サンドマットによる埋立粘土の圧密改良工法の現場実験

Ξ	笠		īE	人*
堤		夫**		
阿	久	根	省	三**
久		保		繁**

1. まえがき

埋立工事用の土砂としてポンプ船でシュンセツした海 底粘土を用いることは、従来からしばしば行われている が、このとき粘土は非常にゆるいヘドロとして送りこま れ、これが短期間に帯積するために、滞積が終ったとき の間ゲキ比がかなり大きく、圧密に長時間を要し、また でき上った埋立地も軟弱なものとなり、結局これを利用 するときに大がかりな地盤改良工事を行わねばならなく なることが多い。

このような場合には、できれば埋立工事の過程におい て圧密を促進する何らかの方策を講じて土質改良を行っ ておくことが望ましい。大阪港で現在実施中の埋立工事 にもこのようなケースの生じることが考えられるので、 目下改良工法を検討中である。 今回実施した実験は、大阪港南港の埋立工事を利用したもので厚さ2mの埋立層の下面にあらかじめサンドマットを設けておき、埋立が終ってからその水位を低下させ、これによる圧密促進効果を検討したものである。

実験は昭和 34 年8月から準備にかかり,35 年 3 月 から6月まで行われた。テルツアギーの圧密理論による と 90% 圧密するのに約1年2ヵ月かかることになり, 実験をやり通すことができるかどうか危ぶまれたが,実 際には三笠の導いた新しい圧密理論の示す通り,4ヵ月 で 80~90% を終えて実験の成功をみたことは予期しな い幸運であった。ここにそのあらましを報告する。

2. 実験設備と実験方法

a) 排水設備および方法

実験に用いた排水設備は図一1に示す通りである。サ

* 大阪市立大学工学部 ** 大阪市港湾局

ンドマットは、実験結果の解析を容易にするため、直径 10 m、厚さ 25 cm の円盤状とした。砂は $D_{10}=0.3$ mm, $D_{60}=1.0$ mm のものを用いた。サンドマットの下には 排水の影響が旧埋立層に及ばないようにビニールシート ($12 \text{ m} \times 12 \text{ m} \times 0.1 \text{ mm}$)を敷いた。サンドマットの中央 に3 ヶ所にフィルター部を設けた 1 インチ半のガス管を一本通して埋めこみ、これを排水管とした。

排水は次の2つの方法で行い,それぞれにひとつのサ ンドマットをあてた。

i) 自然排水工法: 排水用ガス管を埋立部周囲の築堤の外に導き,その端部をサンドマットの上面に等しい高さで大気圧に開放した。このとき埋立層の下面の有効圧力は 0.98 t/m² から 2.75 t/m² に増加することになる。

i) 真空排水工法: 700 mmHg の真空ポンプ2台を 交代に連続運転し, 貯圧槽(補強したドラム缶) 3 ケ, 分離槽(同) 3 ケ, 排水管を通じてマットに負圧をかけ た。実測の結果マット内の真空度は実験期間中ほぼ一定 で 430 mmHg であった。したがって埋立層の下面での 有効圧力は 0.98 t/m² から 8.38 t/m² に増加したことに なる。

理論的に見ればこの2つは単に定量的に違うだけで, 定性的には全く同じ工法といえる。

b) 観測設備および方法

観測した量は埋立層表面および各深度の沈下量,各深 度の間ゲキ水圧,旧埋立層の沈下量,サンドマット内の 真空度,脱水量,および各深度の強度の変化量である。 表面の沈下量は 図-1 に示す位置に沈下測定板をおきレ ベルで測定した。旧埋立層の沈下は 図-2 に示す測定柱 を用いた。

