土質工学会論文報告集 Vol.22, No.4, Dec. 1982

杭頭荷重~沈下量曲線形状の特性

――特に開端鋼管杭について――

(Characteristics of the Load-Settlement Curve of Piles)

永 井 興 史 郎* (Koushiro Nagai)
 山 肩 邦 男** (Kunio Yamagata)

キーワーズ:<u>鉛直荷重/載荷試験</u>/支持力/進行性 破壊/ぜい性破壊/沈下/深い基礎 (**IGC**:E4)

1. 序

杭頭荷重 (R_0)~同沈下量 (S_0) 曲線の 性状とその物 理的意義に関する研究の流れは、ほぼ次のようにまとめ ることができよう。

Van der Veen (1953) は、曲線の形状を1本の指数 曲線 $R_0 = R_{0U}(1 - e^{-aS_0})$ (R_{0U} :極限荷重) と近似する ことによって、 R_{0U} の推定法を提案した(図-1(c),(d) 参照)。またクリープ性状についても考察している¹⁾。

村山・柴田 (1958) は、レオロジー的考察に基づいて、 摩擦杭の荷重〜沈下量関係を考察し、その降伏荷重が摩 擦抵抗のクリープ限界に相当することを示した。その結 果、降伏荷重 (R_{0Y})が $\log R_0 \sim \log S_0$ 図の折れ点等か ら求められることが明 らか となった²⁾。これは $R_0 \sim S_0$ 曲線が数本の指数曲線によって近似されることを意味し ている。

山肩(1962)は、文献2)の解析法を支持杭の場合に 拡張して考察を進め、杭体の材料力学的考察をも加えた うえで、支持杭の降伏荷重は多くの場合、杭体の降伏か 杭先端の降伏現象によって生じていることを示した³⁾。

なお,最近では文献1)と同じ曲線を用いた宇都ら (1978)の研究がみられる⁴⁾。

以上のような研究の流れの結果として、わが国におい ては現在のところ、降伏荷重の判定に際しては次の3つ の図を描くことが慣例となっている。

i) log $R_0 \sim \log S_0$ 図 ii) $S_0 \sim \log t$ 図 iii) $\Delta S_0 / \Delta \log t \sim R_0$ 図 これらの図のうち, ii) と iii) は i) の折れ点の荷重から降伏荷重を判定するために補助的に 使われているのが実情である⁵⁰。

* 京都工芸繊維大学工芸学部 講師 (京都市左京区松ケ崎御所海道町) ** 関西大学工学部 教授 (吹田市山手町 3-3-35)

(1982.1.21 原稿受付•討議期限 1983.10.1)

 P_{y} トして、より単純な数本の直線の関係に変換し、その特性を見やすくしたものとみることができる。したがって、 $R_0 \sim S_0$ 曲線の特性は、これら各直線の勾配 α と切片 β に集約されていると考えられる。しかし、現在この勾配 α と切片 β については模型杭の場合の値が示されている⁶⁾のみで、実杭については詳細に考察した文献は見当たらない。

筆者らは、このたび打込み鋼管杭(開端)の載荷試験 結果報告書を幅広く収集し、数年がかりで統計的検討を 行ってきた。本論文は、この集計結果に基づいて実杭の $\alpha \geq \beta$ を調査し、あわせて $R_0 \sim S_0$ 曲線の特性について 推論したものである。なお、これらの資料は鋼管杭協会 のご協力を得て収集したものであること、本論の一部は 既に文献7)において発表ずみであることをお断りして おく。

2. $R_0 \sim S_0$ 曲線とその関連する諸量

今回の統計的検討では、載荷試験から得られた R_0, S_0 (最終測定値)の値からすべての資料について $\log R_0$ ~

 $[\]log R_0 \sim \log S_0$ 図は, $R_0 \sim S_0$ 関係 を 両対数紙上にプ

162

 $\log S_0$ 関係を求め、それを付録に述べる方法によって折 れ線で最小二乗近似した。同一荷重階で2回以上変位の 計測された資料については $S_0 \sim \log t$ 図 を も 描き、 文 献3,5) に示された方法によって R_{0Y} を求めた。

このようにして求められた R_{0Y} を基準として, 図-1 (b)のように荷重域 i とその荷重域における $\log R_0 \sim$ $\log S_0$ 直線の勾配 α_i および $\log R_0$ 軸上の切片 β_i を 定義した。

