

側方変位・側方流動予測の現状と将来

Prediction of Lateral Displacement and Lateral Flow of Ground

中井照夫(なかい てるお) 名古屋工業大学教授 システムマネジメント工学科

WAAANNA MAANA MAANA

1. はじめに

側方変位・側方流動といえば盛土荷重を受けた基礎地 盤が盛土端で側方に変位すること、山留め掘削時に山留 め壁が掘削側にはらみ出すこと、水平荷重を受けた杭基 礎などの側方変位および地震時に液状化した地盤が基礎 地盤の傾斜や発生した間隙水圧によって水平方向に動く ことが話題とされることが多い。ところが土質力学の教 科書をひも解いてみても、地盤の変形に関してはいわゆ る沈下(それも一次元沈下)だけがそれなりに筋立てて 記述されており、大学の授業でもこと側方変位に関して はほとんど順序立てて講義されていない。その結果、地 盤の一次元圧密沈下問題を省いて、地盤の変形問題では 個々の問題によって独特の解析法なるものが提案されて いる。しかし、本来地盤の変形が多次元で起こるのは当 たり前のことであり、側方変位だけが特別の解析対象と なるのも不自然である。したがって、ここでは、地盤の 変形予測という観点から予測と現実のギャップについて 検討したい。

さて、地盤工学の分野で最も単純で典型的な問題であ る水平地盤上に荷重が載荷されたときの地盤の変位予測 をすることを一例として考えよう。このとき通常は多次 元における力の釣合い式と変形の適合条件式を弱形式で 表した有限要素法を用いることになるが、そのためには 地盤材料(砂,粘土等)の多次元での構成式(応力・ひ ずみ・強度式)が必要となる。また、構造力学の問題と 異なり通常は地盤内の間隙水の影響を考える必要がある ので、多くの場合土・水連成解析として解くことが求め られる。ここに、地盤材料の構成モデルに関しては、 Cam-clay model¹⁾以来多くの地盤材料のモデルが開発さ れている。そして、構成モデルを有限要素解析プログラ ムに組み込むことにより地盤の沈下や側方変位予測が行 われ、実際の挙動との一致・不一致の議論がこれまでに なされている。しかし、時として解析的に予測した側方 変位が定量的にも定性的にも傾向を持って実測値からず れることも多く、現在実務での解析法として信頼性を持 って事前予測がなされているとはいえない。以下いくつ かの典型的な例を挙げてその予測と実際について検討す る。

2. 盛土等の載荷重を受ける基礎地盤の側方変 位

図―1に示すような基礎地盤に盛土荷重が載荷された

図-2 沈下および側方変位プロファイル

ときの基礎地盤²⁾の側方変位について考えよう³⁾。同図 に示すように、主として軟弱粘土地盤と砂地盤からなる 2層地盤である。この地盤の変形解析をするため、粘土 地盤の構成モデルとして Cam-clay model および当研究 室で開発したモデル(2種)4)を用いて盛土の施工過程を 考えながら平面ひずみ条件下の土・水連成解析をした。 これら三つのモデルは同じ土質パラメーターを有し、通 常の三軸圧縮試験や一次元圧縮試験を解析する限りほぼ 同じ変形挙動を示す。図-2は盛土完成直後および盛土 完成後200日経過後の地表面沈下と法尻断面の側方変位 のプロファイルを示している。同図より、盛土完成時も その後200日経過したときも、沈下プロファイルにはモ デルによる差はほとんどなく、どのモデルでも実測値と よい対応を示している。一方、側方変位については盛土 完成直後にはモデルによる差はないものの、その後の放 置期間(圧密過程)で®, ©のモデルが側方変位を過大 評価する。ここに、モデルA, Bは図-3(a)の応力-ひずみ-強度関係の中間主応力依存性を適切に表現でき るモデルであり、 ④では更に図-3(b)のひずみ増分方 向の応力経路依存性(ストレス-ダイレイタンシー関係 の応力経路依存性)を考慮したモデルとなっている。な お、 [©]の Cam-clay model ではこれらの評価に問題を残

