土質工学会論文報告集 Vol. 18, No. 2, June 1978

乱さないシラスのダイレイタンシーと破壊機構について

(Dilatancy and Failure Mechanism in the Undisturbed Shirasu)

村田秀一* (Hidekazu Murata) 山内豊聡** (Toyotoshi Yamanouchi)

キーワーズ :三軸圧縮試験/ <u>シラス</u> /ゼイ性破壊				
	/ <u>ダイレイタンシー</u> /弾性/破壊/			
	引張り強さ			
IGC :	D6/F6			

1. まえがき

乱さないシラスは地質学的な固結効果に起因すると考 えられる引張り強度を持っているため、その力学的性質 は特異なものになっている。引張り強度の大きい試料の 強度特性は岩石にも類似しているところがあり、また引 張り強度の小さい試料においても乱したシラスとはその 力学的性質がかなり異なっている。筆者らは、先に乱さ ないシラスの強度特性について述べた報告1)の中で、乱 さないシラス供試体の破壊時の挙動が他の土と比較して かなりゼイ性的であることを指摘した。岩石のようなゼ イ性材料の破壊機構については、そのクラックの発生あ るいは伝ば挙動や変形および破壊形態に着目した研究が 多く発表されている2)~5)。 乱さないシラスは引張り強度 のオーダーが 10⁻²~10⁻¹kg/cm² と小さいため, 岩石の ように取り扱っては試験ができない。また、乱さないシ ラスは粒状体として取り扱うにはかなりの引張り強度を 持つと評価され固結していると考えられるので、乱さな いシラスは岩石と粒状体の両性質を持っている材料と考 えるのが妥当であろう。しかし、一度破壊してしまうと 単なる粒状体であり復元できない点は、岩石とよく類似 している。したがって、乱さないシラスの強度特性や破 壊機構はかなり複雑な要素が多く、その解明が遅れてい るようである。

本論は,自然含水状態で引張り強度の異なる9種類の 乱さないシラス供試体を用いて三軸圧縮試験を行ない, 圧縮荷重下における破壊形態が応力段階によって変わっ ていく過程を,そのダイレイタンシー特性と各応力段階 での破壊規準を検討することによって明らかにしたもの である。

2. 岩質材料の破壊規準

岩石や乱さないシラスのように引張り強度を持つ材料 は、均一でない物質の結合あるいは混合体であるため、 また応力状態によって破壊形態が異なるため、その破壊 機構はかなり複雑である。現在までに提案されている岩 質材料に対する破壊規準は、材料を等方均質と仮定して 巨視的な立場からと微視的な立場から導かれたものに大 別できる。前者には Mohr-Coulomb, Nadai, von Mises, Tresca らの規準⁶⁾を, 後者では Griffith⁷⁾, 修正 Griffith の規準⁸⁾が代表的なものである。土を対象とす る場合は一般に前者の規準が広く用いられているが、こ こでは微視的な立場から導かれた規準について述べる。 すなわち、破壊は材料内部に散在する微小欠陥周辺の応 力集中に基づく最大引張り応力が、その材料固有の理想 的な引張り強度に等しくなって起こるという概念であ る。Griffith は、引張り破壊の概念を二軸応力状態にあ る材料の破壊に対し拡張し、クラック周辺の最大引張り 応力が材料の引張り強度 の に等しくなったときき裂が 発生し破壊に至ると考えて,次式を提案した")。

 $\sigma_1 + 3\sigma_3 \le 0$ のとき、 $\sigma_3 = -\sigma_t$ (1, a) $\sigma_1 + 3\sigma_3 > 0$ のとき、 $(\sigma_1 - \sigma_3)^2 - 8\sigma_t(\sigma_1 + \sigma_3) = 0$ (1, b)

ここで、 σ_1 および σ_3 は最大および最小主応力、 σ_t は 材料の引張り強度 ($\sigma_t > 0$) である。ただし、圧縮応力を 正とする。最大主応力軸とクラック長軸の傾きを θ とす ると (1, a) 式の場合、 $\theta=0$ のときクラック先端に最大 の引張り応力が生じ、(1, b) 式の場合、 $\theta=\cos^{-1}\{-(\sigma_1 - \sigma_3)/2(\sigma_1 + \sigma_3)\}$ だけ傾いたクラックの先端において最 大引張り応力が生ずることがわかる。

Griffith の規準では偏平なだ円クラックが圧縮荷重下 で圧着されないと仮定しているが、実際にはき裂発生以前に圧着してしまうと考えられる。そこで、McClintock と Walsh はクラック圧着後その面でセン断抵抗が働き クラック端部での応力集中が軽減し、結果的には強度が

^{*} 處児島工業高等専門学校土木工学科 助教授(鹿児島県姶良郡隼人町 真孝 1460-1)

^{**} 九州大学工学部水工土木学教室 教授(福岡市東区箱崎)

[・]この論文に対するディスカッションは昭和54年4月1日までにご投稿 下さい。

増すという考え方に基づいて次式を提案したも)。

$$\mu_{f}(\sigma_{1}+\sigma_{3}) - (\sigma_{1}-\sigma_{3})\sqrt{1-\mu_{f}^{2}} = -4\sigma_{t}\sqrt{1+\frac{\sigma_{0}}{\sigma_{t}}}$$
(2)