まず, R_{0Y} より小さい荷重を荷重域 1 とし, この荷重 域での勾配および切片の値を α_1 , β_1 とする。ただし, R_{0Y} より小さい荷重でも折れ点を生じている場合は, そ の点より小さい荷重を荷重域 0 とし, 勾配および切片の 値を α_0 , β_0 とする。同じく R_{0Y} 以上の荷重を荷重域 2 とし, 勾配および切片の値を α_2 , β_2 とする。 R_{0Y} 以 上においても折れ点の生じている場合は, その点より大 きい荷重を荷重域 3 とし, 勾配および切片の値を α_3 , β_3 とした。

図-2 に S_0 , S_P が共に計測された場合の $R_0 \sim S_0$, $R_0 \sim S_P$ 曲線の一部が模式的に示されている。同図に示された諸量は次のような意味を有する。

 S_{0E} : 杭頭変位の 弾性戻り量, S_{0R} : 杭頭の残留沈下量, S_{PE} : 杭先端変位の弾性戻り量, S_{PR} : 杭先端の残留沈下量, δ : 杭体の 圧縮変形量, δ_F : 杭体変形弾性戻りの周面摩擦による拘束量

 $R_0 \sim S_0$ 曲線の 1 サイクルごとに S_{0E} と S_{0R} を算出 することができる。また S_P も計測されておれば同様に して S_{PE} , S_{PR} , δ , δ_F をも算出することができる。そこ で R_0 とこれら諸量の関係を示す図を描き, $\log R_0 \sim \log$ S_{0E} , $\log R_0 \sim \log S_{0R}$, $\log R_0 \sim \log \delta$, $\log R_0 \sim \log \delta_F$ に ついても $\log R_0 \sim \log S_0$ と同様の方法によって折れ線で 近似した。図-3 にその代表例を示しておいた。

表-1 には、このようにして得られた α_i および各荷 重域での $\log R_0 \sim \log S_{0E}$, $\log R_0 \sim \log S_{0R}$ の勾配の平 均値を示しておいた。

 $\log R_0 \sim \log S_{0E}$ 直線の勾配は荷重の増大に 関係なく ほぼ一定のものが多かった。そのため **表-1** における各 荷重域での勾配の平均値にも大きな変化はみられない。 他方, $\log R_0 \sim \log S_{0R}$ 直線の勾配は R_{0Y} 以後急に小さ くなり R_{0Y} 後(荷重域 2)の $\log R_0 \sim \log S_0$ 直線と平 行なものが多かった。平均値においてもその傾向が現れ ている。なお、 R_{0Y} の近傍で $\log R_0 \sim \log S_{0E}$ は 28 件 中 5 件 (18%)が、 $\log R_0 \sim \log S_{0R}$ は 21 件 (75%)が 折れ点を生じていた。

 R_{0Y} 時の S_0 および S_{0R} の値をそれぞれ S_{0Y}, S_{0Ry} , 5. で述べる方法によって推定した R_{0U} 時の S_0 の値を S_{0U} とし, S_{0Y}/d , S_{0U}/d , S_{0Ry}/d (d: 杭径)を求めた 結果が図-4 に示されている。 S_{0U} は $R_0 \sim S_0$ 曲線がほ

図-3 R₀~S₀曲線の解析例

ぼ S_0 軸に平行となるときの値であるから、その推定値 の分散は大きいが、20% 以下のものが多い。 S_{0Y}/d は $1\sim 2\%$ をピーク値とするポアソン分布に近く。また S_{0Ry}/d は指数分布に近い。

log R₀~log S₀ 直線の勾配 α, 切片 β に ついて

図-1(b)の荷重域iにおける $\log R_0 \sim \log S_0$ 直線は $\log R_{0i} = \alpha_i \log S_{0i} + \beta_i$ (1) と表される。よって $R_{0i} \sim S_{0i}$ 曲線とその勾配は

	平均值	標準偏差	件数	平均值	標準偏差	伴数	平均值	標準偏差	件数
$A\log R_{\rm e}/A\log S_{\rm e}$	0.80	0.12	20	0.64	0.14	27	0.27	0.11	26
$A\log R_0/A\log S_0 r$	0.77	0.05	9	0.72	0.08	24	0. 69	0.13	14
$\Delta \log R_0 / \Delta \log S_{0R}$	0.68	0.26	11	0.54	0.25	24	0.18	0.07	23

$$R_{0i} = 10^{\beta_i} S_{0i}^{\alpha_i} = k_i S_{0i}^{\alpha_i} \quad (k_i = 10^{\beta_i}) \ (i = 0, 1, 2, 3)$$
(2)

$$dR_{0i}/dS_{0i} = \alpha_i k_i / S_{0i}^{(1-\alpha_i)}$$
(3)