土と基礎, 50-2 (529)

している。図-2の結果より、中間主応力の影響はほと んど地盤の変形に影響を及ぼしていないが、ひずみ増分 方向の応力経路依存性は圧密期間中の側方変位に影響す ることがわかる。この理由は平面ひずみ条件下の地盤と いえどもその初期応力は K₀ 状態(三軸圧縮状態)にあ り、その後の盛土の載荷でも破壊応力状態に近づかない 限り三軸圧縮条件から大きくずれていないことによる。 そのため中間主応力の評価が結果に影響しない。一方、 地盤の変形の主要な部分となる盛土下方地盤の応力経路 は盛土載荷中では非排水やカー定の経路に近く、その後 の放置期間では応力比一定(q/p=一定)の経路に近な る。図-3(b)のストレス-ダイレイタンシー特性の応 力経路依存性を考慮できないモデルB, ©では放置期間 も*p*=一定と同じ関係になるためその時のせん断ひずみ 増分 dea が大きく、これが側方変位の過大評価の原因と なる。

図-4は非排水条件下の粘土地盤に等分布局所荷重が 載荷されたときの解析結果⁵⁾である。(a)図は荷重〜鉛 直変位関係,(b)図は荷重中央の鉛直変位 S₀で正規化 した地表面の変形プロファイルおよび荷重端の鉛直断面 での側方変位プロファイルである。構成モデルとして等 方硬化モデルと移動硬化モデル(応力比の変化に伴い降 伏関数が原点を中心に回転する)モデルを採用した。両 モデルは図-5に示す K₀ 圧密後の非排水せん断試験の 解析結果(応力〜ひずみ関係および有効応力経路)から もわかるように,主働側では同じ関係となるが,受働側 では異なる(通常の等方硬化モデルでは受働側の非排水 強度を過大評価する)。図-4 より,移動硬化モデルの

February, 2002

説

図-5 K₀ 圧密後の非排水せん断試験の計算曲線

支持力が等方硬化のそれに比べ小さくなるだけでなく, 地盤の変形プロファイルが異なる。すなわち,移動硬化 則を用いた解析結果の方が変形の影響範囲が狭くより現 実的な変形プロファイルになる。これは静的荷重下の地 盤の変形問題であっても,受働側の地盤の取扱いが大き く地盤の変形挙動に影響することを意味し,現実的な地 盤の変形予測には前述のひずみ増分方向の応力経路依存 性とともにこの点を考慮する必要がある。

3. 掘削地盤の側方変位

ここでは,地盤と構造物の境界面の摩擦特性,地盤材 料のダイレイタンシー特性,および三次元効果を含む施 工過程の評価が側方変位を含む地盤の変形の評価に大き く影響すること実測結果と解析結果に基づいて示す。

図−6に示す試験機を用いて行った掘削モデル試験結 果とその解析結果について紹介する⁶⁾。図に示すように、 山留め壁を設置後片方の地盤を掘削したときの山留め壁 水平変位の実測値を図-7(a)に示す。ここに、2種類 の山留め壁を用いているが、それらは壁体の剛性は同じ で壁面の摩擦だけが異なっている。同図からわかるよう に壁面摩擦の大きさにより壁体の水平変位量が大きく変 わることがわかる。図-7(b)は地盤材料の特徴的な力 学特性を考慮した弾塑性モデルだけでなく境界面の摩擦 特性を考慮した解析結果であるが、壁面摩擦の違いによ る変形の違いがよく再現されているのが見られる。すな わち、適切な境界面の摩擦特性の評価が山留め掘削時の 変形挙動の予測では欠かせない。なお、梁ばねモデルを 使った通常の設計法ではこの壁面摩擦は考慮されていな い。また, 図-8は付図に示すように壁体に水平変位を 与え主働土圧状態を作っているが、一つは壁体に同時に 水平変位を与えたときの背面地盤の沈下プロファイルを, もう一つは同じ水平変位を与えるが上から順次壁体に変 位を与えたときの沈下プロファイルの実測値と弾塑性解 析結果である。壁体に同じ変位を与えても変位の与え方 (施工プロセス)の違いにより地盤の変形が大きく異な ることがわかる。つまり、実際の施工では壁体は上部か ら変形することになるので、地盤の変形は施工プロセス を考えないときに比べ壁体近傍で大きくなるがその影響 範囲は小さくなる。なお、弾性解析では例え非線形でも このような差異は表現できない。また、掘削地盤の解析 では変形の影響範囲が実際よりも広くなるとよく言われ

