The Japanese Geotechnical Society

SOILS AND FOUNDATIONS Vol. 15, No. 2, June 1975
Japanese Society of Soil Mechanics and Foundation Engineering

ON STRESS-DILATANCY RELATION OF SAND
IN SIMPLE SHEAR TEST

Masanosu Opa*

ABSTRACT

A stress—dilatancy relation of sand is proposed on the basis of the experimental fact
that the principal stress axes and the principal strain increment axes rotate without com-
plete coincidence with each other during monotonous increace of horizontal shear stress
acting on a sample in a simple shear test.  The inclination angle ¢ of the major prin-
cipal stress axis to the vertical direction is deduced from a simple relationship ; T/oy=#&tan
¢, which is derived from theoretical consideration (Oda and Konishi, 1974) and verified by
Cole’s experimental results. The value of & is a material constant for a given sand which
is dependent only on the interparticle friction angle. By using this relation, the princi-
pal stress parameters such as mean stress (0;,40;)/2 and maximum shear stress (¢;—a3)/2
are easily deduced from the shear stress v and the normal stress oy acting on the horizontal
shear plane in a simple shear test or even in a direct shear test.
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INTRODUCTION

Some experimental studies on the stress-strain behaviour of sand sheared in a simple
shear apparatus have been carried out with the followmg conclusions (Oda and Konishi,
1974) :

1) As a first approximation, sand is considered to be a plastic material which undergoes
anisotropic strain hardening and is composed of rigid, cohesionless particles.

2) Both of principal axes of stress and of strain increment rotate gradually during
monotonous increase of shear stress applied parallel to the horizontal plane of a 51mple
shear apparatus.

3) The principal axes of stress and of strain increment do not generally coincide,
especially at an early stage of the test. ‘

From these experimental facts, a stress-dilatancy relation of sand will be proposed in
this paper.

STRAIN INCREMENTS IN SIMPLE SHEAR TEST

The principal stresses acting on a sample in a simple shear apparatus are usually estima-
ted on making some assumption about their orientation with respect to the horizontal
shear plane. An assumption that the principal axes of stress and of strain increment
coincide was used with success in interpreting the results of drained tests on Leighton
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Buzzard sand (Arthur, James and Roscoe, 1964). From the extensive studies on the
orientation of principal stress by the improved simple shear apparatus, Cole (1967) and
Roscoe, Bassett and Cole (1967) also pointed out that this assumption should be a basis
to interpret the experimental facts obtained from the simple shear test, whatever the state
path, and that the other assumptions such as the horizontal plane=a plane of maximum
shear stress and the horizontal plane=a plane of maximum obliquity did not predict accu-
rately the directions of the principal stress axes.

Bassett (1967), however, found that the principal axes of stress and of strain increment
diverged when the sample was shearéd beyond the peak stress ratio in drained tests. Oda
and Konishi (1974) also pointed out that both of these principal axes did not always
coincide at least up to the peak stress ratio in the two-dimensional simple shear tests on
circular cylinder assemblies packed at random. Therefore, the discrepancy between these
two kinds of principal axes which occurs at least at an early stage of test should be con-
sidered to discuss the stress-dilatancy relation of sand.

Consider* the reason why the principal stress axes
diverge from the principal strain increment axes during
the simple shear of sand.

When shear stress 7 is applied parallel to the horizontal
(Fig.1), the axis Z of major principal stress inclines to the
vertical V at the angle ¢. Oda and Konishi (1974) infer-
red that there are some critical contacts which slid under
the minimum principal stress ratio for a given granular
fabric of sand and that these critical contacts should have
the inclination angles (3, of their normals N, to the