ここで, μf はクラック面での摩擦係数, σ はクラッ クを閉じるに必要な応力で、クラック長軸に垂直に作用 しているものである。 クラックが非常に偏平な場合は, $\sigma_0 = 0$ と考えてよい。(2) 式を一般に修正 Griffith の 規準と呼び、かなりの岩石やコンクリートの破壊規準と して今日適用できるとされている⁹⁾。なお, 修正 Griffith の式が適用できる範囲はクラックを閉じるに必要な応力 を生ずることであり、したがって圧縮域を考えなくては ならない。また、Mohr の二次式と Griffith (1) 式お よび Mohr-Coulomb 式と修正 Griffith (2) 式が類似 し、等価性を持っていることが報告されている10),11)。こ のことは、巨視的破壊規準と微視的破壊規準とが形のう えでは容易に関連づけられることを示しているのである が、微視的な破壊規準は微小クラックからき裂が発生す る条件を与えているわけで、複雑な圧縮過程まで説明し うるものではないと考えられている。

3. 試料の諸性質と試験方法

乱さないシラス試料は特別に考案した採取器¹⁾ (シラ スカッター)を用いて地山の表面から採取し,実験室に おいてサンプラーから抜き出し,直径 5.0 cm,高さ 12.5 cm の円柱状供試体に整形した。この場合,すべての供 試体は自立した。試験に用いた各試料の指数的性質と自 然含水状態における圧裂引張り強度 σ_t および一軸圧縮 強度 S_c は 表-1 に示すとおりである。圧裂引張り強度が 供試体の寸法比を考慮すればほば一軸引張り強度と等し くなることはすでに調べてあるので,今回は供試体の厚 さ l と直径 d の比 l/d の値を 0.6 になるようにして圧 裂引張り強度を求めた。また,これらの試料の自然状態 での粒度組成の平均値はレキ分 19%,砂分 62%,シル ト分 15% および粘土分 4% である。レキ分とは軽石を 意味しているが,供試体は内径 5.0 cm のサンプラーを 用いて採取するため,実際は大きな軽石を含んでいない。したがって,供試体中の軽石の含有率は約12%で,ほとんどが 4.8mm 以下の粒径のものであった。

三軸圧縮試験は圧密排水(気)条件のもとで拘束圧の範囲は 3 kg/cm^2 までとした。載荷方式は拘束圧($\sigma_2 = \sigma_3$) 一定のもとでヒズミ制御方式(ヒズミ速度 0.5%/min) で行なった。体積変化の測定については、シラスの含水 比が約 20% であるので、一般に乾燥砂を対象にして用 いちれる方法、すなわち間ゲキ内および配管内の空気圧 が一定になるようにコントロールシリンダーによりビュ レット内の水銀面を変化させ、その変化量を体積変化量 として読みとる方法¹²)で求めた。

4. 応力とヒズミの関係に関する考察

4.1 軸差応力・体積ヒズミ・軸ヒズミ曲線の性状

図-1 (a), (b) は, 各々 o_t の異なる試料の代表的な 軸差応力・体積ヒズミ・軸ヒズミ曲線である。試料 No.7 は σ_t の大きい試料, No.2 は σ_t の小さい試料, および No.5はその中間的な ot の値をもつ試料の代表例として 示してある。図-1 (a), (b) からわかるように, 乱さな いシラスは ot の値が小さい試料も含めて,最大軸差応力 $(\sigma_1 - \sigma_3)_f$ と残留軸差応力 $(\sigma_1 - \sigma_3)_r$ の差が大きいこと が特徴である。また、の の大きい試料の破壊時の挙動は 他の土に比較してかなりゼイ性的である。乱さないシラ スの残留軸差応力とは、破壊した後保持している軸差応 力, すなわち定常状態での破壊面における摩擦強度を意 味している。乱さないシラスの $(\sigma_1 - \sigma_3)_f \geq (\sigma_1 - \sigma_3)_r$ の差の強度成分は、地質学的な固結効果とダイレイタン シーおよびインターロッキング効果によるものであると 考えられる¹⁾。この $(\sigma_1 - \sigma_3)_f - (\sigma_1 - \sigma_3)_r$ の値は σ_t の 大きい試料ほど大きく、その (01-03) / に対する割合も σt の大きい試料ほど大きい(図-10 参照)。図-2 は各試 料の最大軸差応力時の最大主応力 σ1 と拘束圧 σ3 の関 係である。 σ_1 は $\sigma_3 \leq 3 \text{ kg/cm}^2$ の範囲においては、 σ_3 に 対しほとんど比例的に増大していることがわかる。

さらに 図-1(a), (b) から明らかなように, 体積ヒズ

試料 No.	含水比 W(%)	比 重 G,	湿 潤 密 度 <i>ү</i> (g/cm³)	圧裂引張り強度 $\sigma_t(kg/cm^2)$	一軸圧縮強度 S _c (kg/cm ²)	ゼイ性度 Se/o:
1	29.0	2.457	1.364	0. 044	0.63	14.3
2	15.0	2.438	1.425	0.066	0.86	13.1
3	22.0	2.580	1.623	0.070	2.05	29.3
4	33.6	2.459	1.584	0. 092	1.12	12.1
5	19.0	2.546	1.556	0.160	3.41	21.3
6	18.5	2.694	1.588	0. 500	4.05	8.0
7	21.4	2.584	1.696	0.760	6.75	8.9
8	24.1	2.446	1.568	0. 950	4.94	5.2
9	19.4	2. 522	1.684	1.200	8.64	7.2