間ゲキ水圧計は水銀マノメーター型であるが,粘土に 接触するフィルターは素焼き板(14 cm×14 cm×0.8 cm) と鉄板で作ったカンタンなものを用いた。これは重量が 軽く平らな形なので所定の位置に保つことが容易である こと,粘土との接触面が大きく,高さが低いため,所定 位置の間ゲキ水圧が正確に測定できること,値段が安い ことなどの利点がある。これを埋立がすんでから適当な 深さに水平のまま上から押しこんだ。そのときの抵抗は 小さく、土質が完全なヘドロ状であることを示してお り、押込んだための悪影響は考えられない。このフィル ター板は埋立層の沈下とともに自由に下り得るように足 場にとりつけたバランスから針金で吊下げ、これを同時 に各深度の沈下測定板として利用した。

サンドマットの真空度は、耐圧ゴム管の先にフィルタ ーをつけて3カ所に埋めこみ水銀マノメーターに接続し て測定した。脱水量は、排出される水量を直接測り、強 度の変化は、あらかじめ押込んでおいた鉄板を板面の方 向に引抜いて測った。

3. 埋立粘土の性質

実験区域の埋立粘土は大和川の河口からシュンセツさ れたもので,比較的一様でしかも実験に適した軟弱な土 質を得るために,送泥管の吐出口から100mあまり離れる ようにした。実験終了後,区域内でサンプリングした試 料の物理試験の結果を図一3に示す。これでみると深さ の方向に土性の変化はなく,均質な土とみてよい。

図-3 土質柱状図

 臣密試験の結果は、e-log p 曲線は 図-4 のように
 なり、圧密係数は 0.6~3.0×10⁻²cm²/min, 平均して

 1.35×10⁻²cm²/min であった。圧密試験の試料は、埋立

 層表面の粘土を海水とよく混合し (e=12.9)、自重によ

 る圧密を行わせてのち (e=4.2~5.6)、小さな荷重から

はじめて徐々に載荷したものである。使用した圧密箱は 直径 100 mm の大型のもので,載荷をはじめるときの 試料厚さは約 4 cm であった。

4. 実験の工程

昭和 33 年 12	月 旧埋立却	也竣功
34 年8月	28 旧埋立周	層のキ裂に砂をつめる。
8.33	L ビニーノ	レシートを敷く。
9. 3	3 足場仮調	没 , ガス管布設。
9.9	》 敷砂施二	C, まわりを麻袋で囲う
10.10) 真空度》	則定用耐圧ゴム管布設
10 11	ポムアルーナ・	

 10.11
 敷砂高さ測定,旧地盤沈下測定柱

 設置

写真―1 足場でき上り

写真--2 埋立終り

写真-3 実験終了後(7月末)

- 10.22 間ゲキ水圧製作,準備
- 10.23 ポンプ船作業開始
- 12.16 ポンプ船作業終了
- 12.19~21 埋立高さ測定
- 35. 1.12~22 間ゲキ水圧計取付
 - 1.22~30 配管および貯圧槽,分離槽設置
 - 2.19 サンプリング(土質試験)
 - 2.25~27 強度測定板取付
 - 3.1 自然排水実験開始
 - 3.15 真空排水 〃 〃
 - 7.2 実験終了
 - 7.15 サンプリング(土質試験)

実験中の各種の観測は、次の日程で行った。

自然排水:3月1,2,3,4,6,8,10,12,14,16日 (以下真空排水と同じ)

真空排水:3月15,16,18,22,28日,4月4,15,26日,5月11日,6月3日,6月30日

真空排水区域は実験期間を通じて、また、自然排水区 域は5月11日までは、完全に水をかぶったままであっ た。したがって、この期間は表面乾燥の影響は考える必 要がない。

5. 実験結果

図-5,6 は, それぞれ自然排水, 真空排水区域の埋立 層の圧密収縮量の分布を, 経過時間ごとに描いたもので ある。これらの図には, 図-1 に記されていない測点番 号のものが 4,5 点あるが, これは測定板をおかず, 粘 土層上面に直接スタッフをあてて測ったもので, いくら か精度が落ちると思われる。これらの図から中央部に近 い,5,6 点をえらんで, 圧密収縮量を時間(対数目盛) に対してプロットすると 図-7を得る。これらは大体一 様な沈下の傾向を示している。自然排水の方で, 終りの 点を記入しなかったのは, 表面乾燥の影響が入ってきた