-5

るが,現実的な予測には適切な構成モデルと施工過程の 評価が必要である。

降下床を連続的に並べた三次元降下床モデル試験機 (図-9)を用いた地表面沈下の実験結果((a)図)とそ れに対応した弾塑性解析結果((b)図)を図-10に示す⁷⁾ (降下床幅 B と土被り厚 D の比 D/B=2)。ここに,三 次元実験とはトンネル掘削過程をシミュレーションする ため降下床を順次端から降下させていく実験であり、二 次元実験とは全降下床を同時に降下させる実験である (降下終了時にはいずれの降下床にも同じ変位を与える ことになる)。また、地盤材料として正のダイレイタン シーを示す砂と、負のダイレイタンシーを示す粘土を用 いている。最終的に同じ降下床変位を与えているので, 弾性体では剛性にかかわらずすべての結果は同じになる が、地盤材料のダイレイタンシー特性の違いにより沈下 量だけでなく沈下の影響範囲も大きく異なることが理解 できる。そして、その差異は順次降下させる三次元の方 が同時に降下させる二次元よりも顕著である。トンネル 掘削等で同じ変位がトンネルに生じても、負のダイレイ タンシー特性を示す粘土地盤では地表面沈下が大きくそ の影響範囲も広いことになる。そして施工過程もこれら に大きく影響する。このような,実測値の傾向をダイレ

イタンシー特性および三次元効果を適切に考慮した弾塑 性解析結果が説明していることがわかる。

4. む す び

以上,本文では静的載荷条件下の側方変位を含む地盤 の変形挙動の予測について述べた。基本的な地盤の予測 には,(1)地盤材料の基本的な力学特性を表現できる構成 モデル(個々の特性のモデル化については土と基礎50 周年記念号でも述べている),(2)地盤や構造物の力学特 性だけでなく構造物と地盤との境界面の力学特性の適切 な評価,(3)施工過程の評価が重要であることが理解いた だけたと思う。そして,地盤材料はあくまでも弾塑性体 であることもここで強調しておきたい。

参考文献

- Schofield A. N. and Wroth C. P.: Critical State Soil Mechanics, McGraw Hill, 1968.
- 日本道路公団:常磐自動車道神田地区軟弱地盤改良工事 試験盛土観測結果報告書.
- Nakai T. and Matsuoka H.: Elastoplastic Analysis of Embankment Foundation, Proc. of 8th ARCSMFE, Vol. 1, pp. 473~476, 1987.
- Nakai T. and Matsuoka H.: A Generalized Elastoplastic Constitutive Model for Clay in Three-dimensional Stresses, Soils and Foundations, Vol. 26, No. 3, pp. 81~ 98, 1986.
- Nakai T., Nishimura T. and Ishida Y.: Proc. of IS-Hiroshima, Vol. 1, pp. 349~354., 1995.
- Nakai et. al.: Model tests and Numerical Simulation of braced Excavation in Sandy Ground, Soils and Foundations, Vol. 39, No. 3, pp. 1~12, 1999.
- Nakai T., Xu L.M. and Yamazaki H.: 3D and 2D Model Test and Numerical Analyses of Settlements and Earth Pressures Due to Tunnel Excavation, Soils and Foundations, Vol. 37, No. 2, pp. 31~-42, 1997.

(原稿受理 2001.11.10)