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                                  ABSTRACT

  Geometrical property  (fabric) of  discontinuity in geological materials  is discussed in terms
of  (1) position  and  density, (2) shape  and  dimension and  (3) orientation  of  related  discon-
tinuities such  as  joint, fault and  discrete particle. By  taking  into account  these  geometrical
elements,  a  unique  measure  called  fabric tensor Ftj is definltely introduced te embody  the

fabric concept  without  loss of  generality.

  The  first invariant of  Ftj is important  as  an  index measure  to evaluate  the  crack  intensity
which  is related  to the  number  and  dimension  of  cracks.  PorQsity of  granite  is shown  to

be an  index measure  equivalent  to the  first invariant of  Fij. According  to uniaxial

compressive  tests  on  gypsum  plaster samp]es  with  two-dimensionally  orientea  cracks  and

granite samples,  the  logarithm of  the first invariant of  Ftj is linearly related  to their

uniaxial  compressive  strength.

  A  measure  1" which  is relatea  to the  second  invariant of  the  deviatoric part  of  Ftj shows

a  distance from  an  isotropic fabric. So, it is expected  to be an  index to  rneasure  the
degree of  anisotropy  due to  preferred alignment  of  discontinuity.

  The  principal  axes  of  li'w are  identical to  the  principal axes  of  fabric anisotropy,  There  is
no  doubt that  r  and  the  principal  axes  are  important  in the  analysis  of  anisotropic-

discontinuous geological materials.

Key  words  : anisotropy,  compressive  strength,  .fgbli.c., fault, .grang.lar .mgt.eri.a.!, joint, !ortk
mass,  soil  structure  (IGC : F 3fD 6)

INTRODUCTION

  Discontinuity (e. g., fault, joint and  fissure)
is of  widespread  oceurrence  in roek  masses,

Granular materials  (e.g,, sand,  gravel  and

rockfi11)  are  also  compesed  of  discrete parti-
cles.  It is quite  reasonable  to say  that  the

discontinuity is a  common  character  in these

geological materials  which  makes  their

theoretical  analysis  very  diMeult. There  are

so  many  published  theories  to  deal with  the

strength  and  eonstitutive  equation  of  geolog'i-
cal  materials  by taking  into account  their

diseontinuity, Unfortunately, however, these

were  not  always  successful  in the  representa-

tion  of  discontinuity. Since discontinuity is
usually  very  complicated  in usual  geological
situations,  it seems  almost  impossible to

grasp its exact  character  without  losing

generality.

*  Asseciate Professor, Dept, of  Foundation  Engineering,

 Urawa, Saitama  338,

 Manuscript  was  received  for review  on  March  1, 1982,

 Written  discussions on  this  paper  should  be submitted

Faculty  of  Engineering,  Saitarna University,

before October  1, 1983.



The Japanese Geotechnical Society

NII-Electronic Library Service

The  JapaneseGeotechnical  Society

                                  FABRIC

  Geometri ¢ al  property  of  discontinuity in
the  geological  inaterials is simply  called
"fabric"

 in this papler. The  purpose  of  this

paper is to give a general definition of

fabric which  determines  the  mechanical

properties of  geological materials.

FABRIC  FOR  CRACKED  ROCK  MASSES

EIements to Define Fabric

  Faults, joints and  fissures in rock  masses

should  be distinguished in geo!ogical  sense

(e.g., Price, 1966). For our  purpose, crack

is enough  to designate all these  disconti-
nuities  to  avoid  genetic  implication. In the

light of  the  study  by John (1962), Hansagi
(1974), Silveira, et  al,  (1966), Kiraly (1969)
and  Ogata (1978), it is clear  that  the  ge-
ometry  of  cracks  must  be described in terms

of  the  following elements  at  least:

  1) Position and  density of  cracks

  Position of  craeks  is conveniently  given  by
an  assembly  of  points corresponding  to  their

centroids.  A  mean  volume  density o of

cracks  is given  by

           p-- m  ̀ V)fV  (1)

where  mCV)  is a number  of  cracks  whose

centroids  are  loeated inside a  volume  V.
Multiplication of  p  by V, gives  an  estimated

number  of  cracks  belonging to  the  volume

Yo  if V, is large enough,

  2) Shape and  dimension of  cracks

  Let  us  censider  a  flat crack  with  an  occu-

pied  area  A. The  crack  consists  of  ttvo  cracfe

sttrvfaces  each  of  which  has a unit  normal

vector  n  (or -re). (Note that  crack  and

crack  sunface  are  used  in two  different mean-

ings.) It seems  reasonable  te assume  that

the  crack  is replaced  by an  equivalent  circle

with  the  same  occupied  area  A  (see,
Warburbon,  1980). Then,  the  equivalent

circle  has a  radiusrequal  te VAIz.
  If we  aceept  the assumption  of  circularity,

the  dimension of  cracks  can  be described by
a  probability density function f(r) of  their
radii  r  which  must  satisfy  the following
relation:
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           1oof(r)dr==i (2)