ためである。比較のため排水効果の及ばないと考えられ る3点の沈下経過も示したが,相当離れた所なので,土 質も違うらしく,沈下曲線はかなりバラついている。終 りの方では乾燥の影響も大きいようである。図の理論曲 線については後にのべる。各層毎の圧密量,脱水量,強 度の変化についてのデータは今回は省く。間ゲキ水圧に ついては一例として,真空排水区域の中央点(G)の値 を有効圧力分布に直して 図-8 に示しておく。各測点の 深度は実験終了時においてサンドマットの上面から上方 に,0.43 m,0.63m,0.91 m,1.22 m の4点で,図-8 はこれを滞積直後,間ゲキ比が一様であったとしたとき (これを原始状態と名付ける)の座標 2。にひきのばし て描いたものである。

なお実験終了時の間ゲキ比は図-9に示す。

6. 実験結果の解析

軟弱な粘土の圧密現象は,テルツアギーの理論では説 明することができないので,三笠の求めた新しい一次元 圧密理論によって実験結果の解析を行った。

この理論によると最初の深度が Z_0 である粘土の 1 element について, 圧密基本方程式は次式のようにな る。ただし Z_0 は上向きを正とする。

$$\frac{\partial t}{\partial t} = c_v \zeta \left\{ \frac{\partial z_0^2}{\partial z_0^2} - \frac{L_\zeta}{L_\zeta} \frac{\partial z_0}{\partial z_0} \right\} \qquad (1)$$

$$\zeta \zeta \zeta \zeta \left\{ \frac{1}{L_\zeta} = -\frac{d(m_v \cdot r_b)}{d\zeta} \right\}$$

上式で z₀;滞積直後の原始座標(間ゲキ比が深さ方 向に一定値を e₀ をとるものと想定する)

$$\zeta; \, \mathbb{E} \hspace{-0.5mm} \text{ : } \hspace{-0.5mm} \mathbb{E} \hspace{-0.5mm} \text{ : } \hspace{-0.5mm} \left(\hspace{-0.5mm} = \hspace{-0.5mm} \frac{dz_{\scriptscriptstyle 0}}{dz} \hspace{-0.5mm} = \hspace{-0.5mm} \frac{1 \hspace{-0.5mm} + \hspace{-0.5mm} e_{\scriptscriptstyle 0}}{1 \hspace{-0.5mm} + \hspace{-0.5mm} e} \right)$$

c_v; 圧密係数(間ゲキ比によらず一定と仮定 する)

$$m_v$$
;体積圧縮係数

76;粘土の水中単位重量

この式の適用例としては本実験が最初であるから,計 算方法のあらましを述べることにする。

(1) 式を解くために, 原始状態における埋立層の層厚 2 H₀ を 2n等分し, 時間間隔を 4t に区切って差分方 程式に書きかえると

ここに $4\zeta_{z_2}$;時間 4t における ζ_{z_0} の変化量 ζ_{z_0} ;原始座標 z_0 の element の ζ の値 $4T\left(=\frac{c_v \cdot 4t}{H_0^2}\right)$;時間係数の変化量

したがって適当な $n \ge 4T$ をえらんで (2) 式を用 い,初期状態から順次計算してゆけば $4t = (H_o^2/c_v) \cdot 4T$ 時間ごとの (分布を求めることができる。今度の場合は 2n=20, 4T = 1/400として計算したが,初めのうち は 4T=1/1600と細かく区切らないと安定しなかった。

 $1/L_{c}$ は, $e-\log p$ 曲線が直線であるときには次式のように与えられる。

$$\frac{1}{L_{\zeta}} = \frac{1}{p} r_{b_0} \left\{ 1 - \frac{0.8686}{1+e} C_c \right\} \quad \dots \dots \dots \dots \dots (3)$$

ここに p は有効圧力, 7b。は原始状態における粘土の

図-9 各経過日数に対する間ゲキ比の深度分布(計算値および測定値)