. .. . T 1 .
Fig. 1. Axes Y and Z of prin- mMajor principal stress axis Z at i<z-+§¢,‘> (clockwise
cipal stresses and axes Y’

an : being positive as shown). However, the condition of
and Z’ of principal strain

increments.  In order to 20 strain increment in the horizontal direction in the
satisfy the condition of simple shear tests leads to obstruct full sliding at these
zero strain increment in  critical contacts even when the necessary condition of
the horizontal direction H, forces for sliding is satisfied, because the full sliding at
sliding movements which these contacts results in extensional or compressional
decide the strain increment  girain increment in the horizontal direction. Therefore,
?fhoI::ssnozcxg;;s a'icnccl(;z:ac:(s) it is reasonable to consider that the slidings must occur
the major principal stress &t SOme contacts deviating slightly from the critical con-
r 1 tacts so as to satisfy the condition of the zero strain

axes Z at ﬁl=Z+"§¢f‘+ increment in the horizontal direction. This is the reason
G or at 192=|—<£+l¢ﬂ> why the principal axes of stresses do not coincide with
' 4 2 the principal axes of strain increments. Let the average

. If deviation angle § deviation angle be equal to the angle #. Then the slid-
is zero (ie., Bi=By), the 1ng'mc?vements which give decisive influence on the
principal stress axes (Y,Z) strain increments of the assembly must occur at the
coincide with the principal contacts whose normals N, incline to the major prin-

in i 7 . . . b4 =~ 4
strain increment axes (Y, cipal stress direction at 81=<Z+%¢y>+ﬁ or atf8,= —<-4~

VAR
* Two-dimensional model composed of right circular cylinders will be discussed to avoid the intricate
description of theory in this paper. The theoretical equations derived on the basis of the two-
dimensional model, however, can be applied to the behaviour of sand composed of non-spherical
grains.

+0
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Now consider two solid paths passing entirely through the solid particles in the direc~
tions of Y and Z (Fig. 2). These paths were called “solid path” by Horne (1965) and Oda
(1974). Since the principal axes of anisotropy with respect to the distribution of N,
nearly coincide with the principal axes of stresses (Biarez and Wiendieck (1963), Oda
(1972), Oda and Konishi (1974)), the number m; of contacts traversed in proceeding a
unit length parallel to the major principal stress direction Z from the contacts C; to Cp,
can be estimated by the mean radius # and the function E(8). The function E(f) is

a probability density function to show the two-dimensional distribution of N; (Oda,
1974).

as shown in Fig. 1.

1
my= x/2
2ff_ // 2E(B)cos BdB

where the angle B is the inclination angle of N, to the major principal stress axis (clock-
wise being positive). From the same consideration on the minor principal direction Y, we

get

(1)

Py = i (2)
2ff 2E(8)sin 8dB

In proceeding entirely the solid path from a contact C; to another contact C,, in Fig. 2,

the number of contacts whose normals lie within the angle ranges of Bl-——dé@ to Bl—l-—42§—
and of ——Bz———%@— to -—Bz-i—-z—’z—@— are given by
2mz{E(By) +E(—B,)} 48 (3)

Fig. 2. Solid paths (C;~Cpy and C;~Cp;) in the principal stress
directions Y and Z. When granular assembly undergoes
deformation increment due to the sliding movements at conta-
cts, the solid paths (C;~Cpy and C,~Cy,) are displaced into
new positions (C,'~Cpy’ and C;/~Cp;’).
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where the angles 8, and (B, are equal to —-—I— ¢p+0 and '—<-— . >+0

respectively.

It has been sald that the sliding movements to decide the strain 1ncrements of the assemb-
ly occur at the contacts whose normals incline to the major principal stress axis at 3,
and —f,. Thus, Eq. (8) gives the number of sliding contacts along the solid path
from the contact C; to the contact Cp,.

The granular assembly undergoes nonrecoverable
deformation due to the sliding movements at all of
these sliding contacts in the entirely solid paths.
Then, (U, V,) are the components of displacement
increment of the contact C, in the principal stress
directions Z and Y, and (Umy, Vmy) and Uy,
Vmg) give the components of displacements of
the contacts Cpy and Cp, respectively as shown in
Fig. 2.

Let the mean increment of sliding lengths at these
sliding contacts be JU as shown in Fig. 3. The
component of shortening in the direction Z due to
sliding at a contact whose normal N inclines to
the axis Z at 8, or —f3, can be given by 4U sinf;
or AU sinP,. Since the number of sliding contacts
within the solid path from the contact C; to the
contact Cp, is given by Eq. (8), the summation

Fig. 3. Component of shortening in of component of shortening in the direction Z can
the major principal stress axis be represented by
Z due to sliding at a contact . . .