 Field obseTvations  generally  suggest  that  the

 number  of  craeks  having  larger dimension

 becomes smaller  (e.g., Priest and  Hudson;

 1981). If so,  f(r) can  be approximated

 by a  negative  exponential  distribution of

            f(r)=Ae"i' (3)
 This  is one  pararneter distribution with

 the  mean  and  standard  deviation both  equal

 to  112. The  approximation  by Eq. (3) is not
 always  necessary  in the  following discussion,

 but is useful  to simplify  equations.  Fer

  example,  the  n-th  moment  of  r  is calcul-ated
 as

      <r">=:Acor"2e-2rdr= :i (4)

  where  we  adopted  the  notation

        <e>-:A"Oep(r)f(r)dr (s)

 for the  mean  of  any  function di (r), based

 on  the  prebability density function f(r).
   3) Orientation of  cracks

   A  probability density function E(n,  r)  is

  introduced to  describe orientation  of  cracks.

 E(n,  r)  d9  dr gives a  fraction of  crack

 sut:faces  whose  unit  normal  vectors  ns  are  so

 oriented  to be in a small  solid  angle  d9, and

 whose  radii  are  within  a  small  range  from

 r  to r+dr.  By  using  the  notation  shown  in

 Fig. 1, d9  is simply  written  as  sinB  dcr dP.
 E(n, r)  must  satisfy

     

     

Fig. 1. Unit  sphere  to

    d9
define  solid  angle
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     1epfnE(n,r)d2dr=i (6)

where  g  is a  whole  solid  angle  (4x) equiv-

alent  to a  unit  sphere  of  OSaS.2x  and

OSPSx  (Fig.1). Sinee twe  normal  vectors

at  a  crack  are  opposite  in their  direction,
E(n, r)  must  be symmetric  in the  sense  of

E(n,  r)  :=E(-n,  r).  If n  and  r  are  mutually

independent, we  get  

'

  E(n, r)=  E(n)f(r)

        E(n)=E(-n)  (7)

  If a  funetion P(n)  satisfies  the  condition

of  P(n)==P(-n)  we  get

fJ],,2P(n)E(n)d2=fJlp(n)E(n)dg
     =<P(n)>  (8)
where  912 is an  solid  angle  (2 z)  equiyalent

to an  upper  hernisphere of  O$a$2T  and

O-<-BSfl/2. In Eq.(8), the  symbol  of  <P

(n)> is to  repre$ent  the  mean  value  ef

P(n), based on  the  probability density func-
tion  E(n).  If P(n)>O  equals  to -P(-n),

then  we  get

  JJ],,2p(n)E(n)dg
    =fL  lp( n)  ]E(n)dg  :=  <Ip(n) E>

If ns  are  oriented  isotropically, E(n)
equal  to lt4 z.

(9)

Must

Number  of  Cracks  which  C7]oss a  Scanning
Line

  Let's consider  a straight  scanning  line, as

being  parallel to a unit  veetor  i. It is called
.i-scanning line. At  each  crack,  two  normal

vectors  are  introduced. One  of  them  (sym-
bolized by n')  is selected  with  respect  to the

scanning  line so  that  it has a  direction mak-

ing an  acute  angle  with  the  i-direetion,

(The scalar  product n'.i=ni  between n'

and  i must  be greater  than  zero.)  The

designation of  (n', 2r)-crack  is convenient

to identify  the  crack  having  n'  as  a  normal

vector  and  2r  as  a  crack  diameter.

  Let's make  a  column  of  length h CFig, 2).

Its center  axis  accords  with  the  i-scanning

line, and  its cross  sect{on  corresponds  to the

cracks

Fig. 2. A  colllmn  of  volume  Ah  (n'･i)
    whose  center  line  accords  with  i-scan-

    ning  line (Note that  if the centers  of

    (n, 2r)-cracks  are  loeated inside the
    column,  these  mllst  cross  the  i-scan-

    ning  line)

projection  image  of  the  (n', 2r)-erack on

a  plane  perpendicular  to  the  i-scanning line.
Its cross  section  area  is equal  to nr2ni  in
which  nt  is a  component  ef  nt  on  i. If the
length h is selected  so  that  the  volume

(nhr2ni) ef  the column  is large enough,  the
total nttmber  of  cracks  whose  centers  are

located in the  column  is obtained  by mu!ti-

plying  the  corresponding  volume  by p.

  Since E(n', r)  is equals  to 2E(n,  r),

2E(n,  r)  d2dr  gives the  fraction of  cracks

whose  normal  vectors  fall in d9  and  whese

radii  are  in a  range  from  r  to  r+dr.