水中単位重量である。C_cは圧縮指数。

今回の実験の原始条件は,全層にわたって e_0 =4.80 とした。この値は実験区域内の埋立層表面の実測値であ る。計算をはじめるときの初期条件としては,実験開始 前のサンプリング試料から求めた間ゲキ比分布を,実験 開始時までの変化量(計算値)だけ修正して用いた(図 -9)。自然排水区域と真空排水区域における層厚は実験 開始時にはそれぞれ 198 cm と 181 cm であったから, 原始状態における層厚を上の間ゲキ比分布を用いて逆算 するとそれぞれ 270 cm, 250 cm となる。

次に境界条件は, 埋立層上面で ζ=1, e=4.80, 埋立 層下面で自然排水の方は ζ=1.895, e=2.060, 直空排 水の方は ζ=2.161, e=1.68 となる。

以上の諸条件を用いて(2)式を計算し,各経過日数ご との間ゲキ比分布曲線 Z。をに対して描くと,図-9の ようになる。最終間ゲキ比は(1)式の左辺を0とおいた 定常状態の方程式から求めた。実測値は,真空排水では 110日目,自然排水では95日目に当るので,それに相 当する計算値を比べると上の方がいくぶん大きくなつて いるが大体似た分布を示している。

この間ゲキ比分布図から, 圧密量 S を

$$S = \frac{1}{1+e_0} \int_0^{2H_0} de \cdot dz_0$$

の式を用いて各時間ごとに計算し,図-7の理論曲線を 得る。これは実測値ときわめてよい一致を示している。 終りにやや遅れるが, *c*₀の推定値が僅かに小さかったの であろう。

最終圧密量を図-9から計算すると、
非改良区域 18.6 cm
自然排水区域 30.5 cm
真空排水区域 32.5 cm

となる。真空排水の効果が少くみえるのは,層厚が小さ く,かつ初期条件が異るためである。

次に層中各点の有効圧力分布の時間的変化を計算する と、真空排水区域に対して 図-10 のようになった。図 -8 の実測値をこれと比べると、計算値よりもかなり速 やかに増加している。間ゲキ水圧の測定精度は、はじめ のうちマノメーターのコックが漏れたりしたのであまり

NII-Electronic Library Service

よいとは言えないが、少くとも計算値よりも早く減少し たことは確かなようである。粘土の各層の強度増加をし らべた結果もこの結論を裏書きしている。したがって室 内実験のデータをそのまま用いた理論計算は、まだ実際 の現象と正しく一致するとは言えない。これについては まだハッキリしたことは言えないが、差当り実際の場合 に e-log p の関係が直線でなく、上に少し凸な曲線にな ってくると考えれば一応の説明はつくようである。図一 9 で間ゲキ比の実測値が上の方で理論値より大きいこと も、この考えで説明できる。

なおテルツアギー理論による圧密速度を新理論と比較 すれば 図—11 のようになり,圧密速度に大きな違いが みられる。こる差は主に(1),(2)の右辺カッコの中の 第2項によるもので,粘土の性質として $L_c > 0$ である ため, $\frac{\partial \zeta}{\partial Z_o} < 0$ のとき,すなわち,下の方が多く圧密さ れるような条件のもとでは圧密速度は速くなってくるの である。もっとも,今の場合は初期条件などが異ってお り,量的に厳密な比較はできない。

7. 改良効果についての検討

先ず最終圧密量については先にのべたように計算で推 定できるだけである。今度の実験ではふたつの方法の条 件が少し違っていたので,いま仮りに真空排水区域の層 厚が自然排水のそれと同じく原始状態で 2.70m であっ たとし,また同時に実験を開始したとして,圧密量を比較 してみることにする。そのため 図-12 のように原始状 態と初期状態(実験開始時)について自然排水の場合の z_0-e 曲線を用い,境界条件だけを実際の通りにとって, 最終状態の曲線を描くと各段階の圧密量は,それぞれの 曲線に囲まれた面積に比例し,また圧密量の深度分布は 間ゲキ比の変化量に比例する。