と表される。

 $R_0 \sim S_0$ 曲線全体は、これらの曲線を図-1(a)のよ うに結合したものと考えることができる。同図(b) の $\log R_0$ 軸上においては $\log S_0=0$, つまり(本解析に おいては) $S_0=1 \text{ mm}$ である。よって β_i は $S_0=1 \text{ mm}$ のときの Roi の指数部であり、(2) 式からも分かるよ うに、図-1(a)の $R_{0i} \sim S_{0i}$ 曲線が $S_0 = 1$ mm におい て示す値 $R_{0i} = k_i = 10^{\beta_i}$ と対応する。

杭径 d および杭の閉鎖断面積 A=πd²/4 等は定数であ るから, 例えば

$$\begin{split} \mathcal{\Delta} \log \frac{S_0}{d} &= \log \frac{S_0 + \Delta S_0}{d} - \log \frac{S_0}{d} \\ &= \log(S_0 + \Delta S_0) - \log S_0 = \Delta \log S_0 \quad (4) \\ \mathcal{\Delta} \log \frac{R}{A} &= \log \frac{R_0 + \Delta R_0}{A} - \log \frac{R_0}{A} \\ &= \log(R_0 + \Delta R_0) - \log R_0 = \Delta \log R_0 \quad (5) \\ \therefore \quad \alpha &= \frac{\Delta \log R_0}{\Delta \log S_0} = \frac{\Delta \log(R_0/A)}{\Delta \log(S_0/d)} \quad (6) \end{split}$$

等である。すなわち、一般にαの値は杭の断面積や杭径 等の諸元によって直接的に影響を受けるものではないこ とが分かる。この事実は、文献6)の模型実験によって

図-5 $\arctan \alpha_i \sim \ln \beta_i$ 関係

も確認されている。また,

(d)

$$\alpha = \frac{\Delta \log R_{0}}{\Delta \log S_{0}} = \frac{\log(R_{0} + \Delta R_{0}) - \log R_{0}}{\log(S_{0} + \Delta S_{0}) - \log S_{0}}$$

$$= \frac{\log\{(R_{0} + \Delta R_{0})/R_{0}\}}{\log\{(S_{0} + \Delta S_{0})/S_{0}\}}$$
(7)
$$\therefore \frac{R_{0} + \Delta R_{0}}{R_{0}} = \left(\frac{S_{0} + \Delta S_{0}}{S_{0}}\right)^{\alpha}$$
(8)

である。したがって、 α_i は荷重域iにおける荷重の増 大率 $(R_{0i} + \Delta R_{0i})/R_{0i}$ と変位の増大率 $(S_{0i} + \Delta S_{0i})/S_{0i}$ の関係を表す無次元量であることが分かる。

R₀~S₀曲線は主として, 杭周の摩擦抵抗と杭先端の 抵抗の挙動によって規定される。したがって、これらの

抵抗値と地盤の変形との関係が線型であれば、 $\alpha = 1$ で ある。また、その関係がいずれも極限状態であれば、 $\alpha = 0$ と推定される。実際には α は $1 \sim 0$ の間の値をと り、表-1 によると平均値は $\alpha_0 = 0.80$, $\alpha_1 = 0.64$, $\alpha_2 = 0.27$ であった。

 $\beta = e^{E-C\theta}$ (*E*, *C* は正の定数) (9) の関係にあることが想定され、上式の自然数 e を底とす る対数をとれば、 $\ln \beta \ge \theta$ の線型関係