Hence,  (Tphr2nt)× {2E(n, r)d9dr}  is the

number  dN(i) of  (n', 2r)-cracks whose

centers  are  inside the  column.  It is impor-
tant  to know  that  if the  centers  of  (n',
2r)-cracks are  inside the  column,  those

cracks  must  cross  the  i-scanning line, The

number  dN(i) calculated  by

   dN(i)==2zphr2n,E(n,r)d2dr  (10)

is also  the  number  of  (n', 2r)-cracks which

cross  the  i-scanning line. The  cracks  which

cross  the  i-scanning line are  called  cracfes

associated  tvith  the  i-scanning iine. The

total nurnber  of  all cracks  associated  with
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the  i-scanning line is estimated  by integrat-

ing  Eq. (10) over  n12 and  OSr<oo:

N(" =2vahpJicofJ].r2ntE(n,  r)dgdr  (ID

If the  crack  orientation  n'  is independent  of

/its dimension r, we  get

 
`Nit)

 ,,.2mpJI""r2f(r)drfl(],,ntE(n)d9

      ;[  rrp<r2><ln･t  [> (12)
where  N(i)fh means  the  number  of  the

cracks  associated  with  the  unit  length of

the  i-scanning line.

Fabric Tensor  for Cracked  Rock  Masses

  The  unit  normal  vector  n'  has been de-
fined at  each  contact  to specify  its orientation
with  refereqce  to a  scanning  line, A  new

vector  nt  (called crack  vector)  is now  intro-
dueed  at  each  (n', 2r)-crack.  The  direction
of  m  accorcls  completely  with  n',  and  its

norm  ls 2r, not  unity.  Then  we  get

           m=2rn'  (13)
dNCi) of  Eq,(10)  is the  number  of  (n',
2r)-cracks  which  cross  the  length h of

.i-scanning line, So, the  mu!tiplication  of

dN(i)lh  by m  correspond$  to the  vector  sum

of  all (n', 2r)-craeks associated  with  the  unit

length of  the  scanning  line.

 dN(i)
 
mr'h-

 
"'M=:

 {4Xpr3ntE(n,r)d2dr}n' (14)

This vector  can  be projected on  a direction

given  by  j, with  the following prejected
image  dFtjUt):

   dFtj(R)==4mpr3nznjE(n,r)d9dr (15)
            (i, j= 1, 2, 3)

(The reference  vectors  i and  j are  selected

･so as  to rnake  orthogonal  reference  axes,)

The  j-component of  the  total sum  of  all  ms

associated  with  the  unit  length of  the

i-scanning line is then  obtained  by integrat-
ing  dF,-jfR) over  9/2 and  O#r<oo  as  fQllows:

F,,cR)J4npJ]eOfLi,rantnjE(n,r)d9dr (16)

            (i, 1'=1, 2, 3)

If nf  and  r are  mutually  independent vari-

ables,  we  get
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 Fig. 3. An  assembly  of  spheres  replaced

     by an  assembly  ef  lines (called
     branches)  cennecting  centers  of

     adjacent  particles  which  are  in  contact

     at  points  (gt=center of  sphere;  ci-j=

     contact  between spheres  gt and  gj;  dt-j

     =:mid-point  of  branch  gtgj)

      E,j{R) =2rrp<r3><ntnj>  (17)
            (i, J' -m 1, 2, 3)

 Note that  Ftj(R) of  Eq. (16) is transformed

as a  second  order  tensor  when  the  reference

axes  are  rotated.  Ftj(R) is called  fabric tensor.
Note that  the  tensorial  character  is inde-

pendent  of  the  specific  form of  the  probability
density function E(n,  r).  Note  also  that

Ftj{R) is a  dimensionless quantity  which,  as

wilr  be shown  later, is a  favorable character
for an  index measure  of  discontinuity in
rock  masses.

  In the  definition (Eq.(16)) of  the  fabric
tensor,  E(n,r)  plays an  essential  role.

However,  it is easy  to  rewrite  Eq. (16) in

another  way  without  using  E(n,  r),  as  fo!-
lows;

     F,j(R) ==  e"IS' iV' (2 rrr3n,np  (is)

            (i, J' -- 1, 2, 3)
where  the  summation  must  be taken  all

over  cracks  m{-  included in a given volume

V.

FABRIC  FOR  GRANULAR  MATERIALS

EIement to define .fabric of  spherical  granules

  For  the  sake  of  simplicity,  each  particle is

idealized as  a  sp]iere  with  the  same  volume,

If we  accept  this simplification,  size  of  parti-
cles  can  be expressed  by a  probability  density

NII-Electionic  
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function f(R) so  that  gCk(R)dR means  the

fraction in number  of  spheres  with  radii

ranging  from  R  to  R+dR.  .