. ‘whose mnormal N, inclines to . 24Umz(E(B)sinB+E(—Py)sinBy} 4B (4)

~ the axis Z at 8, or B,. Shorte- Eq. (4) gives the value of shortening in length of

ning of solid path (C;~Cp;) in oot i T U As the 1 £ 0.0
the direction of Z is equal to C\Cnz; that is, (Un;—Uy). As the length of C,Cns

the summation of components of

shortening (i.e., 34U sin B; o 2)- §,=24Um;{E(B)sinB,+E(—p5)sinB,} 4B (5)
where §;=compresssional strain increment in the direction Z (compressional strain increment
being positive). In the same manner, it can be shown that the extensional strain incre-
ments éy and the shear strain increment 7,y are also given by (Vay—Vy) and (Va,—V,) +
(Unmy—U,) respectively, as follows:

in the direction Z is unit, we get

éy=—24Umy {E(By)cos P+ E(—PBy)cos P} 48 . (6)
Toy=Tvz

=24Umy{—E(B1)cos B+ E(—By)cos P} 4B

+24Umy {E(By)sin By — E(—B3)sin B} 48 (7)

The probability density function E(B) in Egs. (5) to (7) is nearly symmetrical about
the axis Z (Oda and Konishi, 1974). Therefore, the assumption that E(B,) =E(—p,),

~ strictly speaking, is not correct. We, however, consider that the relation E(83,) = E(—p8,)
is nearly hold in the granular assembly when the deviation angle @ is not so large*.

* It is reasonable to consider that the deviation angle # is less than 20° in a usual assembly of particles
because the discrepancy between the principal axes of stress and of strain increment is also less
than 20° (according to the Cole’s experiment). The experimental evidence given by Oda and Konishi
(1974) shows that the relation E(B;)=E(—p,) is nearly satisfied when the deviation angle is less
than 20°.
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MOHR’S CIRCLE OF STRAIN INCREMENT

During a simple shear test, the boundary displacements ¢ and A are measured as shown
in Fig. 4-b. Because the strain distribution within the sample is considered to be uniform,
the strain increments in the whole sample are easily given by the measurements § and %
as follows:

éx=0, éy=h/D, Tve="Tv=4§/D (8)
where D is the thickness of sample.

Fig. 4-a shows the Mohr’s circle for the strain increments. The angles ¢ and ¢ in this
figure give the inclination angles of the major principal axes of stress and of strain incre-
ment to the vertical V. respectively. The values of strain increments in the directions
V, Z, H and Y are presented by the points A, B, C and D on the Mohr’s circle respec-
tively.

Y72 o
A(Ey,Yyu/2)
L [y
™~ B(Ez, | §aoro [¥/ 7 1
. . ZLl)zg sz/Z)lv L G'/ /é‘ i_?_
€ 0 €, |
0'(&,/2,0) £ 10
) i
- POSITION
(a) C(0,Yuv/2) (b)

Fig. 4. Mohr’s circle for strain increment. The coordinates
represented by the points A, B, C and D correspond to the
value of strain increments in the directions V, Z, Hand Y
respectively.

On drawing the Mohr’s circle, the following facts must be taken into consideration or
must be satisfied:

1) Since the axis H corresponds to the horizontal which is parallel to the no-extension
line, the point C must be at the coordinate of (0, Tzv/2).

2) The axis V is perpendicular to the axis H.

3) The major principal stress axis Z inclines to the vertical V and the major principal
strain increment axis at the angles ¢ and (£6—¢) respectively (see, Fig. 4-b).

4) The strain increments &, and 7zy in the major principal stress axis (given by the
point B on the Mohr’s circle) must be equal to the strain increments given by Egs. (5)
and (7).

