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                                    ABSTRACT

  Two  metheds  are  presented to study  the one-dimensional  propagation of  seismic  shear
'waves

 through  tapered  cross  sections  of  earth  dams  with  truncated  crests.  The earth  dam
material  is assumed  to be unsaturated  and  linear viscoelastic,  or  nonlinear  strain-softening.

The  shear  modulus  may  be considered  to  vary  with  depth or  to be constant  throughout  the

dam  cross  section.  A  crosed  form solution  which  involves Hankel functions with  complex

arguments  is developed in case  the  earth  dam  material  is viscoelastic  and  the  dam  base is
subject  to harmonic  excitations.  The  method  ls extended  to cases  of  random  seismic

vibrations  by employing  Fourier analysis  in conjunction  with  a  least squares  criterion.

Response cttrves  are  obtained  for viscously  darnped tapered  dam  cross  sections  with  truncated

crests,  by  using  the analytical  solution  developed. The  method  of  characteristics  is also

used  to  provide a  solution  to the  shear  wave  propagation  problem. The  method  of  charac-

teristics exhibits  versatility  in handling different descriptions of  dynamic material  response,

such  as  
"strain-softening"

 material  behavior laws. Three examples  are  presented to illust-
rate  the  application  of  the  two  methods  and  to dernonstrate the  relative  simplicity  and

fiexibility of  the method  of  characteristics.  

'
 

'
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                                 INTRODUCTION

  One  of  the  first dynamic response  analyses  of  earth  dams was  presented by Mononobe,
Takata, and  Matsumura  (8) in 1936. Their theoretical  development  was  based on  the

following simplifying  assumptions  : the  earth  dam  material  was  homogeneous  and  viscoelastic

having uniform  density and  shear  modulus;  the  earth  dam  cross  section  was  wedge-shaped

and  the  foundation was  rigid;  shear  stresses  over  any  horizontal plane were  assumed  to be
uniformly  distributed; the  dam  was  infinitely Iong and  its base width  was  greater than  its
height so  that  bending deformations  could  be considered  negligible  compared  with  deforma-
tions due to shear;  and  the  water  stored  in the  earth  dam  was  not  considered  in fhe
analysis.

  Hatanaka  (5) in 1955 studied  the  case  of  a  triangular  elastic  cross  section  in a  rectangular

canyon  and  computed  the  horizontal response  over  the  length and  the  height of  the  dam.
Ambraseys (2, 3, 4) studied  extensively  the  dynamic reaction  of  dams to earthquakes.  In
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1960, he investigated the shear  response  of  a  two-dimensional  symmetric  wedge  of  finite

length which  had  a  truncated  crest  (1). The  wedge  was  considered  to be linearly elastic,

bounded at  its base and  its two  vertical  sides  by rigid  planes. Internal or  Coulomb fric-

tion was  modeled  by a  viscous  damping term  proportional  to the particle velocities.  The

shear  modulus  was  assurned  to  be constant  since  Ambraseys' previous work  showed  that  an

error  of  less than  10%  occurred  in cemputing  natural  frequencies when  the  variable  shear

modulus  was  replaced  with  its mean  value.  

'

  In l966, Seed and  Martin  (16) presented the one-dimensional  shear  slice  theory.  The

differential equation  of  motion  was  solved  analytically  for a  random  horizontal base motien.

Viscous damping  forces were  considered  to be proportional  to the  particle velocities.

Making  use  of the orthogonal  properties  of  mode  shapes  and  the principle of  mode  super-

position, the general  solution  of  the  equation  of  motion  was  obtained  as  a  summation  of

an  infinite number  of  terms  involving Duhamrpel  (Convolution) integrals. The  dissipation

mechanism  was  represented  in the  solutlon  by the  fraction of  critical  damping for each

mode.  Results obtained  by the  above  analysis  were  of  similar  form to  measurements  of

the  response  of  the  100-ft (30.5m) high Sannokai  Dam  in Japan to several  small  earthqua-

kes (11).
  The  one-dimensional  shear  wave  propagatien through  tapered  cross  sections  of  earth  dams

with  tfuncated  crests  is the  subject  of  this paper.･  The  earth  dam  rnaterial  is assumed  to

be unsaturated,  linear viscoelastic  or  strain-softening,  with  either  cottstant  or  variable

shear  modulus.  A  closed  form  solution  is obtained  for the governing  partial differential

equation.  This  solution  involves Hankel functions with  complex  arguments  and  is va!id

in case  the  material  is linear and  the  dam  base is subject  to harmonic excitations.  The

,inethod is extended  to cases  of  random  seismic  vibrations  by employing  Fourier analysis

and  a  least squares  criterion.  Response curves  are  obtained  for viscously  damped tapered

dam  cross  sections  with  truncated  crests,  by uslng  the  analytical  solution  developed. The

rnethod  of  chara ¢ teristics is also  used  to provide  a  solution  to the  shear  wave  propagation

problem. The  two  methods  compare  favorably. Two  examples  are  presented  to illustrate

the  applicatidn  of  the  two  methods  and  to demonstrate the  relative  sirnplicity  and  flexibility

of  the methoa  of  characteristics.  A  third example  illttstrates the  application  of  the  method

of  characteristics  to a  case  Where soil  properties  are  a  function of  depth and  the soil

behaves as  a  strain-softening  material  according  to the Ramberg-Osgood  hysteresis law

(13, 17). 
'

                                ANALYTICAL  METHOD  .                                                                  '

  The  basic assumption  of  the one-dimensional  shear  slice  theory,  that  shearing  stress  is

unifermly  distributed over  any  horizontal plane, is maintained  through  the following deveT

lopment. The  earth  dam  material  is assumed  to be viscoelastic  behaving as  a  Veigt solid.