  According  to  the  study  by Satake (1978)
and  Oda, et al. (1980), the  assembly  ef

spheres  can  be replaeed  by an  assembly  of

lines (･･-, gtg,i, gjgk, -･J in Fig.3) eQnnect-

ing the  centers  of  adjacent  p'articles which

are  in contact  at  peints  (･･･, ci-s, Cj-k, ''')･

This  replacement  is possible on  the  basic
assumption  that  the  cerresponding  fabrie is
represented  with  suficient  accuracy  by the

d'Lstribution and  geometrical arrangement  of

lines. Satake (1978) calls  the  line connecting
tlie centers  ef  two  cantacting  spheres,  branch.
Iiranch is also  used  here. Based on  the

view  point that  an  assembly  of  partieles is
representcd  by an  assembly  of  branches, (1)
density, (2) dimension  and  (3) erientation

of  branches must  be included at least in the
definltion ef  fabric. '

  1) Density of  branches

  Since the  volume  of  a  sphere  w]vth  a  radius

R  is 4!3 r,R3,  and  since  the  number  of  spheres

whose  radii  range  from R  te  R+dR  is given
by n{-f(R)dR,  the  solid  volume  V, by all

s.pheres  can  be estimated  by

  v, ::J;f."  Jii; zaR3ncv)  f(R) dR  =.  
-g-
 rrn"o  <Rs>

                                (19)
where  n(F)  is the  total number  of  spheTes  in

a  total volume  V(=:  V,+void  volume),  and  R.

and  RM  are  the  minimum  and  maximum

radii  of  spheres  respectively.  Furthermore,
since  the  total  volume  V  equals  to (1+e)V,,
the  number  n(V') of  spheres  can  be expressed
as

                3V
, 

"(V'
 
=:

 4rra+,'i'℃R3> (20)

"'here  e  is the  void  ratio  of  assernbly  defined

by (V-V,)IV,J
  Associated with  each  contact  there  are  two

contact  points, one  belonging to  each  con-

tactlng  particle. Accordingly, the  total  num-

ber of  contacts  (not contact  points) equals

to 112enCV), ln which  6 is a rnean  number

of  contact  points per a  particle (=mean
co-ordination  number).  The  volume  density

6 of  contacts  is defined as

     .
 gncn 3g

     
O==

 2V  
=

 sxa+e)<R3>  (21)

There have been published a number  of  equa-

tions  to  show  the  relation  between  the  mean

co-ordination  number  e and  the  correspond-

ing void  ratio  e; e,g,,  Smith, Foote  and

Busang  (1929), Field (1963), Gray  (1968)
and  Oda (1977), According to the  experi-

ments  by Field (1963) and  Oda  (1977), there

is a  unique  relation  between  .e and  e, being
independent  of  the  grain  size  distribution

f(R), By  using  the  relation,  the  volume

density S of  Eq. (21) can  be expressed  as  a

function of  e and  <R3>. Note that  position

of  branches is represented  by their mid--points

(･i･, diTj, djrk, dk-f, in Fig,3). Since the

number  of  contacts  is exactly  the  sarne  as

the  number  of  the  mid-points,  Eq. (21) gives
not  only  the volume  density of  contacts  but
also  the  volume  density of  the  mid-branch

  'I]Olnts,

  2) Dimension  of  branches

  On  the  basis of  statistical  consideration,

Oda, Nemat-Nasser  and  Mehrabadi  (1980>
have  given  the  following equation  as  a

density function g(l) of  branch length J:,

 g (i) =r- JI I".R." f (R) f(g -R)  dR,i"

      JI;R.V.JIZ,R."f(R)f(l-R)dRdl (22)

which  yields the  distribution of  branch･

length l in terms  of  the  particle  size  distri--
bution f(R).
  3) Angular  distribution of  branches

  Two  unit  normal  vectors  ns  for sphcrical

granules  which  are  co-axial  with  the  cor-

responding  branch are  considered  at  each

contact.  Horne  (1965) and  Oda (1972) have
introduced a  probability  density function

E(n)  to  describe the  angular  distribution of'

n.  E(n)  is suthcient  to describe the  angular

distribution of  branches if the  branch  Iength

l is an  independent  variable  of  the  direction

n.  In more  general cases,  E(n,  l) must

be used  instead of  E(n).
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                ng  {negatlve
                    plane side)

 Fig. 4. Nurnber ef  branches  associated  with

     i-scanning line

Number  ojC Branches  which  Cross a  Scanning

Rane
  Let's eonsider  a  scanning  plane  cutting

through  an  assembly  of  particles, Since the

p!ane is specified  by its unit  notmal  vector

i, it is called  i-scanning ptane.
  All particles Iocated in the  immediate

vicinity  of  the  i-scanning plane can  be

divided into the  following two  groups (Fig.
4): Group  A  (hatched) consists  of  those

particles whose  centers  are  located on  the

negative  side  of  the  plane, and  Group B

(unhatched) consists  o{  those  whose  centers

are  !oeated on  the  positive  side  of  the  plane.

Branehes  connecting  the  centers  of  the  hatch-

ed  particles with  those  of  the  unhatched

ones  through  cornmon  contacts  is called

branches associated  with  the  i-scanning plane.

