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STIFFNESS MATRIX FOR BEAMS ON ELASTIC FOUNDATION
BY VIRTUAL WORK PRINCIPLE

SHIH-FANG CHEN*

ABSTRACT

This technical note provides a theoretical analysis of finite length beams on soil subjected
to general loadings and given end support conditions. The principle of virtual work was
employed to formulate the stiffness matrix of the soil-structure interaction problem. Nu-
merical methods such as finite element analyses were employed, and the results from the
examples indicated that the proposed method gave results close to those solved using Harr’s
approach.
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INTRODUCTION

The theory of beams on elastic foundation is commonly used in soil-structure interaction
and occupies a very important place in soil mechanics. The methods for the solution due
to Winkler’s assumption were used (Winkler (7)) for more than one century. Winkler’s
hypothesis states that the reactions of the foundation are proportional at every point to the
deflection of the beam at that point; this simplified “independent spring” model of the
elastic foundation leads frequently to incorrect results.

Until recently, a large number of studies and many numerical methods have been proposed
by many researchers (Iyengar (2), Malter (3) and Matlock et al (4)) to solve this problem.
Some of these methods may be modified to take into account different elastic foundations
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with different moduli % values. Based on the theory of Vlasov’s general variational method
(Vlasov et al (6)), instead of using %, a digital computer program has been developed for
analyzing beams on elastic foundation by Harr et al (1). This method is more accurate
than the well-known theory of Winkler, and is simpler than the theory of the elastic semi-
infinite space. However, analysis by a sophisticated finite element method procedure may
contribute greatly to the understanding of the prototype performance. In this paper, the
author’s technique and Harr’s are similar, and attack essentially the same problem, but a
new approach based on the virtual work principle is outlined herein, and a stiffness matrix
is developed which may be useful in engineering practice.

DERIVATION OF STIFFNESS MATRIX

Basic Assumptions

Consider that a finite element beam rests on a homogeneous, elastic, compressible layer
of soils of the thickness H which produces conditions of plane strain (Fig. 1). The finite

b i £
BEAM: EI | To=6xf | 7,59, 2
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. vr v( ) "I‘3
For plane strain: - __Zg__
E = S V(g”t)
H ° 1 ysz H uls,)  © 'I‘E"
Y, = s
1 - Vs

(a) (b)

Fig. 1. Finite element beam on soil medium

element beam model is subjected to the same assumptions as the classical equations for
bending of a beam:

(1) Axial and shear deformations and secondary effects due to bending are neglected.

(2) Consideration is limited to straight beams of symmetrical cross section.

(3) Plane sections are assumed to remain plane both during and after bending.

(4) Lateral deflections are assumed to be small compared to the length of the beam.

(5) Torsional effects are neglected.

(6) The material of the beam is assumed to behave in a linearly elastic manner.

The degree of freedom is so selected (see Fig. 1(b)) that the vertical displacement func-

tion for a segment of length ! can be represented by a third-degree polynominal such as
(Przemieniecki (5)):
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"
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v(§)=<1—38%+26%, £—2£24-£8, 382288, —£24£%> (1)
73
[
which may be written symbolically as:
v(©)=N©&r (2)

where the wiggle sign (~) is to denote that the quantities are matrices.
In a soil medium, in order to obtain a simple approximate solution, the unknown displace-
ment functions are expanded in finite series (Vlasov (6)):

UE,n= % u: (&) ¢:) 3
VE = 56 60 (4)

The shape functions ¢;(p) and ¢;(y) are assumed to be known, and the functions u; (&)
and v;(¢) are assumed to be unknown. It is convenient to introduce dimensionless functions
for ¢:(y) and ¢,(y); and the dimensional displacement functions for #; (&) and v, (¢).

In our problem described herein, the horizontal displacements U (&, %) in the soil medium
may be considered to be of negligible magnitude in comparison with the vertical displace-
ments V(¢,7). It is further assumed that no slip occurs at the interface between the beam
and soils. Thus, we have the simple equation to represent the displacements in the soil
medium. This is of the form using the first term approximation (Ref. (1)):

ViE,n=v(©) ¢ (5)

where v (§)=the vertical deflections of the beam at the interface as expressed by Equation
1.
¢ (n)=a selected or known dimensionless function.
According to Vlasov (6), we can choose the following expression for ¢ (7):
(1) For a relatively thin compressible layer of soils (i.e. H=fairly small):