 $\ln \beta = E - C\theta \tag{10}$

が推測される。

実際に各試験杭ごとに (θ_i , ln β_i) をプロットすると, ほぼ直線状に並ぶことが見い出された。その一部(5件) を図-5 (b) に示しておいた。式 (10) の定数 Cおよび Eはそれぞれこの直線の勾配および ln β 軸の切片の値 である。ただし, 図-1 (b) からも分かるように log $S_{0i} \leq 0$ であれば, log $R_{0i} \sim \log S_{0i}$ 直線の β_i の値は他 との大小関係が逆転する。よって,そのような(θ_i , ln β_i) は図-5 (b) には示されていない。同図 (c) には (b) 図と同一の杭について log $R_0 \sim \log S_0$ 図上の 隣 り合う 2 測定値を通る直線の勾配と切片を算出した結果が示さ れている。(b) 図と同様, ほぼ (10) 式の関係が成り 立つことが分かる。(d) 図には今回得られたすべての (θ_i , ln β_i) が示されている。(θ_i , ln β_i) はある帯域内に 分布し, 杭径 dの大なるものほど, 上縁に近く分布する 傾向がみられる。

図-6 には $\beta_i \sim \beta_{i+1}$ (i=0,1,2)の関係を示しておい

た。ただし、 $\beta_0, \beta_1, \beta_2, \beta_3$ がすべての資料において見い出されたわけではない。特に β_3 の見い出されたものは少ないので(9)式において $\theta=0$ とおいた値 $\beta_3=e^{B}$ によって代えたものが多い。この図から $\beta_i \sim \beta_{i+1}$ 関係には強い相関があることが分かる。

図-7 には E および α_i が同一でCの 値が異なる 2 つの $R_0 \sim S_0$ 曲線を示して おいた。同図より C が小さい 場合には S_{0Y} および S_{0U} が小さく, いわゆるぜ い性破壊に至る性状を示すが, Cが大き いと逆に進行性破壊の性状を示すことが 分かる。5. で述べるようにEの値は R_{0U} と対応するものである。したがってEお よびCはそれぞれ $R_0 \sim S_0$ 曲線の漸近線 および「曲率」に対応し, その形状を決

定する代表的な定数といえる。図-8にはEおよび $C \ge d$ の関係が示されている。同図による $\ge E$ の値は $d \ge \ge$ もに増大するが、その増大傾向はdが大きいとき小さい。逆にCの平均値は d < 0.8m ではdの増大とともに減少するが d > 0.8m ではほぼ一定値とみることができる。

4. **R**₀~S₀ 曲線の推定

 α_i, β_i および *E*, *C* は各試験杭の $R_0 \sim S_0$ 曲線の特徴 を表すパラメータと考えることができる。しかし、*E*お よび *C* の信頼できる値の得られた資料は少ない。そこで 前節までの考察を補強するために、得られた諸統計値か ら逆に $R_0 \sim S_0$ 曲線の諸特性を推定してみることとし た。

図-7 定数Cだけが異なる2つの R₀~S₀曲線

図-8 *E*,*C*~d 関係

図-5(d) に (arctan α_i , ln β_i) の分布域を示したが, 破線で示したように大まかに区分することができよう。 したがって,次式のように単純化して考える。

$$\begin{array}{c} 1 \ge \alpha_i \ge 0 \\ 1.\ 24 - 0.\ 89 \arctan \alpha_i > \\ \ln \beta_i > 0.\ 89 - 0.\ 89 \arctan \alpha_i \end{array} \right\} \ (i = 0, 1, 2, 3)$$

$$(11)$$
 arctan $\alpha_1 - 0.11$ (11)

$$\ln \beta_1 < 1.95 \arctan \alpha_1 - 0.11 \\ \ln \beta_2 > 1.95 \arctan \alpha_2 - 0.11$$
 (12)

ただし,
$$R_{0U} > R_{0Y}$$
 かつ $S_{0U} > S_{0Y}$ だから

$$\frac{\beta_{i} - \beta_{i+1}}{\alpha_{i} - \alpha_{i+1}} > \frac{\beta_{i+1} - \beta_{i+2}}{\alpha_{i+1} - \alpha_{i+2}} \quad (i = 0, 1)$$
(13)

でなければならない注り。

次に図-6 の実線の関係に基づいて、
$$\beta_i \sim \beta_{i+1}$$
関係を

$$\begin{cases} \beta_0 = 1, 203 \ \beta_1 = 0, 618 \\ \beta_1 = 1, 013 \ \beta_2 = 0, 490 \\ \beta_2 = 0, 795 \ \beta_3 + 0, 130 \end{cases}$$
(14)