  According  to  the  definition, the  associated

branches must  cross  the  i-scanning plane at

points (see, Fig,4). Oda  et  al. (1980) have
already  given  the  number  MCi) of  the

associated  branches per unit  area  of  the

i-scanning plane.  The  number  equals  to

the  areal  density of  the branch intersec-

tions. M{i) is given  by

   M(i)=26J]:R."fJ]/,lntg(l)E(n)dgdl
      =o"  <l><[ntl> (23)

 which  corresponds  to  NC')/h of  Eq. (12)
 showing  the  number  of  the  cracks  associated

 with  the  i-seanning line. In the  derivation

 of  Eq. (23),land n  are  assumed  to be

 mutually  independent  variables  which  is

 quite reasonable  for the  assembly  of

 spheres.
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  Fabric Tensor  for Granular MateriaJs
   Let's consider  each  associated  branch as

  a  unit  vector  (symbolized by n')  from the

  unhatched  particle to the  hatched one  (Fig.
  4). We  can  rnake  the  veetor  surn  of  all

  vectors  n'  s  associated  with  the  unit  area  of

  the  i--scanning p!ane, The  vector  sum  has

  a  pro.iection on  a unit  vector  j. The  projec-

  tion  FwCa) is calculated  by

   Eej{c)=26Jl:R.Uig(i)dgfJll/,n,njE(n)dg
       m6<l><ntnj>  (24)
              (i, .i -- 1, 2, 3)

  This  expression  was  first reported  by Oda

  et  al.  (1980), Mehrabadi, Nemat-Nasser and

  Oda  (1980) have  also  said  that  stress  mobi-

  lized in a  granular  mass  can  be defined in

  terms  of  the  fabric given  by Eq. (24) by

  taking  into account  its arrangement  of

  discrete particles.
    Simllar tensors  with  the  forrn of

           . Jtj=<ntnj> (25)

  have been  introduced by Satake (1978) as

  an  index to show  the  fabrie anlsotropy  of

  granular  materials,  and  by Scheidegger

   (1965) in the  analysis  of  plane and  linear

  elements  in geological body. Gudehus  (1968)
  has also  introduced a tensor Atj (AMniy6t)
   in order  to represent  the  micro-･structure  of

   soils.

FURTHER  CONSIDERATION  ON  THE  FABRIC

TENSOR

  The  fabric tensor  is symmetric,  Ftj :Fjt.

Therefore, Fi,J has three  principal  values  Fi,

F2 and  Fs which  are  calculated  by solving

the  following determinant (see, e. g,, Prager

(1961)).
          iFtj-Fl;ijlvO (26)

where  6ij is Kronecker  delta. Their  corre-

sponding  principal  direction pt are  calculated

by

        2eg,lmgf,tj) 
pte==o)

 
.,,,,

Invariants IiCF), JiF) and  Js[F} of  the  fabric

are  defined by

NII-Electionic  
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      Fig. 5. Principat fabric  space

   21;I It {) II.".IIS.,,,.i,ii) 1
   Is (F) u- Fa4F3  J
  Let's introduce a  space  of  principal
Fr, Fh and  Fs. Since the  space

to the  principal stress  space,  we

tentatively  principal fabric space.

the  fabric character  can  be
         -

a  vector  OP  in the  space  (Fig.5)
components  Fi, F2 and  F3

Since the  stralght  line of  Fi=:F2=:Fs

through  the  origin  means  an  isotropic
we  call  it isetropic axis.
            -"
  The  vector  OP  in the  space  is
               ---

into twe  vectors;  OP=OA+OB.  The
  -of

 OA  is proportional  to the  first 

'

I,{Fj of  the  fabric tensor:

         E6INr=-7-g･ii`P'
  On  the  other  hand, anether

which  is on  the  plane of

characterizes  the  deviatoric part of  F

is,

                J,(F}
                 3 

--6,j
        Dij=F,j-

It is well  known  that  the  length I]
      ---a.
veetor  OB  is related  to  the  second  

-

JiD) of  Dtj as

  r=V2-J-,(D)

    =V(F,-477i--'i-'L(F'E':1-4),,  

-'
 

MM

  From  the  above  discussion, it

(28)

       values

is quite sirnilar
       call  it

       Then,
represented  by

        .ith      '

  respectively.

      passmg

       fabric,

      resolved

       length

     mvarlant

      (29)
           '

  vector  OB
F,+F,+F,=:O

     o'; that

  (30)

  of  the

mvarlant

+(Fle-F,)2'
         (31)

       becomes
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clear  that  the  tensor  Fzj conveys  the  foltow--

ing informations each  of  which  is important
in the  analysis  of  fabric character  of  geo-

logical materials:

  1) l,tF) (the first invariant of  Ftt): The･
isotropic  part of  Fu  is proposed  as  an  index.

