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STIFFNESS  MATRIX  FOR  BEAMS  ON  ELASTIC  FOUNDATION
                   BY  VIRTUAL  WORK  PRINCIPLE

                              SHIH-FANG  CHEN*

                                  ABSTRACT

  This  technical  note  prevides  a theoretical  analysis  of  finite length beams  on  soil  subjected

to general  loadings and  given end  suppert  conditions.  The  pr.i ciple of  virtual  work  was

employed  to formulate the  stiffness matrix  of  the soil-structure  interaction problem. Nu-
merical  methods  such  as  finite element  analyses  were  employed,  and  the  results  from the
examples  indicated that the  proposed method  gave  results  close  to those solved  using  Harr's
approach.

Key  words:  static,  elasticity,  settlement,  computer  application,  mat  foundatien
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                                INTRODUCTION

  The  theory  of  beams  on  elastic  foundation is commoniy  used  in soil-structure  interaction
and  occupies  a  very  important place in soil  mechanics.  The  methods  for the solution  due
to Winkler's assumption  were  used  (Winkler (7)) for more  than one  century.  Winkler's
hypothesis states  that  the reactions  of  the foundation are  proportional at  every  peint  to the

deflection of  the beam  at  that  point; this simplified  
"independent

 spring"  mQdel  of  the

elastic  foundation leads frequently to incorrect results.

  Until recently,  a  large number  of  studies  and  many  numerical  methods  have been  proposed
by  many  researchers  (Iyengar (2), Malter (3) and  Matlock et  al (4)) to solve  this problem.
Some  of  these methods  may  be medified  to take into aecount  different elastic foundations
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with  different moduli  le values.  - Based on  the theory  of  Vlasov's general variational  method

<Vlasov et  al (6)), instead of  using  k, a digital computer  program  has been dev.eloped fer

.analyzing beams  on  elastic  foundation by Harr et al (1). This rnethod  is more  accurate

'than
 the well-known  theory of  Winkler, and  is simpler  than the theory  of  the  elastic  semi-

.infinite space.  However, analysis  by a sophisticated  finite element  method  procedure may

･contribute greatly to the understanding  of the prototype performance. In this paper, the

author's  technique and  Harr's are  sirnilar,  and  attack  essentially  the  same  problem, but a

'new  approach  based on  the virtual  work  principle  is outlined  herein, and  a stiffness  matrix

i's developed which  may  be useful  in engineering  practice.

                         DERIVATION  OF  STIFFNESS  MATRIX

Btisic Assumptions

  Consider  that  a  finite element  beam  rest$  on  a homogeneous,  elastic,  compressible  layer

of  soils of  the  thickness  H  which  produces conditions  of  plane strain  (Fig, 1). The  finite

b

:
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                      Fig, 1. Finite element  beam  en  soil medium

element  beam  model  is subjected  to the same  assumptions  as the classical  equations  for

bending of  a  beam:

  (1) Axia! and  shear  deformations and  secondary  effects due to bending are  neglected.

  (2) Consideration is !imited to straight  beams of  symmetrical  cress  section.

  (3) Plane sectiens  are  assumed  to remain  plane both during and  after bending.

  (4) Lateral deflections are  assumed  to be small  compared  to the length of  the  beam.

  (5) Torsional effects are  neglected.

  (6) The  material  of  the beam  is assumed  to behave in a  linearly elastic  manner.

  The  degree of  freedom is se selected  (see Fig. 1(b)) that the  verticnl  displacement func-

tion for a  segment  of  length tcan  be represented  by a  thirddegree  polynominal  such  as

(Przemieniecki (5)) :
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v(O==<1-3ea+243,e-2e2+eS,  3e2-2e3, -e2+eB>

rlr2rar4

which  may  be written  symbolicaily  as:

                                 v(e)=N(e)r

where  the wiggle  sign  <ny) is to denote that  the quantities  are  matrices.

 In a  soil  medium,  in order  to obtain  a  simple  approximate  solution,  the  unknown

ment  functions are  expanded  in finite series  (Vlasov (6)):

(1)

(2)

displace-

                                     m

                             U(e,v)=Eas,(e) di,<rp) (3)
                                    i=t

                                     n

                             V(#, g) =::  E] vj (e) ¢ j (n) (4)
                                    i=t

  The  shape  functions ipi(v) and  ipi(v) are  assumed  to be known,  and  the functions "i(e)

and  vi(e)  are  a$sumed  to be unknown.  It is convenient  to introduce dimensionless functions
for ipi(v) and  dii(v) ; and  the  dimensional displacement functions for ui(6)  and  vi(g).