表-1 試料の指数的性質

ミ ε_v は、軸ヒズミ ε_1 が小さい段階で減少(収縮)し、 ε_1 が進行するにしたがって逆に増大(膨脹)を始め、軸 差応力が定常状態になって一定値を示している。この場 合、同一試料においては σ_3 が大きいほど収縮量は大き く、 $(\sigma_1 - \sigma_3)_r$ 時での最終的な ε_v の値は小さくなってい

図-3 体積ヒズミ $\varepsilon_{v.f}$, $\varepsilon_{v.r}$ およひ $\varepsilon_{v.min}$ ε_{t} の関係

る。図-3 は $\sigma_3 = 1.0 \text{ kg/cm}^2$ のときの各試料の最小体積 ヒズミ(収縮量) $\varepsilon_{v.min}$, 最大軸差応力時の体積ヒズミ $\varepsilon_{v.r}$ および残留軸差応力時で一定値を保持するように なったときの体積ヒズミ $\varepsilon_{v.r}$ を試料のもつ σ_t に対しプ ロットしたものである。 $\varepsilon_{v.min}$, ε_{vf} および $\varepsilon_{v.r}$ は σ_t の 増大とともに減少する傾向にある。一般に,砂質土では 密な状態の試料ほど ε_1 の小さい段階で体積が膨張を始 め、定常時での $\varepsilon_{v.r}$ の値が大きいのが普通である。乱さ ないシラスにおいては、 σ_t の大きい試料ほど体積が膨張 を始める ε_1 の値が大きく、かつ $\varepsilon_{v.r}$ の値も小さくなって いる。これらの理由としては後述するように、乱さないシ ラスの場合応力の小さい段階における体積変化量にかな りの弾性変化量を含んでいることが影響しているのでは

61

62

ないかと考えられる。

4.2 体積膨張に対する抵抗

体積変化率 $d\varepsilon_v/d\varepsilon_1$ は、ほとんどの試料において最大 軸差応力時に最大値を示している。 $(\sigma_1 - \sigma_8)_f$ 時の体積 変化の状況を表わす $(d\varepsilon_v/d\varepsilon_1)_f$ の値と各試料の持つ σ_t との関係は 図-4 (a) のとおりであるが、 $(d\varepsilon_v/d\varepsilon_1)_f$ は σ_8 が大きいほど小さい。また、同じ拘束圧下においては σ_t の大きい試料ほど $(d\varepsilon_v/d\varepsilon_1)_f$ は大きな値を示してい る。図-3 と 図-4(a)の結果から、 σ_t の大きい試料ほど 最大軸差応力直前の体積膨張が急速で、また最大軸差応 力以後は軸ヒズミの増加を要することなく急激に残留軸 差応力に落着き、その状態での体積ヒズミ $\varepsilon_{v,r}$ はほとん ど変化しないことがわかる。

砂質土においては、セン断中に供試体が膨張するため に要するエネルギーは、 $(\sigma_1 - \sigma_3)_f$ のとき $\sigma_3 \cdot (d\varepsilon_v/d\varepsilon_1)_f$ によって表わされ、これをダイレイタンシー効果と呼ん でいる。 $(\sigma_1 - \sigma_3)_{rf}$ をダイレイタンシーの生じないとき の応力、すなわち土のセン断抵抗角と粘着力による抵抗 とすると、 $(\sigma_1 - \sigma_3)_f$ は次式で表わされる¹³⁾。

 $(\sigma_1 - \sigma_3)_f = (\sigma_1 - \sigma_3)_{rf} + \sigma_3 \cdot (d\varepsilon_v / d\varepsilon_1)_f \qquad (3)$

乱さないシラスの場合,応力がかなり高い状態で体積 が膨張を始め,供試体の破壊面近傍はかなり乱れている ことが予想される。したがって,乱さないシラスの体積 膨張に対する抵抗を(3)式の右辺第二項で求め,各試 料の($\sigma_1 - \sigma_3$)_fに対する割合を σ_3 をパラメーターとし て σ_t に対してプロットして 図-4(b) に示す。 $\sigma_3 \cdot (de_v/de_1)_f/(\sigma_1 - \sigma_3)_f$ の値は σ_t の大きい試料ほど小さく,同

図-4 体積変化率 $(d\varepsilon_v/d\varepsilon_1)_f$ および体積膨張に消費 されるエネルギーの $(\sigma_1 - \sigma_3)_f$ に対する割合 $[\sigma_3(d\varepsilon_v/d\varepsilon_1)_f]/(\sigma_1 - \sigma_3)_f$ と σ_t の関係

ー試料においてはその値は σ_3 が大きいほど小さいこと がわかる。

4.3 弾性変形に対する抵抗

図-5 (a)~(d) は、最大軸差応力までの軸差応力と体 積ヒズミ ε_v および軸ヒズミ ε_1 の関係について試料 No. 2、3、5 および 7 の試験結果を代表例として示したもの である。 ($\sigma_1 - \sigma_3$) と ε_v の関係については、($\sigma_1 - \sigma_3$) の小さい段階で ε_v は直線的に減少し、ついで変化率 $d\varepsilon_v/d(\sigma_1 - \sigma_3)$ がほとんど0となった後、 ε_v は曲線に移 行し ($\sigma_1 - \sigma_3$) がほとんど0となった後、 ε_v は曲線に移 行し ($\sigma_1 - \sigma_3$) f に近い段階より急激に増大 (膨張) する 傾向にある。このような傾向は岩石の同様の試験結果に おいても報告されているが^{14),15})、岩石の場合は体積の急 激な膨張が顕著でないのが普通である。