この図から各段階の圧密量を計算すると,次のように なる。

状	態		層厚 (cm)	圧密量 (cm)	圧密量合計 (cm)
原 始	状態	<u>ا</u> ر	270.0	0	0
実験阝	骨始 ₱	寺	198.0	72.0	72.0
自重圧	密終	ſ	179.4	18.6	90.6

ただし真空排水圧密の換算は,カンタンのため曲線が 同じ形で高さだけ変るとしたが,正しく計算して求める ともう少し圧密が進むはずである。

この計算値は先にのべた実験データと照らしあわせて おおむね妥当なものと見られるので,これについて検討 する。先ず目につくことは,自重圧密による沈下量が非 常に大きく,改良工法を施しても沈下量の大きな増加は 期待できないということである。これは粘土の圧縮性が 圧密によって急激に減ってくること,自重の作用がかな り大きいことなどによるのであるが,ある意味では特に 処置を施さない自然の自重圧密工法を支持する事実とい えるかもしれない。しかし改良工法の目的を反省してみ ると,地盤を強くすることが第一のはずである。たとえ圧 密量はきわめて僅かでも,強度が増し,圧縮性が減れば よいのである。この意味では圧密量よりもそれらの量を 直接比較して改良効果を判定すべきである。

これらの量の直接のデータは実は充分でないのである が、粘土の性質として強度は圧密圧力に比例し、圧縮性 はそれにほぼ反比例することがわかっているので、粘土 層中の有効圧力の変化をしらべればよいことになる。こ れは 図-12 から *e*-log *p* 曲線を適用して求めることが でき、その結果はたとえば 図-8,10 に見るように、加 えた圧力に相当しただけの充分な改良効果を期待できる のである。

次に圧密速度について検討しよう。自重圧密,自然排 水,真空排水の何れにおいても,圧密速度がテルツアギ ー理論の示すよりも速くなることは先にのべた通りであ るが,これはこの工法の効果というものではない。ただ 図-7,11 によると真空排水は自然排水よりやや速い。 これは初期条件と境界条件の与え方による違いで何れに せよ大したことはない。それよりもこの工法のポイント は埋立層の下,あるいは中に排水層を設けることで,そ れによって, 圧密速度を数倍に増すことができる点であ る。図-7の非改良区域の理論曲線は両面排水としたも ので,実際は片面排水に近いからこれより遅くなってい る。終りに追付いてきたのは, 表面乾燥のためであろ う。

いま比較のため、埋立が終ったのち上面にサンドマッ トを敷き、これに不透水膜をかぶせて、真空排水を行う 工法を考えてみると、これは片面透水である上に、(1) 式の自重の影響を示す項がマイナスに働き、圧密速度は おそらく1桁くらいは遅くなると思われる。もっとも圧 密収縮量はその方が大きくなり、また地表付近が強くな るので、一概に優劣は言えないが、速度に関してはこの ように違ってくると予想される。

次に 図-5, 6 から, 排水効果の平面的な分布をしら べてみると, 敷砂範囲の外側に予想外にひろく影響が表 われており, 一方範囲内でも端に近い方は逆に外からの 影響で圧密量が減っている。これらは理論的に予想され るよりも少し多いようで,特に初めから影響範囲の拡が っている点が圧密理論だけでは説明がつかない。これは 多分実験区域の粘土が圧密収縮すると, 区域の境界面に 働く直圧力が減り(間ゲキ圧の減少によって),そのため 外側の粘土が押出してくるためだと考えられる。境界面 に生ずるセン断応力もこれを助けることになる。したが って実験区域内の圧密は厳密には一次元圧密ではなく, 三次元的に収縮していることになろう。もっとも中央付 近ではその影響は少いものと思われる。