to evaluate  the  intensity of  discontinuity,

depending  not  only  on  a  volume  density

(p or  S) but on  a  typieal dimension  (<r3> or

<l>). On  an  acceptable  assumption,  J,C') is,

proved  te  be proportional  to poresity  p of

a  body, as  follows: A  crack  with  radi-

us  r  has a  corresponding  void  volume  of

nr2t  (t==width of  crack).  The  void  volume-

V. by all  cracks  in a  total  volume  V  is thus･

estimated  by

      ZJ=J]cozam(V)r2tf(r)dr (32)

On  an  assumption  of  t=:2kr  where  k is･

a proportional coeMcient,  porosity p is given
by

   p== V =2rrkpAptr3f(r)dr

    =2rrfep<r3>

    =feI,(F)  (33)

  2) .l": By  thinking  that  I-(=]V2]E:'D)'>

gives the  distanee of  a  point  P with  com-

ponents  Fi, Fz and  F3 from  the  isetropic'

line in the  principal  fabric space,  it is･

proposed  as  an  index to evaluate  the  degree･
of  anisotrepy  of  Ftj.

  3) The  last information derived from  Fij
is concerned  with  its principal  axes.  These

principal  axes  can  also  be considered  as  the-

prineipal  axes  ef  fabric anisotropy.  In a

rather  special  case  in whieh  r and  n  are･

mutually  independent  variabtes,  Ftj has-

the  same  prineipal  axes  as  the  tensor Jtj,

proposed  by Satake  (1978) and  Scheidegger

(1965). It must  be emphasized,  however,
that  Jtj was  formulated by taking  into･

account  only  the  orientation  n  o{  disconti-
  -nulty.

EXPERIMENTAL  JUSTIFICATION  TO  INTRO-

DIJCE  THE  CONCEPT  OF  FABRIC

  Many  experimental  and  theoretical  studies
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have  been  published to show  the  cross  relation

of  the  fabric of  granu}ar  materials  to their

mechanlcal  properties (e.g,, Oda, 1972;

Arthur  and  Henzies, 1972; Matsuoka,  1974;

Mahrnood  and  Mitehell, 1974; Mulilis, Chan

and  Seed, 1975; Konishi, 1978; Mehrabadi,

et  aL,  1980; Kanatani, 1981).  In particular,
Oda  (1978) has examined  this relation  rather

extensively  with  the  concluslon  that  the

fabric concept  gives  us  a  sound  basis to make

clear  the  complex  mechanical  property  of

granular  materials.

  In spite  of  the  lmportance of  fabric concept

in the  analysis  of  cracked  rock  masses

(Gerrard, 1977), there  has been  published

few werk  dealing with  the  topic  from  a

general  point of  view.  This  is because the

geometry  of  cracks  is usually  too  compllcated

to be identified by  a  unique  measure.  In

this section,  two  experimental  results  are

given  with  special  attention  to show  how

powerful  the  fabric tensor  is in the  analysis

of  cracked  rock  masses,

Uniaxial  Compressien  Tests on  GNPsum

Plaster Samptes evith  RandomJy  Oriented

Cracks  (Onedera, Oda  and  Ishii, 1972)

ExPerimental  tvork

  Onodera, et  al. (1972) reported  uniaxial

 cempresslon  tests on  gypsum  plaster  samples
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  with  random  cracks.  Their  experiment  was

  done  in the  following order:

   1) In order  to make  a  gypsum  plaster

  sample  with  a  system  of  two-dimensional

  cracks,  the  position and  orlentation  of  cracks

  are  arranged  in randern  so  that  the  system

  of  cracks  becomes isotropic as  well  as  homo-

  geneous.  A  random  digit is conveniently

  used  for this purpose. ･

   2) Water-gypsum mixture  (2:3 by

  weight)  is poured  into a rectangular  prismatic
  mold  with  a  dimension of  250 x  125 × leO mm3,

  Strips (2r× 100xO.25mm3)  made  of  picture

  postcard  are  inserted into the  water-gypsum

  mixture  at  the  previously selected  positions

  with  the  previously  seleeted  orientations

  (Fig.6). Boundaries  between the  gypsum

  plaster and  the  picture  posteard are  regarded

  as  two-dimensional  cracks  of  length 2r.

    3) After about  an  hour, the  well-hard-

  ened  water--gypsum  mixture  is taken  out  of

  the  mold,  and  is trlmed  to make  a  rectangu-

  lar prismatic  sample  of  250 × 125× 75mm3.