5) The angle £ which is the inclination angle of the major principal strain increment
axis to the vertical must be determined by the condition of no-extension parallel to the
.axis H. That is, from the Mohr’s circle of strain increment,

tan2§:I—gV-—H—=—£— (9)

6) There must be a unique relationship between the stress ratio 7/oy acting on the
horizontal and the inclination angle ¢ during a simple shear test, as pointed out by Cole
{1967). Oda and Konishi (1974) also got the following relationship;

L:/c.tan(ﬁ . (10)

N
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Fig. 5. Linear relationship between
r/oy and tan¢ for drained
simple shear tests on Leighton
Buzzard sand

ODA

where the constant & is determined only by
the interparticle friction angle ¢, for a given
material, not by other experimental condi-
tions such as the initial void ratio and the
normal stress. The relationship between 7/oy
and ¢ experimentally determined by Cole
(1967) is redrafted in Fig. 5 as the relation-
ship between 7/oy and tan¢. According to
Fig. 5, the constant k£ for Leighton Buzzard
sand is equal to 0.58. Therefore, the angle
¢ in the Mohr’s circle of Fig. 4 must satisfy
the relationship given by Eq. (10).

7) The inclination angle of the major
principal stress axis to the major principal
strain increment axis (i. e., (§—¢)) must
decrease with the increase of shear distortion
during drained simple shear tests (see Figs.
6 and 7 quoted from Cole (1967)).

From the geometrical considerations on the
Mohr’s circle in Fig. 4, the principal strain
increments which are represented by the no-
tations &, and & in Fig. 4 are given by the
following equations:

1

S U C oy
§=7 (Ez+éy) + 7 cos2(E—) (z—éy)
és‘—“%(ézﬁ‘éy)—m(éz*éy)

11 .

In the same way, the strain increments &, and 7yy in the vertical direction are also

given by the following equations:

- 1]
o On
['4
© —- e 0
g 0.6 . °/°/°’° -.—[:_
z o/ Oy
~ Ae
= 004 04|
i
)
0
i >
20 002 O.2r °’,o
\ -~*7ae
-]
“\ g— q’) e
0\\ P
Rt S o] o
6 o oFx 0.1 " 02 SHEAR
AN Pread DISTORTION

s —0~
S0~ gm0

Fig. 6. Change of (§—¢) with the increase of shear distortion
during drained simple shear test on loosely compacted
Leighton Buzzard sand (after Cole, 1967) '
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Fig. 7. Change of (§—¢) with the increase of shear distortion
during simple shear test on densely compacted Leighton
Buzzard sand (after Cole, 1967)

évzéz+éy . ]
. sin2e
Tvg= cos2(E—¢) (Ez—€y)
Of course, Egs. (11) and (12) satisfy the requirements described above.

(12)

STRESS-DILATANCY RELATION IN SIMPLE SHEAR TEST

The volumetric strain increment # and the maximum shear strain increment 7 are given
by

1}=é1+€.3=€.z+éy ‘
o 1 . (13)
T=(6,—¢5) = o E—d) (62— ¢v)
The strain increment ratio of o to 7 is given by
o _ _ gy (Ez+éy)
7; ———COSZ(& ¢) (éz—éy) (14)

Inserting Eqgs.(5) and (6) into Eq.(14) and rearranging on the assumption E(B,) =E(—f,):

1:0052(5—(&) _my(sin B, +sin B,) —my (cos B;+cos B,)

' mg(sin By +sinPy) +my (cos By +cos B,)
7
tan(z--i-%@)—my/mz

/4
vtan<‘4—‘+'é—¢.u>+my/mz

=cos2(§—¢) - (15)

where

my f ”’222E<3>cos3d3

z/

my _—f"zEm)sianﬁ

Oda and Konishi (1974) have obtained the following basic relationship between principal
stress ratio ¢,/0; and granular fabric represented by E(f):

(16)
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/2
2E(B)cospdp
91— j:"ﬂ/z -tan2<—”—+—é—¢p> (17
I f 2E(8)sin fdp |

4
where ¢, and o3 are major and minor principal stresses acting on the sample in the direc-
tions Z and Y respectively (see Fig. 1). Inserting Eq. (17) into Eq. (15), we get the
following equation: :

s(Z 1 >_£1_
’can<4—%2q5y 75

ES >ﬂ
tan<4,2q§ﬂ—{-a3

By the notations that the mean normal stress s= (¢;+0;)/2 and the maximum shear stress
t=(0,—0;)/2, Eq. (18) gives the stress-dilatancy relation in terms of s, ¢, ¥ and 7:

;  cos2(§—¢) {tan"(z-i——l—qﬂ,,)—l} _— {tans<£+i¢ﬂ>+l}
t_ 42 r 4z (19)
| cos2(&€—¢) {tan3<g—+%¢,‘>+l} ~% {tan3<g~+%¢#>—l}

Cole (1967) showed the experimental relationship between the rate of contraction /7
and the stress ratio #/s for the drained tests on Leighton Buzzard sand as shown by Fig.
8 for loose and medium samples and by Fig. 9 for dense samples. According to these
figures, there is a unique relationship between 9/7 and #/s for a given range of void ratio.