体積ヒズミ ε_v と軸ヒズミ ε_1 および側方ヒズミ ε_3 の間 には次式の関係が成立すると仮定する ($\sigma_2 = \sigma_3$)。

$$\varepsilon_v = \varepsilon_1 + 2\varepsilon_3$$
 (4)

)

 $\varepsilon_v \geq \varepsilon_1$ に実測値を用い(4)式により ε_3 を推定して ($\sigma_1 - \sigma_3$)に対しプロットしたものが図-5の破線である。 乱さないシラスは、($\sigma_1 - \sigma_3$) と ε_v の関係が直線となる 応力状態までは弾性体とみなすことができると考えられ る。このことは、($\sigma_1 - \sigma_3$) と ε_1 の関係もその間明らかに 直線であることからも推定できることである。このよう に応力の小さい段階に弾性変形領域のあることは、砂の 場合においても古くから考えられていることである¹⁶⁾。 ただ、乱さないシラスにおいては、この弾性変形領域 が顕著に表われ、その変形量も大きい。弾性変形領域に おいては、次の関係式が成立する ($\sigma_2 = \sigma_3$)。

$$\left. \begin{array}{c} \varepsilon_{1} = \frac{1}{E} \left\{ \sigma_{1} - 2 \cdot \nu \cdot \sigma_{3} \right\} \\ \varepsilon_{2} = \frac{1}{E} \left\{ \sigma_{3} - \nu \left(\sigma_{1} + \sigma_{3} \right) \right\} \end{array} \right\}$$
(5)

ここで, E=弾性係数, $\nu=$ ポアソン比である。(4), (5)式より ε_{ν} は次式で示される。

$$\varepsilon_v = \frac{1-2\nu}{E} \left(\sigma_1 - \sigma_3 \right) + 3 \frac{1-2\nu}{E} \sigma_3 \qquad (6)$$

(6)式の右辺第一項は軸差応力による体積ヒズミ,第二 項は等方圧縮力による体積ヒズミをそれぞれ表わしてい る。図-5 に示した ε_v は等方圧縮後の値をプロットして あるので,図-5 の直線部分は次式で示すことができる。

$$\varepsilon_v = \frac{1 - 2\nu}{E} \left(\sigma_1 - \sigma_3 \right) \tag{7}$$

弾性領域と考えられる限界応力を $(\sigma_1 - \sigma_3)_e$ として黒丸 で、体積が急激に膨張を始める応力を $(\sigma_1 - \sigma_3)_{id}$ とし て白丸で 図-5 中に示した。図-6 は、 $(\sigma_1 - \sigma_3)_e$ 時の軸ヒ ズミ $\varepsilon_{1.e}$ 、体積ヒズミ $\varepsilon_{v.e}$ および (4) 式より推定した 側方ヒズミ $\varepsilon_{3.e}$ と試料の持つ σ_t の関係である。また、 図-7 は $\varepsilon_{1.e}$ 、 $\varepsilon_{v.e}$ および $\varepsilon_{3.e}$ と σ_3 の関係を試料 No. 6 の場合について示したものである。図-6、7 から、 $\varepsilon_{1.e}$

図-5 体積ヒズミ ε_v , 軸ヒズミ ε_1 および側方ヒズミ ε_3 と軸差応力 ($\sigma_1 - \sigma_3$)の関係

図-6 $(\sigma_1 - \sigma_3)$ 。時の $\varepsilon_{1.e}$, $\varepsilon_{v.e}$ および $\varepsilon_{3.e}$ と σ_t の関係

と $\varepsilon_{v,e}$ は σ_t の増大とともに,また同一試料においては σ_3 の増加とともに大きくなることが明らかである。しか し, $\varepsilon_{3,e}$ は σ_t および σ_3 に影響されず $\varepsilon_{3,e} = 0.25\%$ と 一定となる。このことは,乱さないシラスを弾性体とみ なせる条件は σ_t や σ_3 にかかわらず ε_3 が 0.25% 以内 であることを意味しているわけで,この弾性的性質は, 乱さないシラスが引張り強度をもつという構造性に起因 するものであることを示唆していると考える。

図-8は各拘束圧下における $(\sigma_1 - \sigma_3)_f$ に対する $(\sigma_1 - \sigma_3)$ の割合と ε_v の関係で、図-5(d) をプロットしなお

図-7 $(\sigma_1 - \sigma_3)_e$ 時の $\varepsilon_{1.e}$, $\varepsilon_{v.e}$ および $\varepsilon_{3.e}$ と σ_3 の関係

したものである。このようにして、各試料の $(\sigma_1 - \sigma_3)_{e/}$ $(\sigma_1 - \sigma_3)_f$ および $(\sigma_1 - \sigma_3)_{td}/(\sigma_1 - \sigma_3)_f$ の値を求め、 σ_t との関係を示したものが 図-9 である。 $(\sigma_1 - \sigma_3)_{e/}(\sigma_1 - \sigma_3)_f$ の値は各試料の弾性抵抗に消費された応力の割合 を示すものである。図-8 あるいは 図-9 からわかるよう に、同一試料においては $(\sigma_1 - \sigma_3)_{e/}(\sigma_1 - \sigma_3)_f$ の値は σ_3 が増大すれば減少し、 $(\sigma_1 - \sigma_3)_{td}/(\sigma_1 - \sigma_3)_f$ の値は σ_3 が増大すれば逆に増大している。また、図-9 で明らかな ように、 σ_t の大きい試料ほど $(\sigma_1 - \sigma_3)_{e/}(\sigma_1 - \sigma_3)_f$ およ

