·--·· 事例報告 -·--·----

施工中のトンネル周辺岩盤の可視化

一弾性波速度,振幅トモグラフィーー

Seismic Tomography of Rockmass Surrouding Tunnels

蓮井昭則(はすい あきのり) 世一英俊(よいち ひでとし)
 ハザマ 技術研究所 主任研究員 ハザマ 技術研究所 室長山下 亮(やました りょう)
 ハザマ 技術研究所 主任研究員

1. まえがき

トンネル,あるいは地下発電所に代表される地下 空洞などの建設において,土木技術者が直面する岩 盤の状態,特に掘削によって周辺岩盤が受けた影響 を適切に把握し施工にフィードバックすることは, 支保の合理化,安全性の向上などにとって重要な要 素である。このような場合,対象とする岩盤の範囲 はトンネルであれば掘削壁面から深さ1D(Dはト ンネル直径)程度までの情報が最も必要であり,そ の情報を可視化して表現することは岩盤状態に対す る理解を深める有効な手段になるものと考える。

岩盤内部を非破壊で調査する方法の一つとして, 弾性波トモグラフィーが実用化されつつある。しか し,上述のような対象範囲での弾性波調査には,波 長の短い(高周波数)波動を用いた高精度な測定が 必要であり,その結果を施工に利用するためには迅 速なデータ処理やトモグラフィー解析も求められる。

本報告では、断面積がほぼ同じで岩種の異なる三 つのトンネルの側壁岩盤において、高周波波動を用 いた孔間弾性波測定を行い、その測定結果からトモ グラフィー解析(P波速度、振幅減衰)により、近 似的に掘削による周辺岩盤への影響を可視化した事 例を紹介する。

2. 調査方法

2.1 測定方法

調査範囲はトンネル側壁岩盤に直交してほぼ水平 に穿孔された2本のボーリング 孔 (ϕ 66~ ϕ 76 mm でパーカッションあるいはロータリー式)の孔間断 面で,測定には高周波波動を測定対象とした孔間弾 性波測定装置¹⁾(図-1参照)を用いた。発振装置 と受振装置内には圧電型加速度計が内蔵されており, 発振波動と受振波動を同時に記録し両者の波動を比 較して,P波波動の走行時間と初動加速度振幅(以 後,振幅と呼ぶ)の振幅比を得ることができる。図 -2に発振波動の例を示すが,10kHz~15kHz程 度の高周波を含む波動を発振していることがわかる。

2.2 トモグラフィー解析

トモグラフィー解析は弾性波測定結果から調査断 面内の弾性波伝播特性の分布を求める手法で,ここ ではP波速度と振幅減衰を対象として実施した。振 幅減衰は岩盤の粘性のみによると仮定し,(1)式のよ うに振幅比を振幅減衰定数αを用いて整理している。

事例報告

また,振幅減衰のトモグラフィー解析結果は(2)式に 示す弾性波伝播距離1m当たりの振幅比(単位振幅 比と定義する)を用いて表示した。

$A/A_0 = \exp(-\alpha L)$	(1)
$a = \exp(-\alpha) \cdots$	(2)

ここに,

- A:受振波の初動加速度振幅
- A₀:発振波の初動加速度振幅
- α:振幅減衰定数
- L:弾性波の伝播距離(m)
- a:単位振幅比

一方,岩盤中の弾性波の伝播は屈折,回折や反射 などにより複雑な経路をたどると考えられる。しか し,波動の周波数が高く直線的に伝播しやすいこと, 調査範囲が狭いこと,計算を簡単にするなどの理由 から,ここでは波動の伝播経路を直線と仮定し,解 析手法としてはP波速度,振幅減衰ともに繰返し計 算¹⁾による方法を用いている。したがって,以下で 紹介するトモグラフィー解析より得られた弾性波伝 播特性は見掛け上のP波速度,振幅減衰である。

3. 調査事例

3.1 新鮮な火成岩内のトンネル側壁(事例1)

(1) 調查概要

調査地点は土被り厚さ約1000mに位置するトン ネル(幅約5m,高さ約4m,無支保)で,周辺岩 盤は一軸圧縮強さ1000kgf/cm²以上の花崗岩質変 成岩で構成されている。トンネル壁面での地質観察 結果を図ー3に示すが、2本のボーリングコア(ϕ 76 mm,孔長10m)のRQDは一部を除いて平均80 %以上の良好なコア状態で、透水係数は10⁻⁹~10⁻¹⁰ cm/sと非常に小さく、新鮮で亀裂が少ない岩盤で あった。調査断面はトンネル軸方向に10m、側壁面 から深さ10mの水平な範囲で、測定波線は側壁面を 用いた受振も含めて119波線であった。図ー4に測 定波線を示す。

(2) 掘削の影響の可視化

発振点と受振点が同じ深度で測定した受振波形の 一例を図-5に示すが,数kHz~10kHzの高周波 波動が測定されており,トンネル側壁に近い部分で は波動が小さいことが明らかである。