と推定する。 α_3 , β_3 については確かな統計値が得られて いないので、近似的に

$$\alpha_3 = 0, \quad \beta_3 = e^E \tag{15}$$

とする。また 3. において述べたように, $S_0 \leq 1 \text{ mm}$ に 対応する荷重階の β の値は, β_0 として採用 されていな い。したがって,上式の β_0 の値は載荷初期の β の推定 値としては適切ではない。そこで 載荷初期 に おける (arctan α , ln β) も (arctan α_i , ln β_i) (i=0,1,2) と同 一直線上にあるものとして,

 $\ln \beta_{I} = E - C \arctan \alpha_{I}$ (16) と推定することとした。ただし、 $\alpha_{0} \leq \alpha_{I} \leq 1$ とし、 (arctan α_{I} , ln β_{I}) も図-5(d)の破線内に分布するも のとする。

上記の諸関係 (11)~(16) 式を用いれば, *E*,*C* およ び α_i の平均的な関係を推定することができる。図-9 (a) にはこのようにして推定された (*E*,*C*)の分布域 が示されている。ただし、同時にその (*E*,*C*) に対応す る α_i の値を示すために $\alpha_i(i=0,1,2)$ の濃淡図として 示されている。また実測された (*E*,*C*)の分布 (×印) も示しておいた。同図から、推定された (*E*,*C*)は実測 値の分布の中央付近に分布していることが分かる。また 濃淡の記号から $\alpha_i(i=0,1,2)$ の値は

$$\begin{array}{c} 1 \ge \alpha_0 \ge 0.55\\ 0.65 \ge \alpha_1 \ge 0.35\\ 0.35 \ge \alpha_2 \ge 0.15 \end{array} \right\}$$
(17)

である。 α_1 の値は表-1の実測値の値に比べて小さく推定されている。これは、 R_{0Y} より小さい荷重においてlog $R_0 \sim \log S_0$ 関係に折れ点が見い出されない場合、実測値においては、図-5(d)に示すように α_1 がかなり大きな値を示すためである。 α_0 および α_2 はほぼ実測値の傾向と一致している。またEの同一値に対する α_i の推移をみると、Cが大なるほど α_i が小となり、図-7によって説明した現象を表している。同図中には R_{0V}/R_{0Y} の推定値も示されているが、その値は 1.3~1.5 であり、特に 1.3~1.4 の場合が多い。

図-8から E~d 関係の推定曲線として次式を採用し, E=d/(0.807d+0.123) (18)

更に、(11)~(16) 式を用いると C および α_i とdの関 係を推定することができる。その 結果を **図**-9 (b) に $\alpha_i(i=0,1,2)$ の濃淡図として示した。 同図によると dに対する Cの関係はほぼ**図**-8 と同様の 傾向を示してい る。同図の各杭径における Cの最大値および最小値の時 の $R_0 \sim S_0$ 曲線を描き、**図**-10 の実測曲線図中に破線で 示した。 $R_0 \sim S_0$ 曲線の形状は杭径だけではなく 地盤条 件によっても影響を受ける。したがって、**図**-10 は我が 国の都市部にみられる沖積層を主体とする地盤における 打込み開端鋼管杭(補強バンド付を含む)の 代表的 な $R_0 \sim S_0$ 曲線の分布域を推定したものといえる。

図-11 には、上記の方法によって推定された $R_0 \sim S_0$ 曲線における S_{0Y}/d , S_{0U}/d とdの関係が濃淡図として

1	c	c
T	υ	υ

永井・山肩

示されている。同図の記号よりいずれも d が大なるほど 小さいが

$$\begin{array}{c}
2\% < S_{0Y} / d < 10\% \\
5\% < S_{0U} / d < 50\% \\
\end{array} \tag{19}$$

の範囲内に分布している。この値は図-4の実測値の分 布域とほぼ一致するといえる。

5. *R*ov の推定法

図-1 (a), (b) および式 (2) から分かるように, もし $\alpha_3=0$ であれば, $R_{03}\sim S_{03}$ 曲線は S_0 軸に平行と なり, $R_{03}=R_{0U}=k_3=10^{\beta_3}$ である。このとき (9) 式 より $\beta_3=\exp(E)$ だから $R_{0U}=10^{\exp(E)}$ と推定され る。 図-5(b)に示した同一杭におけ る(θ_i , ln β_i) は厳密にはやや曲線 状の関係にある。したがって R_{0U} を正確に推定するにはこの曲線を延 長して ln β 軸上の切片を求めると よい。しかし,その曲線として2次 曲線を採用した場合,やや大きな誤 差を生じることが分かった。そこ で,ここでは取りあえず, ln β 軸 (b)のに最も近い2点を結んだ直 線(図-5 破線)の切片 E'を用い て $R_{0U}=10^{\exp(E')}$ と推定すること にした。