図-9 $(\sigma_1 - \sigma_3)_{id}/(\sigma_1 - \sigma_3)_f$ および $(\sigma_1 - \sigma_3)_e/(\sigma_1 - \sigma_3)_f$ と σ_t の関係

び $(\sigma_1 - \sigma_3)_{id}/(\sigma_1 - \sigma_3)_f$ の値は増大している。そして, 前者の値は σ_t の大きい試料ほど σ_3 の影響が大きく, 後者の値は逆に σ_t の小さい試料ほど σ_3 の影響が大き い。

乱さないシラスの $(\sigma_1 - \sigma_3)_f - (\sigma_1 - \sigma_3)_r$ の強度成分 は,固結効果とダイレイタンシーおよびインターロッキ ング効果によるものと考えられることは前報において述 べたが,乱さないシラスの固結効果による強度成分は, そのほとんどが弾性変形に対する抵抗として消費されて いると考えられる。図-10の破線は各試料の $[(\sigma_1 - \sigma_3)_f$ $-(\sigma_1-\sigma_3)_r]/(\sigma_1-\sigma_3)_f \ge \sigma_t$ の関係である。 $[(\sigma_1-\sigma_3)_f]$ $-(\sigma_1 - \sigma_3)_r]/(\sigma_1 - \sigma_3)_f$ の値はゼイ性指数 I_B と呼ばれ ているものである¹⁷⁾が, I_B の値は σ_t の大きい試料ほ ど, また 03 が小さいほど大きいことがわかる。さらに, 図-10 には、各試料の弾性抵抗に消費される応力の割合 $(\sigma_1 - \sigma_3)_e / (\sigma_1 - \sigma_3)_f$ と, その値に 図-4(b) で示したダ イレイタンシー効果によるエネルギーの $(\sigma_1 - \sigma_3)_f$ に対 する割合 $\sigma_3(d\varepsilon_v/d\varepsilon_1)_f/(\sigma_1-\sigma_3)_f$ の値を加えたものも, σ₃=1.0kg/cm²の場合について実線で示している。この 結果、乱さないシラスの固結効果とダイレイタンシーお よびインターロッキング効果による強度成分の中で、固 結効果による強度成分と考えられる $(\sigma_1 - \sigma_3)_e / (\sigma_1 - \sigma_3)_f$ の値の占める割合は の の大きな試料ほどとくに大きく,

村 田·山 内

 σ_t の小さい試料ではダイレイタンシー効果による強度成 分である $\sigma_3(d\epsilon_v/d\epsilon_1)_f/(\sigma_1-\sigma_3)_f$ の占める割合もかなり 大きいことが明らかとなった。また、 $[(\sigma_1-\sigma_3)_f-(\sigma_1-\sigma_3)_r]/(\sigma_1-\sigma_3)_f \geq [(\sigma_1-\sigma_3)_e+\sigma_3(d\epsilon_v/d\epsilon_1)_f]/(\sigma_1-\sigma_3)_f$ の差,すなわちインターロッキング効果によると考えら れる強度成分の占める割合は、 σ_t に関係なく各試料とも $(\sigma_1-\sigma_3)_f$ に対して約1割程度であることもわかる。

5. 破壊機構に関する考察

5.1 破壊規準

乱さないシラスの圧縮過程における特異な応力値とし ては、弾性限界を示す $(\sigma_1 - \sigma_3)_{e}$, 体積ヒズミの最小と なる $(\sigma_1 - \sigma_3)_{AV.min}$, 体積ヒズミが急激に膨張する $(\sigma_1 - \sigma_3)_{ta}$, 最大軸差応力 $(\sigma_1 - \sigma_3)_f$ および残留軸差応力 $(\sigma_1 - \sigma_3)_r$ が考えられる。 破壊強度とは、一般的には $(\sigma_1 - \sigma_3)_f$ を指していることが多いが、本論では $(\sigma_1 - \sigma_3)_f$ を指していることが多いが、本論では $(\sigma_1 - \sigma_3)_{e}$, $(\sigma_1 - \sigma_3)_f$ に対して(1), (2) 式で示される Griffith および修正 Griffith の理論を用い て破壊規準を検討してみることとする。図-11 (2)~(f) は各試料の $(\sigma_1 - \sigma_3)_{e}$, $(\sigma_1 - \sigma_3)_{ta}$ および $(\sigma_1 - \sigma_3)_f$ 時 の最大主応力 (σ_1/σ_t) と拘束圧 (σ_3/σ_t) の関係である。 なお、各図中には Griffith および修正 Griffith の規準 線がそれぞれ破線および実線で記入してある。

 $(\sigma_1 - \sigma_3)_e$ 時の応力状態はすべての試料において Grifith の規準によく合っていることがわかり,この結果 は、Bieniawski が岩石において内部破壊が発生する応 力に対し Griffith の破壊規準が成り立つとしているこ と^{18),19)}とよく類似している。Griffith の規準が弾性状態 からいきなり引張り破壊の発生する条件を与えるもので あるから、 $(\sigma_1 - \sigma_3)_e$ の応力レベルまでは弾性領域であ ると仮定したことが正しかったことを意味するものであ る。

 $(\sigma_1 - \sigma_3)_{id}$ および $(\sigma_1 - \sigma_3)_f$ 時の応力状態が修正 Griflith 規準とよく一致していることも明らかで、それぞ