The  dam  cross  sections  considered  are  wedge--shaped  with  bank slopes  1 vertical  to a  hori-

zontal,  with  truncated  crests.  ., , 
'

 ･For one-dimensional  shear  wave  transmissiori through  an  earth  dam  under.  dy4amic

                                                conditions,  the  equatien  of  mo,tien  for
  

  

              '

Fig. 1. 0ne-dithenslena! shear  slice

a  thin  horizontal slice  at,･depth  2  below

the  crest'O  (Fig. 1), is

    -7A,+[TA,+  
a(TaA,

 
e)
 d.]

     .--'pd2[A,+  
0oA,o

 
d2"]Oo2t#

 a)

where  Ao=2esz･is the  hrea･of'the･hori-
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zontal  plane per unit  length; 7=:shearing  sttess  uniformly  distributed over  the horizontal

plane of  area  Ao; p=mass  density of  the  soil;  t=:time;  and  za=absolute  horizontai displa-

cement  of  the  slice.  Omitting  second-order  differentials Eq. (1) redu6es  to:
                                                                '
                             OT T  02u
                                           =O  (2)                              O, +tE--P  ot2

  It should  be noted  that  the  dam  face slope,  a,  cancels  and  does not  appear  in Eq. (2).
The  effect  of  the  tapered  cross  section  is depicted by the term  (T12) for any  degree of

taper. For  ev-O  this term  vanishes  and  Eq. (2) reduces  te the equation  of  motion  for
shear  wave  propagation  through  a one-dimensional  shear  beam. Values ef  ev often  encoun-

tered  in pra¢ tice are  1.5KctK3. For  the  sarne  dam  height such  differences in the geometry

of  the  cross  section  lead to differences in the  natural  modes,  a  result  not  obtainable  from

the  shear  slice  theory.  Therefore, the  advantage  of  using  two-dimensional  analyses  becomes
apparent.  Hewever,  the  one-dimensional  approach  is a  simple  and  inexpensive method  to

examine  the  reaction  of  earth  dams  to earthquakes.  Results obtained  by this approach  are

usually  satisfactory  along  the  dam's axis  of  symmetry,

  The  equation  of  state  relating  shearing  stress-shearing  strain  in a  viscoelastic  material,

with  viseous  damping proportional  to the rate  of  change  ef  strain,  is:

                                         02u                                   6u
                                                                           (3)                              rr=G                                      +p
                                         ozot                                   0x

where  G=-shear modulus  or  modulus  of  rigidity;  Oul02 is the strain;  and  pt==soil viscosity.

If Eq. (3) is differentiated with  respect  to a  and  Eq. (2) is substituted,  the  following
equation  is obtained:

  . pOo2,:-oO. (G Oo", +pt i9.Zo",)--l-(G 
Oo",
 +pt oO,2a",)=o (4)

  The  shear  modulus  and  the  viscosity  may  vary  with  depth in any  prescribed manner.  In

this case  the  dam  is divided into horizontal layers and  G  and  pt are  censidered  constant

within  each  layer, having the  value  calculated  at  midthickness  of  the  layer. Eq. (4) is
solved  for each  layer in the  dam  starting  from the  bottom layer. The  total darn response

is obtained  by combining  the  individual layer responses  with  the  condition  th.at stresses

and  displacements should  be continuous  at  all layer interfaces. In order  to simplify  the

presentation, the  mean  values  of  pt and  G  for the  whole  dam  height are  used  in the fello-
wing.  Then, Eq. (4) reduces  to:

                 pO,2,g 
-G(

 Z2,: +-S- 3", )-st(,2Ig, +t  ,O,a,",)--o (s)

  A  steady  oscillatory  solution  of  angular  frequency co may  be obtained  by the  standard

separation  of  variqbles.  If F  is a function of  z  only:

                          
di,F,

 ,'-} {F. "(,to* )2F==O (6)

where

                               v" ==/llil+i-",tu-  
'
 (7)

  The  quantity  v*  is called  the  complex  velocity  of  shear  wave  propagation. If pt=O, then

the  soil  is elastic,  v*=VG,ip  is the real  shear  wave  velocity  and  Eq. (6) reduces  to an

ordinary  Bessel equation.  A  general solution  of  Eq. (6) in terms  of  Hankel functions, is:

                      F(z) -- AHh  
(i'

 (wfllv") +BHh  ̀
2'
 (tozlv") <8)

where  A  and  B  are  constants  to be determined from the  boundary  conditions.  The  Hankel

functions of  order  q are:
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                      Ha  (i} (tuz/v') =.J6  (tux!v') +i  Y6 (to21v') (9)

                      Hb  (2) (wz/v") =.Ih  (tox/v") -i  Yh (tuzfv") (10)
where  Jq are  Bessel functions of the  first kind of  order  g, and  Yb are  Bessel functions of

the  second  kind of  order  g. If the viscous  term  is not  zero,  it is evident  that the argu-

ments  of the  Hankel  and  Bessel functions are  complex  numbers.  In this case,  a  special

technique  to evaluate  these  functions is presented  in the  Appendix.

