

A Method to Calculate Consolidation Settlement by Calculating Primary Consolidation and Creep

寺田邦雄(てらだくにお) ㈱竹中工務店大阪本店設計部

1. はじめに

粘土の圧密の力学モデルとして多くのモデル(例えば, 村山・柴田モデル¹⁾)が考案されてきたが,これらは実 地盤での圧密沈下量を予測する方法としては実用化され ていない。他方,標準圧密試験結果から得られた定数を 用いて,一次圧密のあと二次圧密が発生するという考え で構成式(例えば,関ロ・太田モデル²⁾)が考案され, 実地盤の圧密沈下量を予測してきた。しかし,一次圧密 が発生せずに二次圧密だけが発生するという現象が大阪 湾の洪積粘土層で確認され³⁾,本方法も適用が困難であ ることが判った。一方,圧密を物理化学的な面から説明 する試みもなされたが,実用の域には達していない⁴⁾。

著者は,標準圧密試験を基本とする"一次圧密とク リープからなるモデル"を考案し,それぞれの定数を標 準圧密試験から求める方法を提案した⁵⁾。そして,これ らの定数を使い,一次圧密の要素とクリープの要素に分 けて計算する方法を提案し,本方法による計算値と層別 沈下計による観測値を比較した⁶⁾。以下に,本計算方法 の詳細を述べる。

2. 土質試験について

六甲アイランドの甲南大学体育館敷地の層別沈下計測 地点で、土質調査が1986年5月(調査A)と1995年6 月(調査B)に行われた。埋立て経歴と土質調査日の関 係を図-1に、各粘土層の標高を表-1に示す。沖積粘 土層(Mal3)から不撹乱試料が採取され、標準圧密試 験が行われた。それらのコンシステンシーをz/H(z:

	State of the second second	and the second		
	沖積粘土層		洪積粘土層	
	上面	下面	上面	下面
調査A	-16.45	-31.10	-75.35	-96.45
調査B	-19.61	-31.61	-75.31	-95.50

表―1 粘土層の標高(K.P.m)

September, 2002

表--2 作図のための記号

論

文 _____

図-3 沖積粘土の粒径加積曲線

粘土層上面からの深さ,H:粘土層厚さ)に対して,表 -2に示す記号で図-2a)にプロットした。圧密の進 行により調査Bの含水比(w_n)は調査Aのそれより小 さくなったが,それらの液性限界(w_L)も低下した。

これらの粒径加積曲線を図—3に示した。3μmの通 過質量百分率が,調査Aでは40%程であるのに,調査 Bでは60%である。このことは粘土のアグリゲーショ ン間を連結するリンクが形成されたものと考える⁷⁾。

調査AとBの洪積粘土のコンシステンシーの深度分 布を図-2b)にプロットした。沖積粘土と異なり,調 査AとBの含水比はほとんど同じであるが,それらの 液性限界は粘土層の中央部で時間の経過とともに低下し た。これらのことより,液性限界は時間の経過に伴って 生じる物理化学的作用を受けていると考える。

沖積粘土の不撹乱試料で標準圧密試験を行った。その うちの一つの $e - \log p$ 曲線を2 - 4に〇でプロットした。 一次圧密比(r)を使って、一次圧密の $e_p - \log p$ 曲線を 同図に□で、クリープの $e_s - \log p$ 曲線を Δ でプロット した。これらの曲線より圧密降伏応力(p_c, p_{cp} (一次圧

13

NII-Electronic Library Service

図-4 標準圧密試験結果の整理

密)と p_{cs} (クリープ))と圧縮指数(C_c , C_{cp} (一次圧密) と C_{cs} (クリープ))を求めた。

3. 圧密に関する係数の検討

3.1 圧縮指数について

図一4に示す方法で、調査AとBの沖積粘土のe-log p 曲線を整理し、表一2に示す記号で、圧縮指数の 深度分布を図一5にプロットした。調査Aの一次圧密 の圧縮指数 C_{cp} の値は、調査Bのそれとほぼ同じであ った。しかし、調査Aの圧縮指数 $C_c \ge C_{cs}$ の値は調査 Bのそれより大きかった。圧縮指数 $C_c \ge C_{cs}$ は時間の 経過に伴って生じる物理化学的作用を受け、 C_{cp} は物理 化学的作用をあまり受けていないと考えられる。

3.2 圧密降伏応力について

上記と同様にして、図―4に示す方法で求めた調査 AとBの沖積粘土試料の圧密降伏応力 ($p_c, p_{cn} \ge p_{cs}$) の値を,表-2に示す記号で図-6にプロットした。調 査Bの圧密降伏応力の値の分布は粘土層が上下面を排 水層とする一次元圧密の状態を示した。調査Aのpcn値 を先行圧密圧力 (p_0) とし, 図一1に示す P_{max} (盛土 荷重)による応力を有効上載圧(p₀+Δp)として,そ れぞれを図-6に破線と一点鎖線でプロットした。 1986年5月に Ap 荷重が載荷され,この荷重によって発 生した過剰間隙水圧が、1995年6月までに消散した過 剰間隙水圧を Terzaghi の一次元圧密理論に基づいて計 算した。調査Aの粘土層の換算圧密係数⁸⁾はC_{ve}=60 cm^2/day で,調査Bのそれは $C_{ve} = 80 cm^2/day$ であっ た。計算には前者の値を用いた。そして、表-3に示す z/Hの深さで、1995年6月における圧密度 $(U_z = u/U_o)$ を計算し、この時の有効鉛直応力(p)を式(1)で計算 し、この値を図─6に◇でプロットした。この値は調査 Bの*p*_{cp}の値(■)とほぼ同じであった。