図-11 $(\sigma_1 - \sigma_3)_{it}$ ($\sigma_1 - \sigma_3$)_{it} および $(\sigma_1 - \sigma_3)_f$ 時の応力状態における $\sigma_1/\sigma_t \geq \sigma_3/\sigma_t$ の関係

表	-2	(σ1-σ3),およて 式のパラメータ・	ド (σ1-σ3)id 時で - μf と σο の値	の修正 Griffith
試	料	圧裂引張り強度	(σ ₁ -σ ₃) _f の時	(σ ₁ -σ ₃) _{id} の時
				1

PN 17	山衣方成り現反	(01 03)} UM		(01 03	Jid Jing
No.	$\sigma_t (\rm kg/cm^2)$	μ _f	σ_0	μ_f	σ
1	0. 044	0.78	$2\sigma_t$	0,65	0
2	0.066	1.14	$1.5\sigma_t$	1.00	0
3	0.070	0. 98	$4\sigma_t$	0.97	0
4	0.092	0.80	σ_t	0.70	0
5	0. 160	1.22	$1.5\sigma_t$	1,20	0
6	0. 500	1.12	0	0.92	0
7	0.760	1.30	0	1.15	0
8	0. 950	1.06	0	0.95	0
9	1.200	1.17	0	1.00	0
			1		1

れの応力状態の実験値を満足する(2)式の µ_f および o。は表-2に示すとおりである。この表からわかるよう に、 $(\sigma_1 - \sigma_3)_{id}$ 時の応力状態においてはクラックを閉じ るに必要な応力 σ_0 を 0 とした式が適用され、 $(\sigma_1 - \sigma_3)_f$ 時においては $\sigma_t > 0.16 \text{ kg/cm}^2$ の試料で σ_0 は 0 となる が、 $\sigma_t \leq 0.16 \text{ kg/cm}^2$ の試料では σ_0 を有限値とした式 が適用される。いま、これらの物理的な意味をマクロ的 に考えてみる。 $(\sigma_1 - \sigma_3)_{id}$ 時においてはセン断変形が開

始された直後であると考えられるためセン断面の乱れ具 合が少なく、 $\sigma_0=0$ である。しかし、 $(\sigma_1-\sigma_3)_f$ 時にお いてはセン断面の乱れ具合が最大に拡大され の=0と解 釈できると考える。しかし、 $\sigma_t > 0.16 \text{ kg/cm}^2$ の試料に おいては (の1-の3) 時でもセン断面の乱れ具合は広くな く、 $(\sigma_1 - \sigma_3)_{id}$ 時とほとんど同じであると考えられる。 実際, σ_t の大きい試料の $(\sigma_1 - \sigma_3)_f$ 時での供試体の様相 は、ot の小さい試料と比べて乱れ具合が少なく、(o1- σ_3)r時の様相さえ乱れは少なかった。 $(\sigma_1 - \sigma_3)_f$ 時の応 力状態におけるクラック面での摩擦係数 µf の値は(o1 $-\sigma_{3}$)_{id}時の値に比べて大きくなっていることがわかる。 (σ1-σ3)id 以後の変形は次項で述べるが完全セン断変形 領域であると考えられるため、粒子間の摩擦抵抗がすべ て μ_f に代表されるようになり、μ_f が増大したと解釈 されよう。しかし、これらのパラメーター oo, Af の値 とシラスのもつ諸性質との関連を明確にすることは難し 5

以上のように、乱さないシラスの破壊強度は修正 Griffth 規準が合う $(\sigma_1 - \sigma_3)_f$ を一応考えることができる が、応力段階初期に弾性領域が存在して、その弾性破壊 に対しては Griffith の破壊規準が適用できること、また $(\sigma_1 - \sigma_3)_f$ の応力状態以前に $\sigma_0 = 0$ とした修正 Griffith の破壊規準が適用できる応力レベルのあることを認識し なければならない。

5.2 応力の増加に伴う破壊形態の変化

乱さないシラスの破壊時の挙動は、他の土に比較する とかなりゼイ性的であるが、供試体の変形状態としては 最終的にはセン断面が明りょうに現われ、セン断によっ て崩壊に至ることを示している。ここで、乱さないシラ スの崩壊に至るまでの応力とヒズミの関係を模式的に 図-12 に示し、破壊規準の考察結果も考慮して破壊の機 構について説明する。乱さないシラスにおいては、図-12 に記入したような次の4段階の応力状態を考えるこ とができる。

領域 $I - (\sigma_1 - \sigma_3)_e$ までの応力段階。この領域は弾性変 形領域であり、 ε_v 、 ε_1 および ε_3 も ($\sigma_1 - \sigma_3$) に対し直線 的に変化する。また、($\sigma_1 - \sigma_3$) e 時は Griffith の破壊規 準が適用できる応力状態であり、弾性体の領域と考えら れる。この ($\sigma_1 - \sigma_3$) e の ($\sigma_1 - \sigma_3$) f に対する割合は、 σ_t の小さい試料ほど、また同一の試料においては σ_3 が小 さいほど大きな値を示す (図-9 参照)。

領域 $II - (\sigma_1 - \sigma_3) e^{-(\sigma_1 - \sigma_3) AV.min}$ までの応力段階。 この領域は弾性変形とセン断変形を伴うが弾性変形が支 配的な領域であると考えられる。したがって、体積変化 曲線はなだらかに減少しつつ、最終的にはその変化率 $d\varepsilon_v/d(\sigma_1 - \sigma_3)$ が0になる。また、 ε_1 は ($\sigma_1 - \sigma_3$) に対 しまだかなり直線的に変化している。