  The  samples  thus  made  are  cured  for a  week

  in a  constant  temperature  (50eC) and  hu-

  midity  (38%) bath.
    4) Axial compressive  stress  a.  increases

  at  a  constant  loading rate  ef  9,8kNfm2ts to･

  deterrnine the  uniaxial  compressive  strength

   (aa) f' '

    5) Experiment  consists  of  the  following
  three  series:

    a)  a-series:  The  number  m{r)  of  cracks,

   changes  from  10 to  100, with  a  definite

   crack  length (2r= 10mm).

    b) b-series: The. crack  !ength ehanges

   from 10mm  to  50mm,  with  a  definite num-

   ber of  cracks  (m[M= 20).
    c) c-series:  Both of  2r  and  m(Y)  change

   so  as  to  give  a suitable  value  of  the  first

   invariant J,(F] of  Fijtei.

   Result

     Since cracks  in a  sample  are  arranged  to  be･

   isotropic as  well  as  two-dimensional,  its

   fabric tensor  can  be reduced  to

       F,j<.)= 
m(V)

 
<vtr2>T[i62

 i92] (34)

   where  T  is the  thiekness  of  sample  (Fig.6).
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   (Note, however, that both
   £ abric  tensor Fii(R))

m(V)=  20,  2r;20  mm

i(7)=o.26,r=4xio'2

{cra}f=6OxTo2kN/m2

 different  appearance

have  almost  the  same
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In this special  ¢ ase,  the  first invariant IJF)

is only  a nonvanished  measure  derived from

FtJCR). (Real samples  are  not  ideally isotrop-

ic but with  some  deviatoric component

of  DtjU"). With  a  few exceptions,  however,

the  deviatorlc component  is so  small  that  it

can  be neglected  in the  following considera-

tion. The  problem  of  the  deviatoric tensor

will  be discussed in the  next  paper.)

  Fig,7 shows  the  relations  between axial

strain  s., lateral strain  et  and  axial  stress

a.  for four samples.  Each  sample  has a

value  of  the  first invariant different from

others.  A  sample  with  1i(R)==O means  a

crack-free  sample.  It is no  wonder  that  the

crack-free  sample  has the  highest uniaxial

compressive  strength  (ff.)f and  the  sharpest

stress-strain  relation.  With the  increase of

the  first invariant J,[F}, the  sample  loses

gradually  its strength  and  stiffness.

  Fig.8 shows  the  change  of  the  unlaxial

compressive  strength  as  a  function of  li(F).

(Note that  (a.)f is normalized  by that  of

the  crack--free  sample,  lt must  be emphasized

that  all  experimental  results  about  (a.)f are

plotted  in almost  the  sarne  area,  irrespective

of  the  series  (a, b, c)  of  tests, This  result

strongly  supports  the  idea that  the  first

invariant Ii{F) has a unique  physical meaning

as  an  index for the  crack  geometry,  A  sample

(a) in Fig. 9 seems  to have a  quite different

craek  system  from  a  sample  (b) because of

such  different appearance.  It must  be pointed
out,  however,  that  both samples  have  almost

the  same  uniaxial  compresslve  strength  and

secant  deformation modulus  owing  to the

same  value  of  IiCF) ==O,256.

ExPeriment  on  tveathered  granite  (Onodera,
 Yoshinafea and  Oda,  i974)

  In order  to  see  the  effect  of  weathering

o £ granite on  its mechanieal  property,  Ono-
dera, et  aL  (1974) obseryed  cracks  under  a

 microscope  on  thln  sections  sliced  from  the

 weathered  granite. Granite was  sampled  from

 Innoshima and  Shimotsui  at  which  Honshu-

 Shikoku  bridges were  planned  to be con-

 structed.  Cracks were  observed  along  a  scan-

 ning  line (total scanning  being 240mm).
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 Fig. 10. Progressiye changeof  cracks  due

     to weathering  of'gTanite  (Onedera,
     Yeshinaka  and  eda,  1974)

They  were  classified  into six  classes  according

to their crack  widths  as  a  (O-wO.OO16mm),
b (O, OO16-O.  OI6mm),  c  (O.O16-O. 032 mm),

d (O,032--O.048mm), e (O.048-vO.064mm)
and  f (more than  O.064mrn).  Number  of

observed  cracks  belonging to each  c!ass  are

sumrnarized  in Fig.10,  It is clear  that  the

width  as  well  as  the  number  of  cracks  in-

crease  with  the  progress of  weathering  which

was  estimated  by the  chemical  analysis,

Especially, the  rate  of  cracks  belonging to

the  class  f becomes  larger when  granite is

exposed  to more  severe  weathering.