  The  constants  in Eq. (8) are  determined by use  of  the  boundary conditions  of  zero  shea-

ring  stress  at  a--h,  and  an  imposed  harmonic excitation  of  amplitude  W  and  frequency to

at  2=HL  The  general solution  of  Eq. (5), which  is valid  for h>O,  is

                u(x,t)=wetw`(I,Ill/,liiitoH'71,".'))--RRIflll,(,2,'((.toff/',".)))  (11)

where

                         R=.  Hl  (i} (tohfv*)IHI C2) (tohlv") (12)

  The  shearing  stress,  uniformly  distributed over  a  horizontal cross  seetion  at  depth z,

can  be found from the equation  of  state  by substituting  u  frem Eq. (11) :

              T(z,  t) -topv*  we`w`( ,H, 
lh
 ,,i'i£l[2ti'/,V,'l i.R,i,'l i,'i."'Xli',".)) ) (i3)

  The  above  formula apply  only  to steady  oscillatory  motions.  If n  equidistant  displace-
rnent  values  are  obtained  from a  digitized seismogram,  the transient  motion  of  the  dam
base can  be analyzed  to a series  of  harmonics by applying  Fourier techniques  and  a  least
squares  criterion  (13). This procedure  allows  the  user  to select  a  number  of  harmonics
less than  the  number  of  equidistant  tabulated  data points  but suMcient  to accurately  repre-

sent  the transient metion.  The  frequencies obtained  from the harmonic analysis  can  be
maintained  without  the.need  of  introducing a  constant  criticar  damping ratio  into Eq. (7)･
Each  one  of  the  harmonic components  of  the  Fourier transform  generates  a  solution  of

the form of  Eq. (11). The  superpo$ition  of  these solutions  by an  Inverse Fourier Trans-
form  provides  the  transient  response  of  the  dam  to the  applied  excitation.  A  computer

program  was  written  in FORTRAN  IV  to perform  all  the necessary  calculations  (13).

                    NATURAL  FREQUENCIES  OF  TRUNCATED  DAMS

  Considering the undamped  vibration  of  a  wedge-shaped  dam  of  height H;' the naturar

frequencies ef  oscilletion  of  the  dam  are  obtained  from the  zero  values  of  the frequency
equation  ,lb(tuHVplG)=O.  Thus, for the  first and  second  mode  of  vibration  the natural

frequencies are:

                    tu.=(2･41/H)VGIp  and  (5.52!H)VG/p (14)

  The  degree of  truncation  h of  the  crest  of  a  wedge-shaped  dam  as  well  as  the  amount

Df  damping  inflttence its natural  frequency. The  term  in parenthesis in Eq. (11) is the
amplification  factor of  the  response.  A  plot of  the  modulus  of  the  amplification  factor
versus  the  corresponding  frequencies (Fig. 2), for a  given  degree of  damping,  reveals  the

response  characteristics  of  the  system.  As  an  example,  a  dam  295.3ft (90m) high is
considered  having an  average  Go=3,912,0001blft2 (19.1× 106kglm2), Poisson ratio  of  O.45,
and  p=4.03slugslft3 (2,077kgm/mS). The  natural  periods  (1},=2rr1to.) for the  first and

second  mode  calculated  by different methods  are  presented  in Table 1. For a  non-trun-

cated  dam  cross  section,  the natural  periods computed  by using  the  finite element  method

(12) whieh  assumes  the  dam  to be a  two-dimensional  body are  somewhat  larger than  the

values  obtained  by the closed  form solution.  The  difference decreases as  the  dam  sides  be-
come  steeper.  The  truncation  of  the  top of  a wedge-shaped  dam  tends to lower the natural'
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Method

Wedge--shaped,  shear  slice  method

Natural  period (seconds)

First

E1'O,
 78

Truncated wedge-shape,  analytical

method

O, 78

O, 79

Second

O, 34

･O.
 34

Earth  dam  characteristics

Elastic rnaterial

      ll=90m,  h=O
'

L

FII1i'1,1

O. 75

O. 76

O. 35

O. 32

LO.  35

Method  of finite elements  (12)

O, 81tlfO,  44

O. 88 O. 47

Elastic material

    H=:90m,  h=3m

Viscoelastic rnaterial

 pt ==  O, 44 × 106 kg.sfm2

 H,:=90m, h==3m

Elastic rnaterial

    H=90m,  h==12.5m

Viscoelastic material

   ps= O. 44× 10S kg.sfm2

   H==90m,  h=12,5m

Elastic material

 H=90m,  h=O,ev=L5

Elastic material

 H=90m,  h=O,･a=3,O

periods. However,  small  truncation  influences
'the

 natural  periods only  slightly.  The  assump'

tion  that  the  earth  dam  material  is viscoelastic,
/results  in slightly  higher natural  periods (Fig.
2). A  viscosity  value  of  pt==90,OOOIb.seclftS

(O.44× 106kg･s!m2) is used  in the  present exa-

mple.  The  influence of  damping on  the  ampli-
'tude

 of  the response  is apparent  in Fig. 2.

Response curves  of  t'he type  of  Fig. 2, obtained

from  Eq. (11), may  be very  useful  in studying

/resonance  effects  in dams.

