	
D_{3s}	6.9	70 (95)		17.4	13.9	756	604	
				周面摩擦	験力(tf)	2 666	1 267	
				先端伝達	荷重(tf)	634	431	
				計	(tf)	3 300	1 700	

表一7 土層ごとの極限周面摩擦力度,地盤定数 (\$ 2000 mm, その2 試験)

()内N値は換算N値。上限を70とした。

引抜き試験は、極限状態に達していないため、最大荷重時の値。

土と基礎,40―2(409)

軸力分布から求めた周面摩擦力と土質試験結果か ら得た地盤定数を各地層ごとに表一6と表一7に整 理した。ここで、周面摩擦力度(f_i)は杭に作用す る周面摩擦力を杭外周面積で除した値で示している。 その1試験(T₁杭)では,極限状態での鉛直載荷 試験の周面摩擦力度に対する引抜き試験の周面摩擦 力度の比は,各層で0.71~0.85になっている。全 土層の合計で比較すると,鉛直載荷時の極限周面摩 擦力(1280tf)に対する引抜き時の極限周面摩擦力 (978 tf)の比は, 0.76 であった。一方, その2 試験 の引抜き試験では、計画最大荷重の1700tf を載荷 しても極限状態に 至らなかったが、 Van・der・veen (ファンデルビーン)の手法によって極限引抜き力 を推定すると2250tf となるか。この極限引抜き力 は、極限鉛直荷重(3300 tf)に対して、0.63の比と なった。

(2) 管外面摩擦力と管内面摩擦力

その1試験のうち T2 杭は杭打設後リバース工法

Manual Annual							
	記号	杭 径 <i>D</i> (mm)	支持層へ の根入長 <i>L</i> (m)	L/D	摩擦力度 f_i (tf/m^2)	備	考
事例1	A	1 600	8.3	5.2	14.3	外バ	ンド
(その1試験)	В				15.5	外バ	ンド
事例2	C	2 000	17.5	8.8	17.5	外バ	ンド
(その2試験)	D				17.4	外バ	ンド
事例3	E	1 500	1.4	0.93	10.6	バンド	なし
事例4	F	1 000	1.6	1.6	10.0	バンド	なし
事例5	G	2 500	11.3	4.52	13.4以上	バンド	なし
事例6	Н	1 219	2.4	2.0	10	外八	ンド

表一8 支持層における摩擦力度4)

図-9 砂質支持層における周面摩擦力度?

表-9 周面摩擦力度と土質定数 (\$\phi1600 mm, その1試験)

	周面摩擦力度							
	鉛直載荷試験	引抜き試験						
A_s	0.2 N	0.2 N						
Ac	с	0.5 c						
D_{3s}	0.2 N	0.12N						
D_{3c}	С	0.6 c						
D_{3s}	0.2 N	0. 14 <i>N</i>						
D _{3c}	с	0.6 c						

・太枠内は管内外面摩擦の和・N値の最大値を70とする

表-10 周面摩擦力度と土質定数 (φ2000 mm, その2試験)

	周面摩	擦力度			
区分	鉛直載荷試験	引抜き試験			
As	0.2 N	0.1 N			
D _{3c}	с	0.5 c			
D_{3s}	0.2 N	0.1 N			
D_{3c}	С	0.5 c			
D _{3s}	0.25N	0.1 N			
D _{3e} c		0.7 c			
D _{3s}	0.25N	0.2 N			

・太枠内は管内外面摩擦の和 ・N値の最大値を70とする

により管内を掘削した完全管内掘削杭で,通常の打 設杭による T₁ 杭と比較することにより鋼管内外面 の摩擦力度の分離が可能である。すなわち, T₁ 杭 とT₂ 杭の周面摩擦力度の差が管内面摩擦力度と考 えられ,さらにこの管内面摩擦力は支持層で発揮し ていることが表-6からわかる。表中,支持層は, 太枠で示した。山肩らは杭の支持力を,杭先端実肉 厚断面による抵抗と管外周面摩擦抵抗と支持層での 管内面摩擦抵抗の和で評価している。今回の載荷試 験結果は,この考え方で説明できた。