  In our  problem  described herein, the horizontal displacements U(6,n) in the soii  medium

may  be considered  to be of  negligible  magnitude  in comparison  with  the  vertical  displace-
ments  V(g,n). It is further assumed  that  no  slip  occurs  at  the  interface between the beam
and  soils. Thus, we  have  the simple  equation  to represent  the displacements in the  soil

medium.  This is of  the form using  the  first term  approximation  (Ref, (1)):

                               V(6, rp)=v (8) e(v) (5)

where  v(g)==the  vertical  deflections of  the  beam  at  the  interface as  expressed  by Equation
          (1).
     ip(rp)==a selected  or  known  dimensionless function.

 According to Vlasov (6), we  can  choose  the  following expression  for di(v):
  (1) For  a  relatively  thin  compressible  layer of  soils  (i.e. H=fairly srnall):

                                 ¢ (v)=1-rp (6>

  (2) For a  thick layer of  soils  (H=very large):

                                     H

                                
sinh  r L- (1 

-
 rp)

                        - ¢ (?): r--'LH
 (7>

                                  sinhri

whereL-VZ-E.ISI-,y-e:'J,

T=sorne  coeMcientthe

 elastic

which  is

 characteristics  of  the  beam,

dependent  on  the  elastic  properties of  the  foundation.
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Strain-DisPlacement Relations

  Employing the previous assumptions  in the soil med.ium,  we  may  have the following

equatiQns  :

                               U(4, n)*O  (8)

                               V(6,7) :v(e)  ip(v) (9)

  Substituting Equatien (2) into Equation (9) to obtain:

                             V(e, rp)=N(e) ¢ (v)r (lo)                                     -. -

  By  conventional  strain-displacernent  relations,

                       oU

                   6=  ax 
:O

 (11)

                   e, =g･V-y  =OaVn  ddijy ==  
-Se-liVi-

 ty(e) .r. (i2)

                              OV  OV' d8 ¢ (n)                        oU

                   r"v 
==

 ay 
+ox  

="o-e

 dx=  t ZY'(e)f (i3)

in which

                                       eip (v) 
'

                                                                       (14)                                 ip,(rp)=
                                        av

                                        oN(e)

                                 
N'(e)

 
==

 o6 
(l5>

  Combining Equations (11), (12) and  (13), and  writing  in matrix  form :

     a  o o o o

    &  
..
 

dii[/ln)
 a-362+2eB), 

dii[/lq)'
 (e-ee2+es), 

¢ii/lrp) (3e2-2e3>, 
-SgCAS/P-)(-e2+es)

     r., 
¢ (IV)

 <-6e+6e2), 
¢ (IV)

 (1-4g+3e2), ¢Y) (6e-662), 
¢ (ln)

 (-2e+3e2)

.

rlr2rg

n

or  symbolically  :

Stress-Strain Relations

  In the soil  medium,

arly  elastic, isotropic
 in the present
rule.  Treating

  e=B(e,  n) r --  -v

case, the strains

the problem  as  a

(16>

                          (17)

are  related  to the stresse$  by  a line--

plane strain  case,  so
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a=av

rxv

 Eo1-ve2

  CHEN

1va

ve1

o o

  o

  o

lhve
 2

Gev

rxv

in which

                                  Eh=al(1-p,2)

                                  vo!=vY(1-vs)

  Equation (18> may  be written  symbolically  as:

                                     a=  De
                                     N -. -.