図-12 には図-5(b) と対応する 杭の $R_0 \sim S_0$ 曲線を示した。実線は (2) 式によって描いたものである。 破線は(2) 式を使って延長した最 大荷重以後の推定曲線である。また 矢印によって, R_{0Y} と上記 E' によ る R_{0U} の推定値を示した。 杭番号 DV-16 と DV-86 においては R_{0U} が最大荷重よりも小さく推定されて いるが, 曲線の形状から判断してそ れほど大きな誤差ではない。

従来用いられてきた Van der Veen の方法¹¹は図-1 (c),(d) に 示すように $R_0 \sim S_0$ 曲線を1本の指 数曲線によって近似しているが、こ のように近似できるとすることには 精度上不満がある。かつ R_{0U} を定 めるのに試行錯誤による判定を要す る。

本報で示した方法は, 同図 (a), (b) に示すように R₀~S₀ 曲線を

数本の指数曲線によって近似し、そのうち最も R_{0U} に 近い2本の指数曲線の特性を用いて一度で推定すること ができる。ただし、E' が R_{0U} の指数の指数となってい るため、E' に含まれる誤差の 影響が大きくなりやすい 点に注意する必要がある。なお、E'の決定に当たって は、 α_i の大きな値は資料として妥当とはいえず、少な くとも $\alpha_i < 0.4$ であるような 2 点を用いるべきである。 これは R_{0U} を十分な精度で推定するためには、載荷試 験の管理に際して α_i に留意すべきことを示している。

図-13 には $R_{0U}=10^{\exp(E')}$ と R_{0Y} の関係を示してお いた。平均すると $R_{0U}=1.28 R_{0Y}$ と推定される。E' に よって推定したため図-9 に示した R_{0U}/R_{0Y} よりもやや 小さい値を示している。 荷重~沈下量曲線の特性

6.まとめ

 $R_0 \sim S_0$ 曲線の形状に関する上述の理論と統計的考察 は以下のように要約することができる。 1. 図-1 に示す各荷重域の $\log R_0 \sim \log S_0$ 直線の勾 配 α_l の値は杭の諸元とは無関係 であり、(8)式に示 すように各荷重域における荷重の増大率と変位の増大率 の間の関係を示す指数である。また線型弾性域から極限 168

状態に推移する過程で $1>\alpha_i>0$ の間の値を示す。表-1 には今回解析した開端鋼管杭の α_i の値の分布域と平均 値が示されている。また $\log S_0$ 軸上の切片 $\beta_i \sim \beta_{i+1}$ (i = 0, 1, 2) の間には図-6 に示すような 強い 相関関係 があ る。

2. 各荷重域の $\ln \beta_i \ge \arctan \alpha_i$ (*i*=0,1,2,3) の 間にはほぼ線型の関係 $\ln \beta_i = E - C \arctan \alpha_i$ が成り立 ち,定数 E および C は $R_0 \sim S_0$ 曲線の漸近線(極限荷重) および 「曲率」に対応する。図-5(d)には開端鋼管杭 の ($\ln \beta_i$, $\arctan \alpha_i$)の分布域が示されている。

3. $\ln \beta_i$ と arctan α_i の間に見い出された上記の関係は, 厳密にはやや曲線状を呈している。そこで arctan α_i 軸に近い 2 点を結ぶ直線の arctan α_i 軸上の切片 E'によって $R_{0U}=10^{\exp(E')}$ と推定 した。図-12 にはその結果の一部が示されている。また 開端鋼管杭の 場合には, この推定値と R_{0Y} の関係は平均すると $R_{0U}=1.28$ R_{0Y} であった。

4. 上述の理論と統計値を用いて逆に開端鋼管杭の $R_0 \sim S_0$ 曲線を推定することができる。その結果は図-10 に示されている。また図-9 に示された α_i の傾向およ び E, Cの値の分布域は表-1 および図-8 の実測値の傾 向とほぼ一致しており、その平均的挙動を示している。 これは、上記諸統計値と理論の妥当性を示すものと考え られる。