  Since granite has isotropic appearance,  the

density funetion E(n)  can  be assumed  to be

 lsotropic (E(n)=::lf4ff). Then,  the  number

 N(i)th of  cracks  associated  with  the  unit

 !ength of  the  scanning  !ine is estimated  by

 N{ivh== rrp<r2>J]"/2JI2"  41rr 
cosBsin3daids

        rc

       
::Tp<r2>

 (35)

 N{D/h  rneasured  under  a microscope  is

 shown  in Fig, 11 which  represent  the  relation

 between N(i)ih and  p  (porosity), Porosity

 of  cracked  materials  has the  equivalent  mean-

 ing to the  first invariant of  Ftj(R) if the

 crack  width  is proportional to the  crack

 length 2r.  (This assumption  seems  to be

 reasonable  for the  weathered  granite.)  NCi)/h

 of  Shimotsui-Granite  is plotted within a

 rather  small  range  from 1.2 to 1,8, whlle

 N(i)fh of  Innoshima-granite  is linearly

 related  to the  porosity.  This  result  suggests

 that  N(i)fh itself is not  an  adequate  index
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12. Relation  between  uniaxial  eom-

pressive  strength  <a.)f and  porosity

p  of  granite  (modified from  Yoshina-
ka's (1973) data) (Note that  this

linear  relation  is quite  similar  to  the

relation  of  Fig.  8)

tinuity  in geological  materials  was  discussea
in terms  of  (1) position  and  density, (2)
shape  and  dimension  and  (3) orientation  of

related  discontinuities such  as  joint, fault
and  discrete particle. Based on  the statisti-

cal  consideration,  a  unique  measure  called

fbbric tensor  was  introduced to describe the
fabric.

  From  the  fabric tensor  of  cracked  rock

masses,  we  can  obtain  the  following infor-
   ,matlons:

  1) The  first invariant of  fabric tensor  is
important  as  an  index measure  to evaluate

the  crack  intensity  which  is related  to  the

number  and  dimension of  cracks.  Porosity
of  granite  is an  inclex having almost  the

same  meaning  as  the  first invariant. Accerd-
ing to uniaxial  compressive  tests  on  gypsum
plaster samples  with  two-dimensionally  orl-

ented  cracks  and  granite  samples,  the  loga-
rithm  of  first invariant is linearly related

to their  uniaxial  compressive  strength,

  2) The  measure  I" which  is related  to

the  second  invariant of  the  deviatoric part
shows  a  distance irom  an  isotropic fabric,
So, it is expected  to be an  index to  measure

the  degree of  anisotropy  due to  the  preferred
alignment  of  discontinuity.

  3) The  principal axes  of  the  fabric tensor
are  identical to the  principal  axes  of  fabric
anisotropy.  The  determination of  P  value

as  well  as  the  principal axes  are  indispen-
sable  in the  analysls  of  anisotropic,  discon-
tinuous  materials.

measure  of  cracks,

  Yoshinaka  (1973) has reported  that the

uniaxial  compressive  strength  (a.)f of  gran-
ite is given  as  a  linear function of  log

p  (Fig,12). It is worthy  of  note  that  this

linearity between (a.)f and  log p is quite
similar  to  the  linearity between  (a.)f and

log Ii[F). This seems  to support  the  idea
that  porosity  of  cracked  materials  is related

to  the  first invariant  of  fabrie tensor.
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  E(n)==density  function  showing  distribution of

        ns  (normals to contacts  and  cracks)

 E(n,r)=density function showing  distribution of

         ns  (normals to cracks)

     e==  void  ratio

F!,F2,F3=prlncipal  values  of  fabric tensor  Ftj

Ftii･R) and  Fij-[a) =fabric  tensors  for rock  masses

         and  for granular  material$  respectively

f(r) and  f(R)=density functions of  r  (radious of

         cracl<)  and  of  R  (radious of spherical  par-

         ticle) respectively

      h=length  of  column

Ii[F), J2[F) and  J3(PJ =  first, second  and  third  invar-

         iant of  fabric tensor  Ftj-

   I2(D) =second  invariant of  deviatorlc tensor  Dtj

      t= Iength of branch

    NCi)=number  ef  craeks  associated  with  i-scan-

         ning  line.

    i)t(J'i =number  of  cracks  inside a  volume  V

     m=  crack  vector  defined by  2rn'

    M(i)=number  of  branches associated  with  i-･

         scanning  plane,

    n[J') =number  of  partieles  inside a  volume  V

      ni=component  of  unit  vector  n  on  a  di:ec-

         tion  glven  by  i
      n==unit  vector  norrnal  to crack  surfaces  and

         contact  surfaces

     n'=unlt  normal  vector  defined with  respect

         to i-direction (n'･ilO)
             t .
      P=poroslty
      R=radius of  clrcular  crack

      r=radius  of  spherical  particle
      V==reference  volume

 ev and  P=angles to show  unit'normal  vector  n

      t"=parameter showing  anisotropy  of  Fw

         equal  to V21iCD)
       o" 

--volume
 density ef contacts

     6ij=Kronecker delta

 ea and  Ei =:axial  and  lateral strains

      pti=dlrection cosine  to show  principal axes

         of  Fii

       g=mean  co-ordination  number

       p =volume  density of  cracks

      aa==axial  stress

      9:=whole  solid  angle  (4n) gtven  by a  sur-

         face of  unit  sphere

     912=half solid  angle  given  by a surface  oi

          upper  hemisphere
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