Apt,lication of Virtual Tuaprle Pbeinciple

  According to the  principle of  virtual  work  from virtual  displacements :

                              VW}  =  VWh
                              

LHv"J  Ly"

                             Internal External
                           virtual  work  virtual work

                          S. 6.e' { dv= !, 6.v' P ds+S, tivT .b. dv

  Assume  the absence  of  body forces, and  from Equation (23) we  have:

                    $･Si 6v"(e) EV;"(e)l de +!.6sT a. do =  S, fi.v.'2 cts
                        

'----v"-."  Nrvny'  .v.--v

                      VWi  due to beam  VW}  due to VWb  due to
                                       soil surface  traction

                   '

  Substituting Equations (2), (17) and  (21) into Equation (24) yields :

              6rr!; 
-il-iEL

 zy"(g)T ly"(e) de f+!i!i b.r.T .BT D.. E IIIb de dD !=6f' 8

 After doing simple  algebraic  calculations,  we  may  obtain  :

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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     12

      6

   -12

      6

 Ee bl

1-vo2 420H

2aE.O.T,) Z",, !g(¢ (n))2

 :1
fr4
  i(ipt(v))2 (lv and  !i
  in either  Equation

   case  of  ip(n)=1-v

         ELASTIC

 6 -12  6

 4 -6  2

-6  12 -6

 2 -6  4

               156

                22

Sl(¢
'(v))2

 dn 
s4

              -13

dn

FeUNDATION

 36

  3-36

  3

  The  terMSi

are  expressed

  (1) For the

 rl

 li
,!

4

,g-3

i
 I31

 54

 13156-22

 -36

  -3

   36

  -3

 (ip(rp))2 di7 in Equation (26)

   (6) or  Equation (7).

     !i (ip (n))2 dn ==  1/3

     ii(ip'<n))2 dn=1

and  (28) into Equation (26),

-13

 -3-22

  4

   3

  -1

  -3

   4

Substituting      Equations (27)

    12 6 -12

     6 4 -6

  -12  -6  12

     6 2 -6

              36

  &  bH  3

2(1+ve) 901 -36

               3

 6

 2-6

 4

rtr2r3r4

 rl

 r2

 r3

 r4

emls

+

 3

 4-3-1

     Eo bl

 
+  

'1':v'ori
 420fi-

-36  3

 -3  -1

 36 -3

 -3  4

51

                       (26)

depend upon  the conditions  which

                       (27)

                       (28)

we  may  obtain  :

  156 22 54 
-13

   22 4 13 -3

   54 13 156 -22

 -13  -3  -22  4

r! Rt

r2 R2
    ..  (29)
r3 Rb

r4 
-Ri
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                          H
                      

sinh
 r L- (l 

ff
 op>

 (2) For
 
the

 case  of  ta(v)= H-J

                        sinh
 r LL

           !i(di(rp))2 de== 2(rlf7L) silnh2 (rHIL) (' (rHIL) + ll-sinh 2(rH7L))

           !i(di'(n))2 d7 =  
'll'(rH]L)

 
,i.hi(lrH7L)

 ((rH7L) +-;-sinh 2(rH7L))

 Substituting Equations (30) and  (31) into Equation  (26), we  may  obtain:

Mls

+

   12 6 -12

    6 4 -6

  -12  -6  12

    6 2 -6

           /t  tt

 Eo bl 1

l-ve2 42oH' 
-2"(rH7L)

 Eo bif 1

 6

 2-6

 4

 (rEllL) -t- 1/2sinh 2(rll7L)

     sinh2  (rE7L)

-(rH7L)-t-11ksinh2(rlVL)

156

 22

 54-13

 36

  3-36

  3

22

 4

13-3

 3

 4-3-1

 54

 l3156-22

-36-3

 36-3

-13-3-22'

  4

 3-1-3

 4

\

(30)

(31)

 Ifto:

･+

 .

  2(!+ve)

   rr

   r2

   r3

   k

the elastic

3012(rllTL>

R,R,'

R3R,

foundation is

sinh2  (r H7L)

on  a  semi-infinite  plane, i.e.,H-oo

             (32･a)

             '
            '
,
 Equation  (32･a) reduces

          '

     NII-Electionic  
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 12

  6-12

  6

Ee

 6

 4-6

 2

b

-12-6

 12-6

1

 6

 2-6

 4

 ELASTIC  FOUNDATION

                156

+..E-;.,,z',(s)  ii
               -13

 36 3 -36  3-

  3 4 -3  -1

-36  -3  36 -3

  3 -1  -3  4

2(1+ve) 30t2(r/L)

22

 4

 13-3

rl

hrar4

 54

 13

156-22

[=
L

 -13･

 -3

 -22

   4j

R,R,RsR4

(32Jb)

53

oe,

V=1.5

      (a)
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<c)

(d)

(e)

Fig. 2. Numeri ¢ al example  (1)
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  Note that  the equilibrium  relations  of  Equations (29), (32･a) and  (32･b)
the compact  matrix  form such  as  :

                                  Kr  ==  R
                                  -p- N

in which  :

  r=a  vector  composed  of  the  nodal  displacements.  -

 R=a  vector  ef  the nodal  forces.

 g=all the terms in the  left side  of  Equations (29), (32･a) and  (32･b),
     matrix  relating  the nodal  displacements and  the  nodal  forces.