領域 Ш- $(\sigma_1 - \sigma_3)_{4V,\min} \sim (\sigma_1 - \sigma_3)_{id}$ までの応力段階。 この領域はセン断変形と弾性変形を伴うがセン断変形が 支配的である領域であると考えられる。体積変化は徐々 に膨張を始め、 ε_1 は $(\sigma_1 - \sigma_3)$ に対し曲線になる。 $(\sigma_1 - \sigma_3)_{id}$ 時は修正 Griffith 式で $\sigma_0 = 0$ とした場合の破壊規 準が適用できる応力状態である。また、この $(\sigma_1 - \sigma_3)_{id}$ の $(\sigma_1 - \sigma_3)_f$ に対する割合は σ_t の大きい試料ほど大き

図-12 乱さないシラスの ε_v , ε_1 および ε_3 と $\sigma_1 - \sigma_3$ の模式図による破壊形態の説明

いが、 σ_t の小さい試料ではとくに σ_s の影響を著しく受け、 σ_s の小さいほどその値が小さくなっている。

領域 $\mathbb{N} - (\sigma_1 - \sigma_3)_{id} \sim (\sigma_1 - \sigma_3)_f$ までの応力段階。この 領域は完全セン断変形領域と考えることができる。体積 は急激に膨張を始め、 $\varepsilon_1 \ge \varepsilon_3$ も急速に増加する。 ($\sigma_1 - \sigma_3$)_f 時は修正 Griffith の破壊規準が適用できるが、 σ_t の小さな試料にあっては $\sigma_0 \neq 0$ である。このことは、 セン断面の乱れがかなり拡大されたことを意味している と考えられる。 ($\sigma_1 - \sigma_3$)_f 時の μ_f の値は ($\sigma_1 - \sigma_3$)_{id} 時 の場合に比べて大きくなる。また、この領域は σ_t の小 さい試料ほど同一の試料においては σ_3 の小さい場合ほ ど大きくなる。

以上のように,応力と体積ヒズミに着目して破壊形態 を説明したが,このことは岩石の結果^{18),19)}とよく類似し ていると考えられる。ただ,岩石の場合き裂の発生およ び伝ば挙動に着目しているのに対し,乱さないシラスの 場合には,最終的には粒状体に変化したセン断変形領域 を考慮しているところが相違点である。

6.まとめ

種々の引張り強度を持つ乱さないシラス供試体の三軸 圧縮荷重下における破壊機構について,その体積ヒズミ に着目して考察した結果,つぎのような結論が得られた。

(1) 体積変化は軸ヒズミ初期において収縮し、その 後かなり膨張する。同一の σ_3 の条件下での収縮量 は σ_t の小さい試料ほど小さく、 $(\sigma_1 - \sigma_3)_f$ および $(\sigma_1 - \sigma_3)_r$ 時の変化量(膨張量)は σ_t の大きな試料ほど小 さい。しかし、 $(\sigma_1 - \sigma_3)_f$ 時の体積変化率 $(d\epsilon_v/d\epsilon_1)_f$ は σ_t の大きな試料ほど、また同一試料においては σ_3 の小 さい場合ほど大きな値を示す。

(2) $(\sigma_1 - \sigma_3) \geq \varepsilon_v$ の間にはユニークな関係がある。 ある応力までは ε_v が $(\sigma_1 - \sigma_3)$ に対し直線的に減少し, ついで曲線となりある応力から急激に ε_v が増大を始め る傾向にある。この直線的な関係にある限界応力 $(\sigma_1 - \sigma_3)_e$ 時においては Griffith の破壊規準が適用でき, 弾 性領域であることがわかった。また、 $\varepsilon_{1.e}$ および $\varepsilon_{v.e}$ の 値は σ_t , σ_3 が増大すれば大きくなるが $\varepsilon_{3.e}$ は σ_t , σ_3 の 影響を受けず一定値となる。

(3) ゼイ性指数 I_B の値は σ_t の大きい試料ほど大 きく,かつ σ_3 の小さい場合ほど大きい。また、固結効 果による強度成分はそのほとんどを弾性変形に抵抗する エネルギーとして消費されたと考えられる。

(4) 破壊規準としては、 $(\sigma_1 - \sigma_3)_e$ 時の応力状態に 対して Griffith の規準、 $(\sigma_1 - \sigma_3)_{td}$ 時に対しては $\sigma_0 = 0$ とした修正 Griffith の規準が適用できる。また、 $(\sigma_1 - \sigma_3)_f$ 時の応力状態に対しても修正 Griffith の規準が適 用できるが、 $\sigma_t \leq 0.16 \text{ kg/cm}^2$ の試料においては $\sigma_0 \neq 0$ 、 またすべての試料において μ_f の値は $(\sigma_1 - \sigma_3)_{ia}$ 時の 値より大きい。これは、乱さないシラスが最終的にはセ ン断で崩壊することを意味していると考えられる。

(5) 乱さないシラスの破壊機構としては4段階の応 力領域を考えることができる。すなわち,Griffith 規準 の適用される ($\sigma_1 - \sigma_3$) $_e$ までの弾性変形領域(領域 I), 弾性変形とセン断変形が同時に進行するが弾性変形の 支配的な応力領域 II とセン断変形が支配的で修正 Griffith 規準の適用される ($\sigma_1 - \sigma_3$) $_{td}$ までの応力領域 II お よび完全セン断変形領域(領域 N) である。また,領域 I の ($\sigma_1 - \sigma_3$) $_e$ の ($\sigma_1 - \sigma_3$) $_f$ に対する割合は, σ_t の大 きな試料ほど大きい。領域 N は, σ_t の小さな試料ほど 大きく, σ_3 の小さい場合ほど大きい。