The solid lines in Figs. 8 and 9 show the theoretical results derived from Eq. (19) on
the assumptions that §¢=¢ and ¢,=23°. The broken lines A and B in Fig. 8 are also
obtained on the assumption that the values of (6—¢) are 15° and 20° respectively which
are very probable values of (6—¢) at an early stage of shear distortion as shown in Figs.
(6) and (7). These broken lines are drafted only when ©/7>0, because & is nearly equal

-?—zcos2(§——gb) .

; as)

0.3
0.3
V. o: MEDIUM SAMPLES A i
- €,=0.64!l— 0645 ‘Y ey»0526
Y \. o: LOOSE SAMPLES N — 0335
AN NS | €,%0737-0.755 0.2
0.2 SN
B~ \\ o : . il
\\\ }zoo ' o
. N q\\‘\ o.l \ .
0.l o§ .
Sanye . \ .
° ;3 \‘ o : .\ hd :
o | oo, . 0.4 0.5 0.6 or t
0.4 0.5, Sa® 0.6 07 t . ® s
o ¢ — °
X3 S ¢
° LA
o e, -0 )
-0 12 y
oe o\
. LLY o
L) o
E\ -0.2 .
-0.2 - .:
, \ .
]
o
-0.3
-0.3 \
Fig. 8. Relationship between the rate
of contraction /7 and stress ratio -0.4
t/s for drained tests on loose and Fig. 9. Diagram similar to Fig. 8 for
medium Leighton Buzzard sand drained tests on ‘dense Leighton
(after Cole, 1967) ‘ Buzzard sand (after Cole, 1967)
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to ¢ for Leighton Buzzard sand when 9/7<0.

The following facts can be detected in Figs. 8 and 9:

1) Experimental data for dense sample (Fig. 9) slightly deviate from the theoretical
line, especially at the condition of large stress ratio #/s.” This reason can not be clearly
explained because the following two problems were left unsolved in the preparations of
Figs. 8 and 9 (see Cole, 1967):

a) non-homogeneous strain distribution in dense samples, and

b) elastic strain in dense samples which is not negligible as compared with plastic strain.
It is worthy of note that the stress-dilatancy relation by Eq. (19) is in good agreement
with the experimental results on loose and medium samples in which strain distributions are
homogeneous and elastic strains are negligible (Fig. 8).

2) When taking account of the scatter in the experimental results, it is reasonable to
consider that there is only slight influence of the discrepancy between the principal axes of
stress and of strain increment on the stress-dilatancy relation of sand.

The stress-dilatancy theory orginally proposed by Rowe (1962) which has been shown to
hold for granular media in triaxial compression tests (Rowe, 1962) and extension tests
(Barden and Khayatt, 1966) was further extended so as to be applied to the simple shear
tests of sand by Rowe (1969). In the case of plane strain, the principal stress ratio R
and the dilatancy D are given by:

R=I1_ 1+¢/s
03 l_t/s 20)
b 10t (
& 147
Substituting Eq. (20) into the relation R=DK and rearranging;
t (K—1)—0o|T(K+1) @1)

s (K+1)—#/7(K-1)

This equation is quite similar to Eq. (19) except for the following two fundamental points:
1) The value of cos2(é—¢) in Eq. (19) presents the effect of the discrepancy between
the principal axes of stress and of strain increment on the stress-dilatancy relation of sand.