           Oe t-g
 z z, 12t 16e arttu{lt+t 

                Sk/ft (a) lok  

                   
12,,ft-bk

 
1]g/ft

 

                                         

t]A"ftaft-aftttA  "fvlrkhrltvt)  fk

canbe  written  in

i.e. the
  '

rv ant"aM  arvln  fia-

U
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Fig. 3.Numericalexarnple  C2)
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                              NUMERICAL  EXAMPLES

Example (1)-From Harr et al (Ref. (1))
  The  problem  described in Fig. 2 is that of  a  continuous  bearn with  given beam  and  soil

parameters, subject  to a  concentrated  load 10 kips at  the distance with  4 ft from the left

end.  It is desired to  determine the defiection curve,  the shear  curve  and  the correspond-

ing bending moments  for computation  of  stresses.

  The  model  which  is used  for calculation  is devided into 6 elements  and  is shown  in Fig.

2(b). By using  the stiffness  equation  represented  by Equation (32,a), the  results  of defiec-

tions, bending  moments  and  shears  are  shown  in Fig. 2Cc) to 2(e).

Example  (2)-From Harr et  al (Ref. (1))
  The  problems  described in Fig.3 are those  for a  bearn under  a  given load system  for the

indicated end  conditions.  The  beam  and  soil parameters  are  the same  as  those given in

the  previous  example.

  The  beam  was  idealized with  24 elements.  The  total stiffness matrix  can  be assembled

from  the  element  stiffness  matrix  (Equation (32nya)). However, the size  of the total stiffness

matrix  can  be reduced  by eliminating  rows  and  columns  corresponding  to zere  displacements

according  to the given  end  conditions.  The  results  are  also  shown  in Fig. 3.

  The  results  of  both Example (1) and  Example (2) are  nearly  identical to those solved  by

Harr's approach.

                                  CONCLUSIONS

  The  rnethod  presented  provides a  matrix  formulation for beams  on  elastic  supports,  which

is based on  the two  parameters  E, and  v  of  the soil  mediurn.  The  beam  may  be of  varying

cross-section  or  the soil parameters  may  also  be varying.

  The  proposed  method  is easy  to apply  and  can  be extended  to the  analysis  of  soil-supported

structural  problems  such  as  anchered  bulkhead problems. The  method  can  also be extended

to include the axial  forces for the  analysis  of  buckling problerns of  beams on  the elastic

foundation.
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                                  NOTATION

The  following symbols  are  used  in this paper:

 b==body forces -B=e!ement
 strain-displacement  matrix

 .D==elastic
 matrix  containing  the appropriate  material  properties

 N

 e=<G,  ev, r.v>, stram･vector

E  =the  elastic  modu!us  of  the  beam

a==the elastic  modulus  of  soils

 J==the moment  of  inertia of  the beam

K=  the stiffness matrix  relating  the nodal  displacements and  the  nodal  forces
 -

 l==the length of  the finite element  beam
L=the  elastic characteristics  of  the beam

NII-Electionic  Libiaiy  
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   N=:the shape  function of the beam   ･-

   r=a  vector  composed  of  the nodal  displacements   -

   R=a  vector  of  the nodal  fbrces   -

   r=  some  coeMcient  which  is dependent on  the  elastic  properties of  the  foundation
   U:=:the horizontal displacement in the soil  medium

   v =the  vertical  clisplacement oi  the beam

   V=  the vertical  displacement in the  soil  medium

   v.  =Poisson's  ratio  of  soils

   ff=<o.,  av, Txv>,  stress  vector   N

  ¢ i--shape  function

  dii--shape function                    '

 6, ij=non-dimensional parameters, see  Fig. 1(b)
               '
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