         CHARACTERISTICS  METHOD

  The  same  basic partial differential equations

.governing the propagation  of  shear  waves  thro-

ugh  tapered  cross  sections  are  used  in the  fo-
11owing analysis;  namely,  the  equation  of  mo-

tion (Eq. (2)) and  the  equation  Qf  state  (Eq.
(3)). If Eq. (3) is differentiated with  respect

to  time,  it can  be written  in terms  of  the

horizontal particle velocities  V:

     
'
 OT                                  ov

                              -G                                     
-  pt

                           ot                                   Oz

  The  equation  of  rnotion  (Eq. (2)) can  also  be

L

 o-vaL=o･.--o.ytt.rnyaE<"-oe=-=voE

Fig.

02V
    ==o

Oaot

  written  in

a

 Freqvency a,  (Rad/Sec)

2. Response curyes  for
 truncated  dam

termsof  the  horizontal

 (15)

particle
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      velocities  V:                                                                            '

                                   3T T  0V
                                   o,+'E'U-P ot 

:=O
 . (16)

        The  third term  of  Eq. (15) containing  the  viscosity  pe may  be represented  by a  finite

      difference approximation  as:

                               s  ̀g,2oVt =  pt dlt [ 0oV, -(  
ffoV.
 ),] (17)

      where  At is a  selected  time  interval to  be kept constant  throughout  the  computations  and

      the subscript  C  refers  to the  value  determined at  point  C  on  the  2-t  diagram  of  Fig. 3.

      At  the  nodal  point C, the  quantity: (OVIOa)c is considered  constant  and  may.  be numeri--

      cally  approximated  as:  ,

                                 (Oa\),== Vb"=  ?.i,V.A (18)

      where  the  subscripts  A  and  B  refer  to  values  at  the  corresponding  nodes  of  the  g-t  dia-

                                          gram  of  Fig. 3. The  combination  of  Eqs. (15),                              '

            HttSec)--  (17), and  (18) yields: 
･

        
Z=.Oilll)

 Zr, -(G+  i) OaV, +Apt, vb*-o  (lg)

          
ig
 

,,,E,lsE.:8,)
 
,z".g,ti.9,)

 
.zrs

 
.ig:ezr,

 ky,s.eg?g,ilti',gai･ 
is.!

                                          four ordinary  differential equations  by using  the

           ft method  of  characteristics.  Eq. (16) is rnultiplied

                                      
'
 by an  unknown  multiplier  e and  is added  to Eq.

           
C
 (19) to give:

           g [e OoT, +  aort ]-ep[oip (G +  ,St`, ) OoV. + Oo\]
           ft "e-g-+ 

,Ki`,
 Vb*-O  (20)

         z=H  The  bracketed terms  in Eq. (20) become total
                    '
                                         derivatives if:                    '
        Fig. 3. :-t  diagrarn, Method of

            characteristics.  -dd-f- =:e=elp  (G+ tiptt) (21)

        Eq. (21) solved  for 0 gives:

         ' 0= ±/f+ p"d, = ± "s (22)

      where  vs  is the  apparent  shear  wave  velocity  in ftfsec, equal  to the slope  of  the characte-

      ristic  lines in the  2-t  diagrarn of  Fig. 3. Two  pairs ef  ordinary  differential equations

      originate  from Eqs. (20) and  (2i), one  pair  with  the  positive value  of  e(C') and  t'he other

      pair with  the  negative  value  of  e(CN):･

---P-VuteCresto-H--
h

cc-
Mt

uAt
M2

At t

C+pkMg

c-' AZ4

at5

c+
c PBaseMe

C+

c-

ddrt
 -pv,  

dd\
 +vsf+  ft Vb*=O

dz
   

=Vs
 'dtdde'

 +pv, 
ddVt

 -vsf+  d", 
Vb'=O

dzdt
 

==-Vs

(23)

(24>

(25)

(26)
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   In 6ases where  the  dam  crest  is of  finite width  (h>e), solutions  to the C' and  C- equ-

 ations  can  be obtained  after  they  are  placed  in a  ce'ntral  finite difference form by integra-

 tion.  By  choosing  a  convenient  time  interval, dt, to be retained  throughout  the  calcula-

 
'tions,

 the  finite difference expressions  for Eqs. (23) and  (25) are:

            (c'): rp-7R-pvs(v)-vh)+  
TPiTR

 ln f: +pt ll.9i.li4 ==o  (27)

            (c-): r,-T･s+pv,(vl,-vk)-  
'Pg'S

 ln f.S 
-i-
 st \:I,P.Lt ==o  (2s)

 
'where

 the  subscripts  A, B, R, S, and  P  refer  to'values  at  the cerresponding  points of  the

 g-t  diagram (Fig. 3), and  distances z  are  measured  from  the  vertex  of  the whole  wedge

 
'being

 positive downwards.  After a particular time  intervai, At, is selected,  the  dam  height
 
'is

 partitioned into distance intervals (reaches) determined by:

                             Ag, 
:At/

 
(Gpo,)j+p;,.

 (2g)

 
'where

 G, is the initial shear  modulus  at zero  strain  level. Although  Go usually  changes

 with  depth, it is considered  constant  within  each  reach,  j', and  the  value  calculated  at

 midthickness  of  the  reach  is used.