なお圧密効果の平面的な拡がりを土の強さという面で みるならば,圧密沈下量に比べてはるかに急速に減少し てゆくことに注意せねばならない。

以上今度の実験に関して改良効果を検討したが、この 工法を実施する場合には、さらにこれが旧地盤の圧密を 促進するのに大きな効果を持ってくることが強調されね ばならない。海底の軟弱粘土層の上に埋立を行う場合 には、こちらの効果の方がむしろ大きいとすら考えられ るのである。

8. あとがき

この実験の当初の目的は第一に改良工法の効果を確め ることであり、第二にそれに関連していろいろと粘土の 圧密についての定量的なデータを得ることであった。は からずもその解析にあたってテルツアギーの理論よりも 実験結果とよく一致する圧密理論を導くことができ、今 後埋立工事に関連して、信頼するに足る指針を得たこと は、予定外ではあるが、先ず第一の収獲である。次に実 験と理論の示す所によると、粘土の圧密は自重の作用に より大きく加速されることがわかり、埋立工事一般に明 るい見通しを得たことは第二の収獲である。また改良工 法が大体予期通りの成果をあげ、実施する場合の確実な 資料を得たことは第三の収獲である。

この工法を実施するには、さらにサンドマットの厚さ や平面的な形状、その設置方法、排水あるいは水位低下 の方法など多くの具体的な問題を解決してゆかねばなら ない。しかし原則的に見て、埋立期間中に在来地盤とも ども圧密を促進する事前処理工法は、軟弱粘土を用いる 埋立地では、きわめて望ましいものと言ってよいであろ う。

この実験に当っては、大阪市立大学工学部,岩津潤教 授、大阪市港湾局工業地域造成部,橘好茂部長,同工事 課 岡田正明課長,企画課 大西英雄主査,工事課 高 間佐太男設計係長 以上の方々の御指導と御援助を賜っ た。ここに深く謝意を表する次第である。

参考文献

- Terzaghi & Peck : Soil Mechanics in Engineering Practice. (1948)
- 三笠 正人:軟弱粘土の圧密理論(土質工学会昭和 35 年 度秋季講演会)

討 論

〇網干寿夫(広島大学)

真空排水圧密と自然排水圧密の差があまり無いという ことであるが,層厚の差が10%程度で,その有効応力 の増加量の違いが3倍以上である。中間の圧密速度が非 常に差が少ないように思うが何か理由があるのか。 〇三笠正人(発表者)

それは層厚の 相違と, 真空圧密の 場合の 実験開始が 15 日 遅れ, その間 にかなり 圧密が進行 したためと 思 う。やはり初期条件の違いが利いている。

〇網千

非改良区域の最終沈下量と改良区域の自然排水の場合

の最終沈下量と比較するとその差が大きいが,非改良区 域の部分においては,改良区域に比べて全圧力の差があ ったのか。また水圧はどうであったか。

〇三笠

初めのうちは埋立層の上に水がたまっていたからその 水頭だけの水圧は自然水圧とし働くから有効圧は全圧力 からそれを引いただけしかふえていない。 〇網干

ー次元的に取扱われる部分と実際の試験区間の三次元 的に取扱われる部分との沈下量に違いがあるかどうか。 〇三笠

三次元的というと、境界付近においてはかなり沈下に

- 55 -

は差がでており、図-5、図-6 をみるとわかるように、 外側の影響はかなり大きく、中央部では一次元の計算と 合うが、境界付近は合わない。三次元的な影響と十分解 析していないのではっきり云えないが、三次元的な広が りの効果が非常に早いと初めから横の方まで下る。 〇網干

図ー4の e-log P 曲線について,直線が下に凸の形 になっているように見える。われわれの経験であると圧 密曲線は少し上に凸になると思うが。 〇三笠

これは実験の不備かと思う。上に凸と考えるとむしろ 後の計算が実測と合つてくる。

〇山内豊聡(九洲大学)

ビニール・シートの大きさは実用的に 12 m くらいで よいか,これは真空度にも関係するか。

〇三笠

ビニール・シートは一応下の地盤からの圧密を遮断す る意味で使用したので、サンドマットより少し広ければ よいと考えている。