2) The value of K in Eq. (21) is equal to tan2<%+—é—¢w> where ¢, is equal to the
internal friction angle at the critical void ratio state of sand. The term corresponding to
K in Eq. (19) is tan3<g—+~;—q§p>. It seems to the present author that the angle of ¢, is

a semi-empirical friction angle with no physically distinct definition. When the angle of ¢,

for Leighton Buzzard sand is 35°, the value, 3.72, of tan2<%+—é—¢w> is nearly equal to
the value, 3.65, of tan3<%+—;—¢y>, although this near agreement may be of accidental.

DETERMINATION OF STRESS RATIO 7/oy AT 4/7=0

The stress ratio #/s at the rate of contraction ©/7 being zero is determined by Eq. (19)
as follows:

B tan3<£+i¢p>—l _ :
<i>°_ tan® <§—+—z—¢p>+l @
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Fig. 10. Effect of initial void ratio on the value of (z/sy), for a given normal stress

It is worthy of note that the stress ratio #/s at 9/7=0 is determined not by the inclination
angles £ and ¢, but only by the interparticle friction angle ¢,.

Since <—t—>0=%%}}—, Eq. (22) can be rewritten as follows:

N
(el he)

Eq. (23) can also be rewritten as follows:

T > .
— ) (cos2¢y—1) —sin2¢,
COE <";' : —an(Z+1e) @
870 <———> (cos2¢y+1) —sin2¢,
On /o .
where (t/oy), and ¢, represent the stress ratio acting on the horizontal and the inclination

angle of major principal stress at #/7 =0 respectively. -
Rearranging the relation given by Eq. (10), we get

. (7lon)e
Singo= v (Tloy) o+ K2
T —e——s— Oy= 049 kg/cm® (25)
e G, i\ 4 S/ S —
008 o8| —t——+— 309 OV (Tloy) k2
Inserting Eq. (25) into Eq. (24) and
0.06 06 rearranging;
0.81 T 2 s w 1
(T Jmelammrant (545 0)
. (26)
0.02 02 v The value of ¥ for Leighton Buzzard sand
s o e eosaioses, 15 0.58 as shown in Fig. 5. The theore-
0 0 bt L L ) L tically estimated value of (7/oy), obtained
'\*'n.:_".—-'/',‘/‘ _.—-"" . . . . .
TR T R R TION when we insert this value of # into Eq.

Fig. 11. Effect of average normal (26) is 0.51.

stress on the value of (z/ay), Figs. 10 and 11 show a portion of dra-
for a given initial void ratio ined tests carried out by Cole (1967) on
(after Cole, 1967) loose, medium and dense samples of Lei-
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ghton Buzzard sand at the vertical stresses ranging from 0.49 to 3.94kg/cm?® From these
Cole’s experimental results, it is found that except for the test at the low vertical normal
stress the stress ratio 7/oy at 9/7=0 is nearly constant, irrespective of a given initial void
ratio and also a given normal stress. Besides, the values of (z/oy), are nearly equal to
the theoretically estimated value.

APPLICATION OF THE THEORY TO DIRECT SHEAR TEST

If it can be assumed that there is a narrow shear zone with a homogeneous stress and
strain distribution as shown in Fig. 12, the theoretical equations described above are all
valid to predict the stress-dilatancy relation of sand in a direct shear test.

The data of direct shear tests on loose and dense samples
of Ottawa sand are quoted from Taylor (1948) as shown in T
Fig. 13. In order to apply Eq. (19) to Ottawa sand, the
inclination angle ¢ must be determined.

i

RIGID ZONE

~ HOMOGE NEQUSLY

Because of the mineral composition (quartz) and the round- Z " SHEAREQ. _ZOWE_. _ )
ed shape of grains of Ottawa sand, it is reasonable to use 22° RIGID  ZONE

as its interparticle friction angle ¢,. The change of inclina-
tion angle ¢ during shear test can be determined if the value  Fig. 12. Shear zone with
of £ is estimated from Eq. (26) by the value of ¢, (22°) and homogeneous stress and
the value of (z/oy), obtained from the test on the loose S‘fram distribution in
. direct shear test

sample. (Even though Eq. (26) gives two values of & for
Ottawa sand, £=0.58 is used in the following calculation.) The inclination angle ¢ thus
determined are plotted in Fig. 13 against the shear displacement up to the peak stress ratio.
The gradual rotation of major principal axis during the shear is quite similar to those of
simple shear tests on Leighton Buzzard sand by Cole (1967).