   In mQdeling  the  strain-softening  inelastic soil  behavior the  Ramberg-Osgoed  stress-strain

 relationship  causes  the  shear  medulus  to decrease with  increasin.u strain,  bttt permits  the

 ,shear  modulus  to return  to its initial low strain  amplitude  upon  strain  reversal.  For the
,skeleton curve,  which  occurs  for initial loading the'Ramberg-Osgood  relationship  may  be
expressed  as  (13, 17): '

                            
rrG.o

 =;.  (i+ il; 
RO'il

 (3o)
                       '
.and for the  unloading  er  reloading  curves
             '

                        
(r-.r.i)Go

 ,.  
T;.Ti

 [1+ 
T2-li

 
RO-']

 (31)

 where  Ty  is the  yield shear  stress,  Tm  is the maximum  shear  stress  considered  equal  to  r.

 ==1.25  vgy, and  ri, ri represent  the  last point of  reversal  of  stress.  The  value  of  the tan-

gent  shear  modulus,  dv/dr, obtained  from the  appropriate  equation  (30 or  31) is the value

 used  at  the corresponding  strain  level in the solution  by the method,  of  characteristics.

 Therefore, the  shear  modulus  G  changes  during the transient  and  so  does the  apparent

.shear wave  yelocity  vs according  to Eq. (22). However, GsG,  and  v,AtSAz  at  all times
'in

 each  Iayer, which  is necessary  to satisfy  

'stability
 lcriteria of  the  method  of  characteris-

'tics.

  The  procedure is to determine the tangent  shear  modulus  at  the appropriate  strain  Ievel
frorn the  Ramberg-Osgood  curves  and  then  calculate  the apparent  shear  wave  velocity  for

,eaeh  reach  from Eq. (22). Since it is necessary  to stay  on  the  eharacteristic  lines, values

･oi T  and  V  at  points  R  and  S of  the  z-t  diagram  (Fig.3) can  be obtained  by linear inter-

.polations as:

                            Vh ==  Vb-(Vlr-  VA)vs,dtlAzj (32)
                            T'R=Tc  

fi
 (x'cmT"A)vsilft!d2j (33)

                            Vls= Vb-(Vb-Vb)vs,.,AtfAaj.i (34)
                            T's=Tc'(Tc'TB)vsj.idt!dzj+i  (35)
where  the  subscript  j' refers  to the  reach  containing  the  C' characteristic  and  the  subscript

.y'+1 refers  to the  reach  containing  the  C-. Shear stresses  and  velocities  are  known  at
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points  A  and  B  from  the  previous  time  step.  Eqs. (32) to (35) provide  the values  of  T  and/

V  at points  ,R and  S. Then, Eqs. (27) and  (28) are  solved  at  each  interior'node of  the･

z-t  diagram to determine the only  unknown  quantities, Tp  and  V>.

  At  the crest  of  the  dam  where  zp=-rh,  the  beundary condition  is expressed  as  Tp:=O  (tra-･
ction  free surface).  The  Cm characteristic  equation  becomes:

                                                  Ve -  Tilr
                    

-T",+pv,(V})-T'ls)-T2S
 ln 

Zh"+st
 

..Th
 =O  (36)

The  particle velocity  V)  at  the  crest  of  the  dam  is readily  available  from Eq. (36). At
the  base of  the  dam  where  gp:=H;  the  boundary condition  is that  V> is known  asa  func-
tion of  time  for the  seismic  motion  under  consideration.  The  C' characteristic  equation

becomes:

                 T, 
-
 T.  

-pv,
 (v) -  vh) +  

rn
 ;' rp ln f.l +  pt 

VHb
 
nvnt
 
xV.Li

 =o  (37)

The  $hearing  stress  Tp  at  the  base of  the dam  is obtained  by solving  Eq. (37). The  above･

procedure  is repeated  stepwise  in the  time  domain.

  If viscoelastic  soil  behavior is assumed,  G=G,  and  vs is constant  in each  distance inter-
val  dz. Then, points  R  and  S en  the  2-t  diagram of  Fig. 3 coincide  with  points A  and.

B  and  the  characteristic  lines do net  change  slope  during the  transient. In this case  v,titf

Az=1  and  the interpolations (Eqs. (32) to (35)) are  not  needed.

  It is interesting to note  that  for a  value  ef  h much  larger than  the  dam  height (i.e. h
w-1155

 ft and  H=1365  ft), the  slope  ev hasavalue  close  to zero  and  the  response  of  the･

truncated  darn to a  base excitation  is very  similar  to that of  a  one-dimensional  soil  deposit'
of  the  same  properties  qnd the  same  height. '

                                   EXAMPLES

Example 1

  A  4007ft(122m) high dam  with  truncated  crest  [see Fig. 1 with  H'==420 ft (128m), and

h--20 ft (6.lrn)] is considered.  The  dam,  resting  on  a  horizontal rock  base, is subjected.

tb  the  first 15 sec  of  the  S690E  component  ef  the  Taft earthquake  of  1952. Soil dynamic
behavior is assumed  viscoelastic.  Shear rnodulus  Go==9 × 106 psf (44× 106kglm2), viscosity･

pt =70,OOO  lb･seclft2 (O.34× 106kg･slm2), and  soil  mass  density p==4,O slugsfft3  (2062kg/mS)
are  considered  constant  throughout  the  dam.  A  time  increment of  O. Ol sec  is used  in the･
method  of  characteristlcs.  The  apparent  wave  velocity  is 2000 [ftlsec (610 m/s)  and  the･

dam  is divided into 20 reaches,  each  20 ft (6.lm) thick. The  computed  displacement and.