表-3 二次圧密の計算

z/H	t _c (day)	$\Delta e_{\rm s}$	$p_{cs}(kPa)$	
0.11	0.06	0.23	38	
0.35	0.84	0.16	42	
0.59	2.25	0.13	46	
0.83	0.14	0.21	50	

$$t_{\rm c} = \frac{0.848}{C_{\rm vr}} \exp\left(zc\right) \cdots (2)$$

調査AとBの沖積粘土の標準圧密試験結果より得ら れた二次圧密係数(C_{α})を圧力(p)に対して図一7に プロットした。図より、二次圧密係数を C_{α} =0.05とし、 式(3)を用いて、1986年5月から1995年6月までのク リープ沈下量(Δe_{s})を計算した。この値を表一3に示 した。

$$\Delta e_{\rm s} = C_{\alpha} \log \left(\frac{t}{t_c} \right) \quad \dots \qquad (3)$$

この Δe_{s} 値, 図—**5**に示す調査Aの C_{cs} 値と, 図—**6** に示す調査Aの p_{cs} 値を用いて, 図—**8**に示す方法で, 1995年6月の p_{cs} 値を計算した。この p_{cs} 値を図—**6**に +でプロットした。この計算値は調査Bの p_{cs} 値(\blacktriangle) とほぼ同じであった。以上のことから, 圧密降伏応力 ($p_{cp} \ge p_{cs}$)が一次圧密とクリープそれぞれに存在する といえる。

3.3 二次圧密係数について

図一7にクリープの圧密降伏応力の値 (p_{cs})を矢印 で示した。 p_{cs} 値を越えたあたりで、二次圧密係数 C_{α} の 値は極値を示し、極値を越えた後、 C_{α} の値は太い実線 で示すように圧力の増加に伴い低下した。調査 A の C_{α} の値と調査 B の C_{α} の値の比較より、クリープにおいて も過圧密領域と正規圧密領域があり、二次圧密係数は応 力の関数であることがわかる。

図-8 クリープの圧密降伏応力の求め方

土と基礎, 50-9 (536)

NII-Electronic Library Service

4. 提案式とその適用

ー次圧密とクリープの沈下からなる圧密沈下計算式を 式(4)に示す。ただし、上載荷重が一次圧密の圧密降伏 応力 (p_{cp})を越えた時を t_p 、クリープの圧密降伏応力 (p_{cs})を越えた時を t_s とする。

図-1に示す調査Aと調査Bの土質試験結果による 一次圧密の最終沈下量(S_{fp})を式(4)の第一項で計算 する。次に、図-1の $p_0+\Delta p$ で示す荷重載荷日を初期 値とする土質調査日の平均圧密度(U_m)を計算する。 そして、荷重載荷日からの一次圧密の最終沈下量 S_{fp} を 式(5)で計算する。

$$S_{\rm fp} = \frac{S_{\rm fp}'}{1 - U_{\rm m}}$$
 (5)

沖積粘土層と洪積粘土層の層別沈下計による観測値を 図一9にプロットした。上記の方法で計算した圧密沈下 量の計算値を同図にプロットした。沖積粘土層の場合に、 計算値は観測値とほぼ一致した。しかし,洪積粘土層の 場合には,計算値は観測値より若干大きな値を示した。 洪積粘土の圧密降伏応力の値を表-2に示す記号で図-10にプロットした。洪積粘土の圧密降伏応力の値の求め 方が難しいことが判る。洪積粘土の圧密降伏応力につい て種々の検討がなされている^{9),10)}。

5. まとめ

- 一次圧密とクリープの計算からなる提案式は実地盤の
 圧密沈下予測に利用できる。
- 一次圧密とクリープのそれぞれに、圧密降伏応力
 (*p*_{cp} と *p*_{cs}) と圧縮指数(*C*_{cp} と *C*_{cs})がある。
- •二次圧密係数は応力の関数である。
- ・クリープ沈下予測を物理化学的な面から検討する必要 がある。

参考文献

- 柴田 徹:粘土の圧密に関するレオロジー的考察,土木 学会論文報告集, No. 69, pp. 29~37, 1960.
- Sekiguchi, H. and Ohta, H.: Induced anisotropy and time dependency in clays, Proc. 9th ICSMFE, Specialty Session 9, Tokyo, pp. 229~237, 1977.
- 3) 三村 衛·小田和広·宮川 悟·中井 章·山本浩司·

図-10 圧密降伏応力の深度分布

藤原照幸・金山政民:大阪湾洪積粘土の長期圧密特性, 第36回地盤工学研究発表会, pp. 1009~1010, 2001.

- 第門雅史・曾我健一・木山正明・井上啓司:大阪湾海成 粘土のペレットの出現特性とその土質工学的性質への影響、土質工学論文報告集, Vol. 29, No. 2, pp. 181~189, 1989.
- 5) 寺田邦雄:二次圧密を考慮した一次元圧密沈下量計算式 の係数について,第36回地盤工学研究発表会,pp.987 ~988,2001.
- 6) 寺田邦雄:二次圧密を考慮した一次元圧密沈下量の計算 方法の適用,土と基礎, Vol. 49, No. 6, pp. 17~198, 2001.
- 鬼塚克忠・根上武仁:有明粘土の乱さない試料および再 圧密試料の微視的土構造,土と基礎, Vol. 46, No. 4, pp. 17~20, 1998.
- 8) 日本道路公団:設計要領第1集, pp. 198~199, 1983.
- 9) 赤井浩一・嘉門雅史・佐野郁雄:大阪湾上部洪積粘土の 圧密降伏応力について,第25回土質工学研究発表会, pp. 323~324, 1990.
- 10) 寺田邦雄:洪積粘土の圧密降伏応力の測定方法に関する 一提案,第32回土質工学研究発表会,pp. 359~360, 1997.

(原稿受理 2001.10.2)