# 粘土地盤における盛土に伴う側方流動圧の簡易予測法

A Simple Method for Predicting Lateral Flow Pressure in Clay Ground under Embankment

任 垠 相(いむ ゆんさん) 広島大学大学院工学研究科博士課程後期 学生 森 脇 武 夫 (もりわき たけお) 広島大学助教授 大学院工学研究科社会環境システム専攻

新 宅 由 英 (しんたく よしえ) ㈱計測リサーチコンサルタント 建設コンサルタント事業部

#### 1. はじめに

軟弱地盤上に道路盛土や河川堤防を建設する際には, 地盤は鉛直方向に沈下するだけでなく,一般に側方流動 と呼ばれる水平方向の変形も生じる。この側方流動は, 背面盛土による橋台の水平移動,周辺盛土による基礎杭 の変状など,多くの構造物に被害を及ぼす。このような 側方流動による被害を防止・軽減するためには,既設構 造物へ加わる外力となる側方流動圧を予測し,既設構造 物の被害程度を予測するとともに,必要に応じて取られ る対策工の効果を判定する必要がある。

そこで本論文では,盛土によって粘土基礎地盤で生じ る側方流動圧を事前設計の段階で簡易に予測する方法を 提案する。



図-1 盛土荷重による地盤内水平応力



図-2 対称盛土荷重による盛土法尻直下の地盤内水平応 力の影響値

#### 2. 弾性理論解

盛土荷重が載荷された場合の地盤内の鉛直応力は、ブ シネスク(Boussinesq)の弾性解に基づくオスターバー グ(Osterberg)の図表によって求められることが多い。 この図表は、地盤を弾性体と仮定しているにもかかわら ず、実地盤に対しても適用性が良く、盛土荷重による粘 土地盤の圧密沈下量を予測する際など、実設計で常用さ れている。そこで本論文でも、図一1のような盛土形状 の荷重が載荷された場合の地盤内の水平応力を Boussinesq の弾性解を用いて求めた。その結果、点Aにお ける水平応力は式(1)で与えられる。詳細は文献1)を参 照されたい。

$$\sigma_{\rm x,\,emb} = \frac{p}{\pi} \left[ \frac{A}{a} \tan^{-1} Z_{\rm A} + \left( 1 - \frac{A}{a} \right) \tan^{-1} Z_{\rm B} \right]$$
$$- \frac{C}{c} \tan^{-1} Z_{\rm C} - \left( 1 - \frac{C}{c} \right) \tan^{-1} Z_{\rm X}$$
$$+ \frac{z}{a} \log \left| \frac{1 + Z_{\rm B}^2}{1 + Z_{\rm A}^2} \right| - \frac{z}{c} \log \left| \frac{1 + Z_{\rm X}^2}{1 + Z_{\rm C}^2} \right| = \cdots \cdots (1)$$

ここで、A = a + b + c + x, B = b + c + x, C = c + x, X = x,  $Z_A$ = A/z,  $Z_B = B/z$ ,  $Z_C = C/z$ ,  $Z_X = X/z$  である。特に、左右 対称の盛土の法尻直下、すなわち図—1中でa = cでx= 0の場合の地盤内の水平応力は式(2)のようになる。

$$\sigma_{x} = \frac{p}{\pi} \left[ \left( 2 + \frac{b}{a} \right) \cos^{-1} \left( \frac{z/a}{\sqrt{(z/a)^{2} + (2 + b/a)^{2}}} \right) - \left( 1 + \frac{b}{a} \right) \cos^{-1} \left( \frac{z/a}{\sqrt{(z/a)^{2} + (1 + b/a)^{2}}} \right) - \cos^{-1} \left( \frac{z/a}{\sqrt{(z/a)^{2} + (1 + b/a)^{2}}} \right) + \frac{z}{a} \log \left| \frac{((z/a)^{2} + (1 + b/a)^{2}) \cdot ((z/a)^{2} + 1)}{(z/a)^{2} \cdot ((z/a)^{2} + (2 + b/a)^{2})} \right| \right]$$

$$= b \cdot I_{x} \qquad (2)$$

ここに, *I*<sup>h</sup> は影響値である。この式を用いて対称盛土 荷重による地盤内水平応力の影響値を図化したものが図 -2 である。この図表から,盛土の形状と盛土荷重の大 きさから,地盤内の任意の点での水平応力を簡単に求め ることができる。