velocity  responses  at  the  crest  of  the  dam  are  plotted in Figs. 4 and  5. The  computing

time  required  for execution  was  80 sec  on  the  IBM  360t67 computer.  
'

  The  analytical  method  is also  used  to solve  the  above  problem.  Displacements at  the  base of
the  dam  are  obtained  every  O.Ol sec  by twice  integrating numerically  the S690E  Taft accel-

erogram.  The  result  is presented in the  lower portion  of  Fig.4. This displacement diagram.
is analyzed  into 24 harmonics by using  the  Fourier transform  in conjunction  with  a  least
squares  criterion  (13). The  amplification  factor at  the dam  crest  for each  harmonic is.
computed  frem Eq. (11) and  an  Inverse Fourier Transform reconstitutes  the  transient  res-

ponse  which  is plotted in the  upper  portion  of  Fig. 4. The  comparison  with  the  displa-
cements  obtained  by the  method  of  characteristics  is considered  unsatisfactory.  The  reason.

that  smoother,  results  are  obtained  by the  analytical  method  is that  the  24 harmonics do･
not  model  frequencies less than  O.625 sec.  Therefore, the problem  was  solved  again  by
analyzing  the  base motion  into 48 harmonics. The  response  at  the crest  foutid from the-

analytical  solutien  is substantially  the same  as  that found from the  method  of  characteris--
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tics (Fig. 4). The  computing  time  required  for execution,

was  approximately  110 sec.

  Pre.cise agreement  of  the  two  methods  also  was  observed

base excitation  is sinusoidal  (13). Starting from  static

teristics results  in an  initial transient  which  gradually
the  presence  of  viscous  dissipation.

ExamPle  2

  A  100-ft (30.5m) high wedge-shaped  earth  dam  without

subjected  to the  first 10 sec  of  the  North-South component

quake. The  assumption  is made  that  soil  behaves as  a

methods  are  used  to obtain  the  response  accelerations  at

dam: the method  of  characteristics,  and  Seed and  Martin's

characteristics  common  to both methods  are  the  average

× 106 kglm2) and  density of  4. 04 slugslft3  (2082 kglm3).
  In the  method  of  characteristics  the  dam  height is divided
ckness  d2:=16.67 ft (5.Im). With  an  assumed  constant

(O. 35× 106 kg,s/m2) and  a  time  increment of  dt:=O.Ol sec,

city  is found  to be equal  to v,=1667.7  ft!sec (508.3 mls).

for the  execution  of  this example  was  35 sec  on  the IBM
  A  time  increment  dt=O.02 sec  is used  in Seed  and

tor of  O.2 is assumed,  constant  for each  rnode.  Eq. (6) of

responses  for the first six  modes  of  vibration  are

  The  results  obtained  by both methods  are  plotted  in

form. Since the  damping  mechanisms  used  by the  two

first six  modes  are  considered  in the  analytical  solution,
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15

 400dam

     using  the  analytical  method,

    in cases  where  the  horizontal

 conditions  the  method  of  charac-

vanishes  after  a  few cycles  due to

         truncation  (h:=O, H==100 ft) is
          ef  the  1940 El Centro  earth-

      linear viscoela･stic  material.  Two

      midheight  and  at  the  crest  of  the

         analytical  solution  (16). Soil

     shear  modulus  G,==4× 106 psf (19.5

          into six  reaches,  each  of  thF

       soil  viscosity  pt=:71,250  lb.seclft2

         the apparent  shear  wave  velo-

         The  computing  time  necessary

        360167 computer.

    Martin's solution,  A  damping  fac-
         reference  (16) is used  and  the
superimposed.

      Fig.6, and  exhibit  a  very  similar

      methods  are  different and  only  the
        the  results  obtained  by the  two
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rnethods  are  in remarkably  good  agreement.

Example  3

  A  322-ft (98.Im) high truncated  earth  dam  (h=13 ft, 4m)  with  base width  of  134e feet

(408m) and  side  slbpes  2 to 1 (a=:2) is subjected  at  its base te the  first 12.5seconds of  the

North-South component  of  the 1940 El Centro earthquake.  Strain-softening soil behavior
is assumed  according  to the RambergOsgood  inelastic hysteresis law. Static shear  medulus

is considered  to be a  known  functien of  depth. The  method  of  characteristics  is used  to

find the  dynamic  response  of  the earth  dam  to the given  earthquake  excitation.

  The soil  has a  unit  weight  r,=134  lbfftS (2147 kg/m3) with  void  ratio  equal  to O.5 and

angle  of  internal frictien op==400. The  coefficient  of  earth  pressure  at  rest  is Kb=O.60.
The static  shear  modulus  is determined from the expression  (15) :                                                   '

                            G,=50227V7,z  (lb/ft2) (38)             '

                                                    The maximum  shear  stress  iswhere  th" is measured  from  the  crest downwards in feet.
obtained  from  the expression  (15): ･ 

'

     '

                  v.  =[((1+2Ko  )a. sing]2-  ((1-2Ko )a.] 
2]'5

 (3g)
                                  '
where  a.  is the  effective  confining  pressure equal  to:-
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hence, for the  above  assumed

  After selecting  a  time  interval At=O. Ol
sgconds,  the  dam  height is subdivided  into

27 distance intervals (reaches) ranging  in
thickness  from  dzi=4.6ft (1.4m) to Ax27
;15.7  ft (4.8m). Soil viscosity  is assumed

to be zero.  To  describe the stress-strain

relationship  for the soiL  an  exponent  Ro
=3  is used  in the Ramberg-Osgood  equa-
 ,tions.