(3) 支持層への根入れ比と周面摩擦力度

表-8と図-9に、砂質支持層での支持層への根 入れ比と周面摩擦力度の関係を示す。図-9より、 支持層への根入れ比が増えるにつれ管内外面の合計 としての周面摩擦力度が増加しており、これは管内 面摩擦力度が増加しているためと推定できる。また、 粘性土の摩擦力は一軸圧縮強度の1/2である粘着力 *c*に一致した。

報文-2190

4.3 支持力の算定式

今回実施した載荷試験では、極限状態での杭実肉 厚部の先端支持力が得られ、また各地層ごとの管内 外面摩擦力の分離とその定量的評価ができた。試験 結果に基づいた各地層での地盤定数と摩擦力度の関 係を表-9と表-10に整理する。また杭先端の極限 支持力(*R_{pc}*)を

 $R_{pc} = 40 N A_p$ (1)

N:杭先端N値(N値の最大値は50~60) A_p:杭先端実肉厚断面積(m²)

表-11 鉛直支持力の比較

試験(試験杭)	支持力	式(2)(tf)	載荷試験結果(tf)
その1 (Ti杭)	周面	1089 (85%)	1 280
	先 端	353 (110%)	320
	合 計	1 442 (90%)	1 600
その2 (T杭)	周面	2 505 (94%)	2 666
	先 端	640 (101%)	634
	合計	3 145 (95%)	3 300

()内は載荷試験結果に対するパーセント

とし,表-9,表-10の関係から得られる周面摩擦 力を加え極限支持力を求めるとすれば,極限支持力 の算定式は以下式(2),式(3)で示すことができる。

鉛直支持力: $R_{uc} = R_{pc} + R_{bc} + R_{fc}$ (2) 引抜き抵抗力: $R_{ut} = R_{fc}$ (3)

ここで,

 $R_{bc} = (\sum f_{bs} \cdot L_{bs} + \sum f_{bc} \cdot L_{bc}) \times U$

 $R_{fc} = (\sum f_s \cdot L_s + \sum f_c \cdot L_c) \times U$

それぞれの項は,

Rbc:支持層での管内面摩擦抵抗(tf)

Rfc:管外面摩擦抵抗 (tf)

fbs:支持層での砂層の管内面摩擦力度(tf/m²)

Los:支持層での砂層厚(m)

fbe:支持層での粘性土の管内面摩擦力度(tf/m²)

Lbc:支持層での粘性土厚(m)

- fs:砂層での管外面摩擦力度(tf/m²)
- Ls:砂層厚(m)
- fc: 粘性土層での管外面摩擦力度(tf/m²)
- Lc:粘性土厚(m)
- U:杭の外周長(m)

式(2)から算出した極限支持力と載荷試験結果を表 ー11に比較する。式(2)による計算値は,載荷試験結 果に対して90~95%となった。

5. まとめ

今回実施した載荷 試 験 で は, $\phi 1600 \text{ mm} \ge \phi$ 2000 mm の大口径鋼管杭の極限支持力が 確認でき た。さらに杭の鉛直支持力を先端の実肉厚部の支持 と管外面摩擦力および支持層での管内面摩擦力の総 和で評価すると,定量的に説明できることがわかっ た。しかし,この支持力算定式は,東京湾横断道路 における一例であり,土質条件や土層構成の異なる 場所では別途検討する必要があると思われる。

参考文献

- 1) 樅山・高橋・安達・安永・中本:東京湾横断道路大 口径鋼管杭鉛直載荷試験,第25回土質工学研究発表 会,土質工学会,pp. 1289~1290,1990.
- 2) 樅山・安達・本間・荒田・木村:東京湾横断道路大 口径鋼管杭鉛直載荷試験(その2),第26回土質工 学会研究発表会,土質工学会,pp. 1347~1350, 1991.
- 3) 樅山・安達ほか:東京湾横断道路 大口径鋼管杭鉛 直載荷試験の計画および結果について,杭の鉛直載 荷試験方法および支持力判定法に関するシンポジウ ム,土質工学会, pp. 21~24, 1991.
- 4) 駒田・宇都・岸田・日下部・冬木ほか:鋼管杭載荷 試験データ検討報告書, (財高速道路調査会, 1990.
- 山肩邦男ほか:開端鋼管ぐいの支持力に関する考察 (その2),日本建築学会論文報告書,第213号, 1973.
- 春日正己ら:鋼管杭一その設計と施工一,鋼管杭協 会,1990.

(原稿受理 1991.11.20)