$m=1-7 (6)

(2) For a thick layer of soils (H=very large):

sin/ T{; (1-mn)

pO)=—""""F (7)
sin/ T Z" )
where
L=% —%Eig—};ﬁ-"i), the elastic characteristics of the beam.
0

r=some coeflicient which is dependent on the elastic properties of the foundation.
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Strain-Displacement Relations
Employing the previous assumptions in the soil medxum we may have the following

equations:
U, 7)=0 (8)
Vg, D=0 ¢ (9)
Substituting Equation (2) into Equation (9) to obtain: -
VED=NE© o) 7 (10)

By conventional strain-displacement relations,

U

o = e =0 (11)
0,

in which
v =50 (14)
(g =258 (15)

Combining Equations (11), (12) and (13), and writing in matrix form:

é: 0 0 0
e || L2 a—sera), ‘“”) (E—26 467, 4”’” @er—29), LD (—grygn
o ) L eereen, H s s, L0 g6, L0 (o430
"
72
(16)
7s
74
or symbolically as:
e=B{,7) r an

Stress-Strain Relations

In the soil medium, in the present case, the strains are related to the stresses by a line-
arly elastic, isotropic rule. Treating the problem as a plane strain case, so
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g E v 1 0 ey
A= A a
—y
Ty O 0 _—2—0— T zy
in which
E,=E,/1—v2) (19)
V0=v3/(1—ys) (20)
Equation (18) may be written symbolically as:
c=De @
Application of Virtual Work Principle
According to the principle of virtual work from virtual displacements :
VW, = VWe (22)
[ S—— [ ——
Internal External
virtual work virtual work
S 5’ o dv:S 50T p ds+s 50T b dv (23)
e s ~ [ ~
Assume the absence of body forces, and from Equation (23) we have:
1 ¢l
—-S S0"(8) EL"(8)l d& +S 3" ¢ dv =S 507 p ds (24)
JAN 0 ~ ~ s~ ~
N n———— ettt e nsuan samed R st
VW, due to beam VW, due to VW: due to
soil surface traction
Substituting Equations (2), (17) and (21) into Equation (24) yields:
1 ET 1e1
o\ i N"@" N"@ de r+{ § o7 BT D BiHbde dyr=0r7 R (25)

After doing simple algebraic calculations, we may obtain:
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12 6 —12 6 n
El 6 4 —6 2 72
B -12 -6 12 —6 73
6 2 —6 4 L
156 22 54
. 22 4 13
1—E302 %ﬁgo("b'(v»z # 54 13 156
—13 -3 —22
36 3 —36
. 3 4 =3
i o GO dy s s
3 -1 -3
R
R
| &
R

51

—13 7y
-3 72
—22 73
4 74

3 71

—1 )

-3 73

4 74

(26)

1 1
The terms So(gb’(vy))zdv and So(gl:(wy))2 dy in Equation (26) depend upon the conditions which

are expressed in either Equation (6) or Equation (7).

(1) For the case of ¢(n)=1—7

1
SO<¢(v))2dv=1/3

1
So (¢’ ()2 dp=1

Substituting Equations (27) and (28) into Equation (26), we may obtain:

12 6
EI 6 4
Bl 12 -6
6 2

E, bH

2(1+ve) 90!

—12
—6
12
—6
36
3

—36

3

6 156

2 N Eo bl 22

—6 1—ve® 420H 54

4 —-13
3 —36 3 2
4 -3 —1 72
~3 36 -3 7s
-1 —3 4 - - T4

(27)
(29)
22 54 —13
4 13 -3
13 156 —22
—3 —22 4
R,
R,
= R, (29)
R,
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sinz ¢ l[!- (1—7p)
(2) For the case of ¢(y) =
sink T—L—
Sl(‘ﬁ( ) dy= ! (— (GH/L) + ~sink 2(rHIL)) (30)
o P A= o Ly s GEIL) T 5 sin/ Ay

1 /
[, dn = 5 GHIL) PHIL) + - sink 2(r HIL) @D

SN
sinf?(yH/L) (

Substituting Equations (30) and (31) into Equation (26), we may obtain:

12 6 -12 6
El 6 4 -6 2
Bl 12 -6 12 —6
6 2 -6 4
. - 156 22 54 —13
B WL (PHIL) +1/2sink 2 HIL) | 2 4 13 -3
1—v? 420H 2 sink? (y H/L) 54 13 156 —22
~13 -3 —22 4
3 3 —36 3-
B bH 1 —GHL)+12sinh 2 HIL) 8 4 -3 -~
2(1+vo) 300 2(rHIL) sink?(y HIL) -3 —3 36 -3
- | 3 -1 -3 4
7 Ry -
72 R,
N R (32-a)
74 R,

If the elastic foundation is on a semi-infinite plane, i.e., H—c, Equation (32-a) reduces

to:
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12 6 —12 6 156 22 54 —13.
EI 6 4 —6 2 E, bl (1> 22 4 13 -3
Bl 12 -6 12 —6 1—v® 840 \L 54 13 156 —22
6 2 —6 4 —~13 —3 —22 4
36 3 —3% 3. 7 R,
3 4 -3 -1 7 Rg
+ E() b 1 2 — (32'b)
3 -1 -3 4 74 R,
L = 241 120
Lt p=10kips
E = 5X103 kai 10"
SOIL: Eo = 3 ksi
- 1
H= 50 Y, = 0.3 X=1.5
RIGID BASE
(a)
~e Y ~e ~u - (g N )
RN RN (b)
=
=r 0 (c)
&~ O st C
2% //
P ]
el 0.1 /
a L —
w20,
101
£ B
gﬂ 0 Pl (a)
ZE “//’
= +10]
+20.
+51_
g‘& o) e — (e)
WE -
R /

Fig. 2. Numerical example (1)
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Note that the equilibrium relations of Equations (29), (32-a) and (32:b) can be written in
the compact matrix form such as:
Kr =R (33)

in which:
7 =a vector composed of the nodal displacements.
R =a vector of the nodal forces.
K =all the terms in the left side of Equations (29), (32-a) and (32-b), i.e., the stiffness

~

matrix relating the nodal displacements and the nodal forces.
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Fig. 3. Numerical example (2)
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NUMERICAL EXAMPLES
Example (1)—From Harr et al (Ref. (1))

The problem described in Fig. 2 is that of a continuous beam with given beam and soil
parameters, subject to a concentrated load 10 kips at the distance with 4 ft from the left
end. It is desired to determine the deflection curve, the shear curve and the correspond-
ing bending moments for computation of stresses.

The model which is used for calculation is devided into 6 elements and is shown in Fig.
2(b). By using the stiffness equation represented by Equation (32-a), the results of deflec-
tions, bending moments and shears are shown in Fig. 2(c) to 2(e).

Example (2)—From Harr et al (Ref. (1))

The problems described in Fig. 3 are those for a beam under a given load system for the
indicated end conditions. The beam and soil parameters are the same as those given in
the previous example.

The beam was idealized with 24 elements. The total stiffness matrix can be assembled
from the element stiffness matrix (Equation (32-a)). However, the size of the total stiffness
matrix can be reduced by eliminating rows and columns corresponding to zero displacements
according to the given end conditions. The results are also shown in Fig. 3.

The results of both Example (1) and Example (2) are nearly identical to those solved by
Harr’s approach.

CONCLUSIONS

The method presented provides a matrix formulation for beams on elastic supports, which
is based on the two parameters E, and v of the soil medium. The beam may be of varying
cross-section or the soil parameters may also be varying.

The proposed method is easy to apply and can be extended to the analysis of soil-supported
structural problems such as anchored bulkhead problems. The method can also be extended
to include the axial forces for the analysis of buckling problems of beams on the elastic
foundation. ‘
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NOTATION
The following symbols are used in this paper:
b=body forces
@:element strain-displacement matrix
Qzelastic matrix containing the appropriate material properties
e=<t, &, Tu>, strain- vector

E=the elastic modulus of the beam
E,=the elastic modulus of soils
I=the moment of inertia of the beam
K=the stiffness matrix relating the nodal displacements and the nodal forces

I=the length of the finite element beam
L=the elastic characteristics of the beam
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Zy=the shape function of the beam
#=a vector composed of the nodal displacements
Igza vector of the nodal forces

r=some coeflicient which is dependent on the elastic properties of the foundation
U=the horizontal displacement in the soil medium

v=the vertical displacement of the beam

V=the vertical displacement in the soil medium

v.=Poisson’s ratio of soils

0=<0;, 0y, Toy>, stress vector

¢:=shape function
¢;=shape function
¢, p=non-dimensional parameters, see Fig. 1(b)
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