  Displacements at  the  dam  crest  and  at

161.1feet (49.Im) below the crest,  found
by the  method  of  characteristics,  are  disp-
layed in Fig. 7, together with  the displa-
cement  of  the dam  base which  was  obta-

ined by twice integrating the  El Centro
accelerogram.  Displacements at  the  crest

and  the mid-height,  relative  to the base
of  the  dam, at  four particular instants of

time are  shown  in Fig. 8. The  shearing

stress  at  the  base of  the  dam, computed

by the rnethod  of characteristics,  is plot-

ted  in Fig. 9. The  Ramberg-Osgood nor-

malized  stress-strain  diagram  at  a  depth
of  154.5feet (47.Im) below the  crest  for
the 12.5 seconds  excitation  is shown  in
Fig. 10. At  that  particular depth, T/T.

never  exceeded  the value  of  1. The  most

excessive  hysteresis loop occured  between
2.0 and  2.25 seconds  after  the  beginning

of  the  earthquake.  Pronounced shearing

           '
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stresses  at  the  dam  base developed at  about  the  same  tirne span,  as  shown  in Fig. 9.

  Computations for thiS example,  including the. Ramberg-Osgood nonlinear  behavior,
required  approximately  110 seconds  of  execution  time  on  the  IBM  360167 computer  of  the

University of  Michigan for 12.5 sec  of  the  earthquake  excitation.

                           SUMMARY  AND  CONCLUSIONS

  The  shear  response  of  earth  dams to earthquakes  is investigated by studying  the  one-di-

mensional  propagation  of  shear  waves  through  wedge-shaped  earth  dams  with  truncated

crests.  A  horizontal seismic  excitation  is considered  to apply  at  the  dam  base. The  earth

dam  material  is assumed  vis'coelastic, or  strain-softening.  The  material  properties, such  as･

shear  modulus,  viseosity,  and  density, may  vary  with  depth or  be constant  throughout  the
dam  cross  section.  The  partial differential equations  of  state  and  motion  are  pres,ented and

two  methods  are  used  for their solution.

  A  closed  forrn solution  involving Hankel functions with  complex  arguments  is developed
in case  the  soil  is viseoelastfc  and  the  dam  base is subject  to harmonic excitations.  This
method  is extended  to cases  of  random  seismic  vibrations  by employing  Fourier analysis･

in conjunction  with  a  least squares  criterion.  To  study  resonance  effects,  response  curves･

can  be obtained'fo;  viscously  damped tapered dam  cross  sections  with  truncated  crests,  by
using  the  ana!ytical  solution  deve!eped. .

  The  method  of  characteristics  is used  to solve  the two  linear hyperbolic partial differential
equations  of  state  and  motion.  The  so!ution  aceounts  for wave  reflections  from the trun-

cated  crest  and  the  underlying  rigid  dam  base, with  excitation  provided at  the base.

  Because  of  the  one-dimensional  concept,  Tesults  obtained  by both methods  are  satisfactory'

along  the dam's axis  of  symmetry.  The  analytical  method  and  the method  of  characteri-

stics  compare  favorably in all case  studies  examined.  If an  earthquake  record  is analyzed.

in a  suMcient  number  of  harmonics, the results  obtained  by the  analytical  method  are

identical with  those  obtained  by the  method  of  characteristics.  An  additional  confirmation

emanates  from  a  comparison  of  results  .from  the method  of  characteristics  to results  from
Seed  and  Martin's analytical  solution.  Despite the  different damping  mechanisms  used,  the

two  methods  are  in good  agreement.  A  case  of  strain-softening  nonlinear  soil  behavior
demonstrates the applicability  of  the  rnethod  of  characteristics  to dynamic problems where,

analytical  methods  are  unable  to provide solutions. 
'
 .

  Application of  the  rnethod  of  characteristics  to the  problem  of  shear  wave  propagation.

through  earth  dams with  truncated  crests  illustrates some  of  the advantages  of  the method:

relative  simplicity;  applicability  to problems of  purely  transient  nature;  accuracy  of results;

and  low computer  cost.  The  method  of  characteristics  provides versatility  in handling dif--

ferent descriptions of  dynamie  response.  Other 
"strain-softening"

 materia!  behavior laws

could  be used  successfully  in the  model.  The  method  of  characteristics  also  provides the

means  of  calculating  the  response  of  earth  dams  resting  on  flexible fQundation without  ad-

ditional complications.
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                           NOTATION

A=constant  evaluated  from boundary conditions
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       Ao=  horizontal eross--sectional  area  of  earth  dam  (L2)
        B  ==constant  evaluated  frorn boundary conditions