### 3. 室内模型実験

室内模型実験<sup>2)</sup>は地盤内水平応力の理論解を求めた弾

19

論 文

性地盤と同様に深度方向に密度および強度が一様な地盤 を対象として、弾性地盤と粘土地盤の違い、および盛土 の載荷速度の違いを検討するために、図-3のような模 型実験土槽に正規圧密状態の粘土地盤を作成し、それに 載荷速度の異なる盛土載荷を行い、このときに生じる側 方流動圧と過剰間隙水圧の深度方向分布、および地表面 の沈下形状の時間的推移を測定した。なお、本実験にお ける側方流動圧の測定は、盛土法尻直下で行い、この位 置の水平変位が生じないような拘束条件のもとで行った。 これは、盛土法尻のごく近傍にある既設構造物へ盛土に よる側方流動の影響が及ばないように盛土法尻に矢板や 連壁などの対策工が取られることが多いこと、および対 策工に水平変位が生じないように拘束した場合に側方流 動圧が最大となり、この値を用いて事前設計を行えば安 全側となることを考慮して設定した。なお、実際の対策 工に作用する側方流動圧は、対策工の剛度によって大き く変化する。対策工の剛度と側方流動圧との関係は今後 詳細に検討し、別途報告したいと考えている。

本研究で行った室内模型実験は、載荷速度の影響 (Case 1~4) と盛土形状の影響(Case 3 と 5) を調べる ために,表一1のようなパターンを設定した。

この表中,載荷荷重 Δp は地盤の極限支持力 (qu= 5.14c<sub>u</sub>) に対して安全率が Fs = 1.26 になるように10.8 kPa と決めた。なお、地盤の非排水せん断強度はベーン せん断試験によって $c_{\mu} = 2.65 \text{ kPa}$ と求められている。 また,盛土の形状係数 b/a は盛土天端と盛土法面の長さ

|        | 載荷荷重<br><i>Δ<u>p</u> ( kPa )</i> | 盛立て速度指数<br><i>t</i> * | 盛土の形状係数<br><i>b/a</i> |
|--------|----------------------------------|-----------------------|-----------------------|
| Case 1 | 10.8                             | 0.003                 | 2.30                  |
| Case 2 | 10.8                             | 0.067                 | 2.30                  |
| Case 3 | 10.8                             | 0.675                 | 2.30                  |
| Case 4 | 10.8                             | 2.000                 | 2.30                  |
| Case 5 | 10.8                             | 0.675                 | 1.33                  |

表一1 室内模型実験のパータン

比であり、盛立て速度指数 t\*は三木ら3)が提案したもの で、次式によって定義される。

ここで, H<sub>d</sub>, t<sub>e</sub>, T<sub>90</sub>, および c<sub>v</sub> は, 最大排水距離, 盛土 の載荷に要する時間,圧密度90%に対する時間係数, および地盤の圧密係数である。なお、Case1は載荷速 度1.54 kPa/min で10.8 kPa まで一気に載荷した場合で あり, Case 2, 3, 4 は載荷荷重10.8 kPa をほぼ3 等分に 分割し,各載荷段階の圧密度がそれぞれ30%,60%,90 %に達する放置時間を取って載荷した場合である。

図-4は、盛土荷重の載荷直後とCase1の最終沈下 量を基準として盛土中央の表面沈下量から求めた圧密度 が90%に達した時点での基礎地盤の地表面沈下形状を 示したものである。この図より,盛土の載荷が速いほど, 盛土法肩付近の沈下量が大きくなるとともに、盛土法尻 部と盛土中央部との沈下量の差も大きくなることが明ら かである。さらに、載荷直後の地表面沈下形状を見ると、 載荷中では不同沈下の発生量は少なく,圧密中に大きく 発生していることが分かる。これらは Darragh4)などが 指摘したように側方流動が生じる限界荷重が存在し、そ の値は載荷速度によって変化することを意味している。 図-5には, Case 3 における盛土法尻下での側方流動 圧の経時変化を示した。ここで、側方流動圧は載荷荷重 で正規化したものであり、時間は載荷終了時を原点に取 ったものである。この図より、側方流動圧は盛土荷重を 載荷後、しばらく時間が経過して圧密進行中に最大とな ることが分かる。また、この側方流動圧は、不同沈下を 引き起こす基礎地盤中の非排水せん断変形によって生じ る負のダイレイタンシーによって発生する過剰間隙水圧 の影響を受け、基礎地盤の上部ほど、圧密初期段階に急 激に上昇し、その後急激に減少することが分かる。図-5は Case 3 の場合であるが,他の Case においても同

様の傾向を示した1)。

nkment X (mm)

End of load

Case 2
 Case 3

z/H=0.3 z/H=0.4 z/H=0.5 z/H=0.7

400

600

200 shoulder

-4 基礎地盤の表面沈下量

Time (min)

の経時変化

Case
 Case
 Case

図-6は,最大値が得られた時 点における側方流動圧の深度方向 分布を示したものである。この図 から、側方流動圧の実測値は深度



土と基礎, 50-2 (529)