P波速度および振幅減衰についてのトモグラフィ ー解析結果(口絵写真-13(a),(b)参照)では、 ボーリング孔口付近にP波速度の低い領域が存在し、

土と基礎, 42—5 (436)

振幅は側壁に近づくほど減衰が激しくなっている。 一方,発振点と受振点が同じ深度で測定した図-5 の波形でのP波速度と振幅比の測定結果を図-6に 示すが,深部ではP波速度,振幅減衰ともに一定し た分布状態を示している。図-3からも判断される ように調査断面の地質はほとんど花崗岩質変成岩で あり, 亀裂も少ないことから,トンネル掘削前の弾 性波伝播特性はほぼ一定状態に近く,可視化表示さ れた側壁近くのP波速度,単位振幅比の分布はトン ネルの掘削による影響を反映した変化と見ることが

できる。つまり、トモグラフィー解析で得られた調 査断面深部でのP波速度、単位振幅比を基準にし、 掘削の影響を推定することも可能である(口絵写真 -13(c)参照)。

3.2 亀裂の多い岩盤内のトンネル側壁(事例2)(1) 調査概要

調査を行ったトンネル(幅約4m, 矢板工法)の 周辺岩盤は砂質片岩で亀裂が多く,いわゆる中硬岩 タイプの岩盤である。側壁面から深さ1mまでのボ ーリング孔壁では孔荒れにより発振装置,受振装置 を設置できない状態であった。そのため,調査断面 はトンネル軸方向3m,壁面から深さ1m~3.5m 範囲とし,測定波線数は孔間のみの測定で90波線で あった。

(2) 掘削の影響の可視化

図一7 波動の面積による整理の概念

27

事例報告

P波速度,振幅減衰トモグラフィー結果(口絵写 真一14参照)では、P波速度の低い部分がトンネル 壁面近くに存在し、図中で左下から右上への層状の 速度分布をしていることがわかる。また、単位振幅 比はトンネル側壁に近いほど小さく(振幅の減衰が 激しい)、側壁に平行な帯状の分布になっており、 P波速度とは異なった傾向を示している。地下空洞 の掘削に伴う側壁岩盤の計測結果²⁰では、振幅減衰 が透水性の変化とよく似た変化傾向を示すことが報 告されており、振幅減衰は掘削による亀裂の発生や 開口などを反映していると考えられる。

3.3 堆積岩内のトンネル側壁(事例3)

(1) 調査概要

調査したトンネル(幅約3m, NATM 工法)の 周辺岩盤は泥岩と凝灰岩の互層構造で構成されてお り, P波速度2km/s程度の堆積岩盤で, 側壁表面 にはP波速度約4200m/sの吹付けコンクリートが 施工されていた。調査範囲は孔間距離2m, 側壁岩 盤から深さ3mの区間で, 側壁岩盤にも発振点を設 けて測定を行い, 測定波線数は240波線であった。

前述の事例1,事例2では初動加速度振幅の大き さを振幅減衰の指標としたが,波動の面積を指標と することも考えられる。事例3では発振波の初動1 振幅の時間(110μs)に測定された波動面積の比を疑 似の振幅として(1)式,(2)式と同様の整理を試みた。 図-7に波動面積の概念を示す。

(2) 掘削の影響の可視化

P波速度,振幅減衰トモグラフィー結果(口絵写 真一15参照)では,P波速度と波動面積による疑似 の単位振幅比ともに側壁付近ほど小さい(減衰が大 きい)分布となっており,掘削の影響による岩盤の 変化が現れていると考えられる。なお, P波速度で は右下がりにやや速度の低い部分が分布しているが, これは地質の互層構造の影響と考えられる。

4. あとがき

トンネル側壁岩盤に着目し, 亀裂の少ない健全な 岩盤, 亀裂の多い岩盤, 堆積岩の3種類の地質条件 で,かつトンネル断面規模の同程度のトンネルで実 施したP波速度と振幅減衰のトモグラフィー結果に ついて紹介した。地下空洞の掘削に伴う変位, 透水 性,弾性波伝播特性の測定結果²⁾を参考にして評価 すると, P波速度の低下範囲はいわゆる「ゆるみ領 域」,振幅の低下範囲は掘削の影響を受けた領域と 考えることができる。

また,紹介した調査事例は直線波線を仮定してい ることからトモグラフィー解析結果には誤差が含ま れているため,得られた解析結果はトンネル側壁に おける掘削の影響を第1次近似的にとらえていると 考えられる。しかし,施工に従事している土木技術 者にとって,直面する岩盤の掘削の影響を表現した このような可視化も工学的には利用価値があると思 われる。

参考文献

- ・ 進井・世一・平井:岩盤における孔間弾性波測定シ ステムとその適用について--(その3)中区間用シス テムとジオトモグラフィ結果--,間組研究年報1988 年版,pp. 79~87,1988.
- 2) 世一・蓮井・山下:地下空洞掘削時における周辺岩 盤の物性変化に関する計測結果とその評価について, 第6回岩の力学国内シンポジウム講演論文集, pp. 193~198, 1984.

(原稿受理 1993.10.28)