   C', C-=refer to  characteristics  equations

        E=O.5772156649･･-, Euler's constant

        e =:2.7i828-･･,  the  base of  natural  (Napierian) logarithms

      F(z)=amplitude function (L)
       Go=initial shear  modulus  at  zero  strain  level (FILa)
        G=shear  modulus  (FVL2)
        H=height  of  an  earth  darn (L)
Hh(i), Hh(2)=Hankel  functions of  order  q
        h ='=amount  of  dam  crest  truncation  (L)
         i =unit  of  complex  number,  equal  to  V-1
        .lh=  Bessel functions of  the first kind, ef  order  g

        K=integer

        Kh=coethcient of  earth  pressure at  rest

     Lg, lg=real parts of  Bessel functions of  the  first and  second  kind

    Mh,  mg=:imaginary  parts of  Bessel functions of  the  first and  second

      m,  n==lntegers

         q =order,  of  Bessel functions (O or  1)

        R  ::auxiliary  variable

        Ro=exponent  in Ramberg-Osgood  relation

         r  =  modulus  of  complex  number

      S, T=auxiliary variables  used･in  Bessel functions

        [l'1i=natural period, in seconas

         t =time,  in seconds

         u=horizontal  soil  particle displacement (L)
        V=horizontal soil  particle velocity  (L!s)
       Vb"=(OWOz)c  

'

        v*:',complex  shear  wave  volocity  (Lls)
         vs=shear  wave  velocity  (Lfs)
        IV=amplitude of  known  harmonic displacement (L)
        Yh=Bessel  functions of  the  second  kind, of  order  q
         Z=  complex  number

         z  =vertical  distance (L)
         a=slope  of  earth  dam  sides

         r =shearing  strain

         ri=particular shearing  strain  at  stress  reversal

         rs=unit  weight  of  soil  (F/L3)
        dt=time  interval, in seconds

        d2=distance interval (L)
        .e =multipliers  in characteristics  method

         pt =soil  viscosity  (Es/L2)
         rr ==  3. 141592+･･

         P =rmass  density of  soil  (uaLS)
         az=-Teffective confining  pressure  (FVL2)
         r  =shearing  stress  (F/L2)
         Ti==particular  shearing  stress  at  stress  reversal  (FIL2)
        Tm==maximum  shear  stress  (FIL2)
         ry==yield  shear  stress  (WL2)
         ¢  =amplitude  of  complex  numbers

59

ef  order  q

 kind, of  order  q
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        q ==angle  of  internal friction, in radians

        tu =angular  frequency, in radians  per  second

       to.=natural  frequency, in radians  per second
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                                APPENDIX

Besset Functions evith  Complex Arguments

 In cemplex  form Bessel functions of  the  first kind, ef  order  g equal  to zero  or  one,

may  be written  as  (+ for 
'the

 first quadrant  of  the complex  plane  and  -  for the fourth):

                   Jd[r exp(i ¢)]==l,(r, ¢)± im,(r,  ¢) (42)
where  ,

                   i, (r, o)-ppa.., 
(-Ki)!

 fiilli/i2;)2K! 
'g

 cos  (2K+g)¢  (43)
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                     m,(r,  ¢ )=.i., (-Kl!) (kiiilliti2 )2"! 
"g

 sin  (2K+q)¢  (44)

  When  26  terms  of  the above  series  are  considered,  fhe truncation  error  induced by omit-

ting  the  rest  of  the  terms  and  by  working  in single  precision  was  found to be of  the  order

of  10-4.

  Bessel functions ef  the  second  kind, of  order  zero  or  one,  may  be written  as  (+ for
the  first quadrant  of  the  complex  plane  and  -  for the fourth):

                     Y6[r exp(iO)]=L,(r,  ¢ )± iMU(r, ¢) (45)

              Lo(r, ¢ )=Ill-[go(r, ¢)(E+ln-S-)-¢ me(r,  O)+S(r, di)] (46)

             Mh(r, di) =-i[m,(r,  ¢ )(E+ln-E-)+¢ lo(r, ¢ )+T(r, ¢)] (47)

in which

              s(r, o) ==xco.,  
(-i)EIkl,12)2K

 (i+3+･`･+k)cos2K¢ (4s)

              T(r, th) ==;?co!=,  
(rmi)ilill,

 it(:/2)a" (i+-lll-+･･-+Iiii)sin2K¢  (4g)
                                                     '

  Bessel functions of  the  secend  kind, of  order  one  can  be found from the 
"cross-relation'"

'between
 Bessel functions of  both klnds (7): 

'

                                                 2
                      A(Z) X(Z) -J,  (Z) Yh(Z) =  -                                                                           (50)
                                                rrz

where  Z  is complex.  This leads to  the  following relations  betw6en  real  and  imaginary

parts ef  the  Bessel functions:

                      loLi-meMl==ltLo-miM6-2cos ¢ 1rrr (51)
                      meLi+leMl==liM6+miLo+2sin ¢ !xr (52)

  From  Eqs. (52) and  (53), M,  and  L, are  obtained  in order  to calculate  Yl[r exp(iO)].

  The  use  of  existing  tables  (9, 10) to  evaluate  Bessel functions of  the  first or  second  kind
and  of  order  zero  or  one,  for any  complex  argument,  was  found to be excessively  time-

eonsuming  because of  the  necessity  of  double interpolatiens in the  values  of  r  and  ¢ .

Therefore, a  computer  program  was  written  in FORTRAN  IV  language  (13) to calculate

any  Bessel function of  the  first or  second  kind and  of  order  zero  or  one  with  complex

argument.  Single precision proved to give satisfactory  results.
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