NII-Electronic Library Service



方向にほぼ三角形分布となること,盛土の載荷が速いほ ど最大側方流動圧が大きくなること,および最大側方流 動圧が発生する深度は盛土の載荷速度とはあまり関係な いことが明らかになった。また,盛土の形状係数が小さ くなると,最大側方流動圧の発生する深度が浅くなるこ とが分かる。

### 4. 弾性理論解の補正

図一6で示したように,Boussinesqの弾性理論解を 用いて算出した地盤内の水平応力と模型実験によって得 られた側方流動圧は大きく異なっている。これは,理論 と実測で,応力~ひずみ関係が異なること,および盛土 法尻下の地盤内の水平方向の拘束条件が異なることに主 として起因している。そのため,理論解を用いて盛土法 尻下の粘土地盤中に設けられた対策工に作用する側方流 動圧を予測するためには,これらに関する補正を行う必 要がある。そこで本研究では,理論と実測で側方流動圧 が最大となる深度と,この最大値の大きさが一致するよ うな補正係数を理論値と実測値を比較することによって 求め,これによって地盤内の水平応力分布の理論値を補 正する方法を提案する。

図-7は最大側方流動圧が生じる実測深度と理論深度 の比と載荷速度の関係を示したものである。この図より, 最大側方流動圧が生じる深度(最大値深度)は、盛土の 幾何学条件や載荷速度に影響されなく、理論解で得られ る最大値深度のほぼ1/2となることが分かる。また、図 - 8 は実測された最大側方流動圧と理論値の最大水平応 力の比と載荷速度の関係を示したものである。ここで示 した最大側方流動圧とは深度方向に分布する側方流動圧 の最大値で、時間経過とともに変化するこの値が時間的 に最大となった時点と圧密がほぼ終了した時点の値が示 されている。この図より、側方流動圧の最大値は盛立て 速度指数の対数に対して直線的に変化し、理論値の2~ 4倍となり、盛土の載荷速度の影響を受けることが分か る。同様に、圧密がほぼ終了した時点での最大側方流動 圧と理論値の比も盛立て速度指数の対数とほぼ直線関係 にあるが、時間的に最大となった時点より載荷速度の影 響を受けないことが分かる。さらに、この図におけて盛 土形状の異なる Case 5 の値もほぼ同一直線上に乗るこ とが分かる。これは、盛土形状の違いは理論解によって 考慮でき,理論値と実測値の違いは図-8の関係を用い て表すことができることを示している。

以上の結果より,図一7と8の補正係数を用いて Boussinesqの弾性理論解を補正した結果を図一6に示 す。補正係数を用いた予測値と実測値を比較すると,最 大値深度より浅い部分では予測値と実測値は比較的一致 するが,最大値深度より深い部分では予測値は実測値よ りかなり大きくなった。このように本手法は,実測値を 必ずしも正確に予測できる結果とはなっていないが,予 測値はいずれも安全側であり,概略設計における予測手 法としては有用であると考える。



## 5. まとめ

本論文では,盛土に伴う粘土基礎地盤の側方流動圧を 簡易に予測する方法として,まず Boussinesq の弾性解 に基づいて作成した図表を利用して盛土荷重による地盤 内水平応力の理論値を求め,次にそれを実際の粘土地盤 の特性,盛土の載荷速度,および対策工による拘束条件 に応じて補正する方法を提案し,その適用性を検討した。 その結果,本予測法は側方流動圧の深度分布形状で若干 合わないところがあるものの,盛土に伴って粘土基礎地 盤中で生じる側方流動圧を簡易に予測でき,かつ盛土の 載荷速度の影響を考慮できる方法として有効であること が明らかとなった。

なお、スペースの都合上、本論文では省略するが、深 度方向に強度増加がある地盤では、最大側方流動圧が生 じる深度が本論文で得られた深度より浅くなることが遠 心模型実験より明らかとなっている。このように本論文 で得られた結果は限られた条件に対するものであるが、 今後、遠心模型実験の結果も取り入れて、予測法の一般 化を図っていきたい。

#### 参考文献

- Im, E. S. and Moriwaki, T.: Effects of construction speed of embankment on lateral earth pressure acting on earth retaining structure in clay foundation ground, Inter.national Journal of Physical Modeling in Geotechnics, 2002 (投稿中).
- 2) 任 垠相・森脇武夫:盛土に伴う軟弱地盤の圧密沈下と 最大側方流動圧に及ぼす載荷速度の影響,第46回地盤工 学会シンポジウム平成13年度論文集,pp. 109~114, 2001.
- 三木博史・関 一雄・竹田敏彦:軟弱地盤上の盛土に伴う側方流動圧の評価に関する模型実験,第21回土質工学研究発表会,pp.1031~1034,1986.
- Darragh, R. D.: Controlled water test to preload tank foundations, ASCE, SM5, pp. 303~328, 1964. (原稿受理 2001.10.2)

21