Fig. 14 shows the stress-dilatancy relation of Ottawa sand in terms of #/s and 9/7.

- * DENSE
0.6 VAN > LOOSE

TS
N s Lb 0.1 %
0.4 14/ . 50 . : Q ® DENSE
//,/-’ q) _\L o LOOSE
T 440 Y AN -
/ \
0.2 /f 36 o —03g
/"".‘-—' o : ko
R <120 )
./ ]
w O L/ ' 10 ’ \
-4 / 0. N
o V4 *
520005
-4
2z O =
oS Po-o” .
X
0005 L L
" o 0.} 0.2 o2
SHEAR DISPLACEMENT
( IN INCHES ) 0.4 0.3 0.6 1. or
Fig. 13. Direct shear tests on Ottawa , s
standard sand (after Taylor) and Fig. 14. Stress-dilatancy relation
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When calculating the value of #/f, it was assumed that the thickness of homogeneously
sheared zone was nearly constant during shear test. A solid line in this figure shows the
result of the application of Eq. (19) to Ottawa sand on the basis that ¢,=22° and &£=¢.
Although there is a very nice agreement between theoretical data and experimentally obta-
ined ones for the loose sample, experimental data for the dense sample show fairly lower
9/7 values than theoretical estimation. This must be chiefly due to the erroneous assump-
tion that there should be a narrow shear zone with a homogeneous stress and strain
distribution even in a direct shear test on dense sample.

CONCLUSIONS

A simple shear or direct shear test of sand is characterized by the fact that the principal
axes of stress and of strain increment rotate during the test without complete coincidence
between them. On the other hand, the complete coincidence between these two types of
principal axes is held during the deformation in triaxial test without any rotation.
Therefore, the stress-dilatancy relation derived from the triaxial tests of sand cannot
always be applicable to the simple or direct shear test. In this paper, the author proposed
a stress-dilatancy rule for the simple shear test of sand in terms of principal stresses and
of principal strain increment by treating sand as an assembly of rigid, cohesionless particles,
The following conclusions were obtained:

1) The stress ratio 7/oy acting on the horizontal plane in a simple shear test has the
following relation to the inclination angle ¢ of the major principal stress axis to the vertical:

T
—=fg-tan
ON ¢

where the constant £ depends only on the interparticle friction angle. _

2) The value of & in the above equation is considered to be an important material
constant. This value can be estimated by inserting the value of interparticle friction
angle ¢, and the stress ratio (7/oy), at dilatancy rate being zero into the following

equation:
T\ _ o T, 1 —
<E>o"’“{<l £) tan (4 2 ¢“> 1}

3) A flow rule, taking into account the discrepancy between principal axes of stress and
of strain increment, is represented in terms of the rate of contraction #/7 and the stress
ratio t/s as follows:

v

- co;Z(E—gb) {tan{%——{—%dm)—l} — {tan3<—z-+—21—¢y>+l}

s cos2(E—¢) {tan3<%+%¢p>+1} -—? {tanf”(%—&——;(ﬁ,‘)—l}
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NOTATION

D =thickness of sample sheared in a simple shear apparatus
E(B) =probability density function to show two-dimensional distribution of N,
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h =thickness change during a simple shear test

N,=normals to tangential planes at contacts
d,+o

s =mean normal stress (-—*—%—3-)

. 0‘1“’—0-3
t =maximum shear stress [ =

2
U, V=components of displacement increment in the principal stress directions
v=volumetric strain increment '
X, Y, Z=reference axes to show the principal stress directions in a simple shear test
B =inclination angle of N, to the major principal stress axis
7=maximum shear strain increment
¢ =principal strain increment
£ =constant for a given material
£ =inclination angle of the major principal strain increment axis to the vertical
direction

T . . . . .
T:stress ratio acting on the horizontal shear plane in a simple shear test
N

0;, 03=principal stresses
¢.=interparticle friction angle ‘
¢, =internal friction angle at critical void ratio state
¢ =inclination angle of the major principal stress axis to the vertical direction
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