記号説明

- $B_r = ゼイ性度, (S_c/\sigma_t)$ E=弾性係数 $I_B = ゼイ性指数, [(\sigma_1 - \sigma_3)_f - (\sigma_1 - \sigma_3)_r]/(\sigma_1 - \sigma_3)_f$ S。=一軸圧縮強度 ε1, ε3=軸ヒズミおよび側方ヒズミ $\varepsilon_{1.e}$, $\varepsilon_{3.e} = (\sigma_1 - \sigma_3)_e$ 時の軸ヒズミおよび側方ヒズミ ε_{v} , $\varepsilon_{v.e}$ =体積ヒズミおよび $(\sigma_1 - \sigma_3)_e$ 時の体積ヒズミ $\varepsilon_{v.f}$, $\varepsilon_{v.r} = (\sigma_1 - \sigma_3)_f$ および $(\sigma_1 - \sigma_3)_r$ 時の体積ヒズミ $\varepsilon_{v.min}$ =最小体積ヒズミ(収縮量) $(d\varepsilon_v/d\varepsilon_1)_f = (\sigma_1 - \sigma_3)_f$ 時の体積変化率 $\mu_f = \rho = \rho$ の の 摩擦係数 レ=ポアソン比 σ₀=クラックを閉じるに必要な応力 σ₁, σ₃=最大および最小主応力(拘束圧) σ_t=圧裂引張り強度 (σ1-σ3)id=体積ヒズミが急激に増大する時の軸差応力 (σ1-σ3)=体積ヒズミが直線を示す限界の軸差応力 $(\sigma_1 - \sigma_3)_f$, $(\sigma_1 - \sigma_3)_r$ =最大および残留軸差応力 $(\sigma_1 - \sigma_3)_{rj} = ダイレイタンシーの生じない時の軸差応力$
- $(\sigma_1 \sigma_3)_{AV.min} = 体積ヒズミが最小値を示す時の軸差応力$

参考文献

- 村田秀一・山内豊聡 (1977): 乱さないシラスの強度特性の要因について、「土質工学会論文報告集」, Vol. 17, No. 3, pp.81~91.
- Barron, K. (1971): "Brittle fracture initiation and ultimate failure of rocks," Int. J. Rock Mech. Min. Sci., Vol. 8, pp. 541-551.
- Tapponnier, P. and Brace, W.F. (1971): "Development of stress-induced microcracks in westerly granite," Int. J. Rock Mech. Min. Sci., Vol. 13, pp.

103-112.

- 4) 桜井春輔(1968):静荷重下における岩石の破壊条件,「材
- 料」, Vol. 17, No. 181, pp. 30~35. 5) 西松裕一・松木浩二・小泉昇三 (1973):岩石の圧縮破壊
- 機構,「第4回岩の力学国内シンポジウム講演集」, pp. 127~132.
- Nadai, A. (1950): Theory of Flow and Fracture of Solids, 2nd ed., New York, McGraw-Hill, pp. 207-228.
- Griffith, A.A. (1925): "Theory of rupture," Proc., 1st Cong. Appl. Mech., Waltham Int. Press., Delft, pp. 53-64.
- McClintock, F. A. and Walsh, J. B. (1962): "Friction on Griffith's cracks in rocks under pressure," Proc., 4th U. S. Cong. Appl. Mech., Berkeley, pp. 1015-1022.
- Hoek, E. and Bieniawski, Z. T. (1965): "Brittle fracture propagation in rock under compression," Int. J. Frac. Mech., Vol 1, pp. 137-155.
- Murrel, S. A. F. (1958) : The Strength of Coal under Triaxial Compression, Mechanical Properties of Non Metalic Brittle Materials, London, Butterworths, pp. 123-145.
- Brace, W.F. (1960): "An extension of the Griffith theory of fracture to rocks," J. Geophys. Res., Vol. 65, pp. 3477-3480.
- 12) Bishop, A. W. and Henkel, D. J. (1962): The Measurement of Soil Properties in the Triaxial Test, London, Edward Ltd., pp. 81-82.
- 13) 赤井浩一 (1958): 砂のセン断におけるダイレイタンシー 効果,「土木学会論文集」, Vol. 50, pp. 76~81.
- 14) Bordia, S.K. (1972): "Complete stress-volumetric strain equation for brittle rock up to strength failure," Int. J. Rock Mech. Min. Sci., Vol 9, pp. 17-24.
- Brace, W.F., Paulding, Jr.B.W. and Scholz, C.H. (1966): "Dilatancy in the fracture of crystalline rocks," J. Geophys. Res., Vol. 71, pp. 3939-3553.
- 16) 諸戸靖史 (1972): 砂の弾性的な変形特性,「土質工学会論 文報告集」, Vol 12, No. 3, pp.65~74.
- 17) Bishop, A. W. (1971): "The influence of progressive failure on the choice of the method of stability analysis," Geotechnique, Vol. 21, No. 2, pp. 168-172.
- Bieniawski, Z. T. (1967): "Mechanism of brittle fracture of rock," Int. J. Rock Mech. Min. Sci., Vol. 4, pp. 395-430.
- Bardy, B. T. (1970) : "A mechanical equation of state for brittle rock," Int. J. Rock Mech. Min. Sci., Vol. 7, pp. 385-421.

(原稿受付, 1977.8.29)