謝 辞

本研究に用いた資料は鋼管杭協会ならびに関係各社の 御協力によって収集された。また図の清書は京都工芸繊 維大学技官小山清司氏の御協力を得た。記して謝意を表 します。

付 録

log R~log S 関係の折れ点を見い出すために次のよう

永井・山肩

な手順を採用した。

まず、測定値 R_k, S_k から log R_k および log S_k
 (k:荷重階)を算出する。ついで log R~log S 図上の
 勾配

$$\alpha_{k} = (\log R_{k+1} - \log R_{k}) / (\log S_{k+1} - \log S_{k})$$
($(\uparrow 1)$)

を求め,

$$\theta_k = \arctan \alpha_k$$
 (ff 2)

)

によって,角度 (rad.) に変換する。

2)
$$heta_k$$
 の最大値 $heta_{ ext{max}}$, 最小値 $heta_{ ext{min}}$ によって

$$\theta = (\theta_{\max} - \theta_{\min})/6$$
 (ff 3)

を求める。分母の6は経験的な値である。そして**付図-1** に示すように θ_{\min} および θ_{\max} を含む7つの等区間 (幅:u)を考える。この各区間に θ_{\min} から θ_{\max} に向 かって番号1~7をつける。

3) 1)で得た θ_i を次式によって、上記の1~7の
 区間に振り分ける。

$$J_i = \left[\frac{\theta_i - \theta_{ult}}{u} + 1\right] \qquad (\uparrow f 4)$$

ここに $\theta_{ult} = \theta_{min} - 0.5 u$, [] は小数点以下を切り捨 てて整数とする記号

つまり,番号iの勾配 θ_i は付図-1の区間 $J_i(1 \leq J_i \leq 7)$ に属する。

次に上記の結果を用いて $\log R \sim \log S$ 図上の点 ($\log R_i, \log S_i$) をグループ分けする。

4) 番号 i=1 から始めて, $|J_i-J_{i+2}| \leq 1$ となるす べての (log R_i , log S_i), (log R_{i+1} , log S_{i+1})をまとめて 1組とし,最小二乗直線を求める。 $i \ge i+1$ の勾配(隣 り合う勾配)ではなく, $i \ge i+2$ の勾配(1つ置きの 勾配)を比較する方が折れ点が見い出しやすい。

5) 同様に最大値から始めて $J_{i-2}-J_i \leq 1$ となるすべ ての点 (log R_i , log S_i), (log R_{i-1} , log S_{i-1}) をまとめて 1 組とし,最小二乗直線を求める。

荷重~沈下量曲線の特性

付表-1										
荷 重 階 k	1	2	3	4	5	6	7	8	9	10
$R_{1}(t)$	50	100	150	200	250	300	350	400	450	500
$\log R_{\rm h}$	1,699	2.000	2.176	2.301	2.398	2.477	2,544	2.602	2 .653	2.699
$\log R_{k+1} - \log R_k$		0.301	0.176	0.125	0.097	0.079	0.067	0.058	0.051	0.046
S.(mm)	0.575	1,210	2,248	4.240	6.538	9,028	14.023	21.643	36.155	66.678
$\log S_k$	0.240	0.083	0.352	0.627	0.815	0.956	1.147	1.335	1.558	1.824
$\log S_{k+1} - \log S_k$		0.323	0.269	0.275	0.188	0.141	0. 191	0.188	0.223	0.266
$\alpha_k = \frac{\log R_{k+1} - \log R_k}{\log S_{k+1} - \log S_k}$	-	0.932	0.654	0.455	0.516	0.560	0.351	0.309	0.229	0.173
$\theta_k = \arctan \alpha_k$		0.750	0.579	0.427	0.476	0.510	0.338	0.300	0.225	0. 171
i	-	1	2	3	4	5	6	7	8	9
$\theta_i - \theta_{i,1}$		0.627	0.449	0.304	0.353	0.387	0.215	0.177	0.102	0.048
$J_i = [(\theta_i - \theta_{ult})/u + 1]$		7	5	4	4	5	3	2	2	1
		<u> </u>		I		l	Δ	I		
			折れ点				折れ点			

勾配の最大値 $\theta_{max}=0.750$, 勾配の最小値 $\theta_{min}=0.171$ $u=(\theta_{max}-\theta_{min})/6=0.0965$, $\theta_{ult}=\theta_{min}-0.5u=0.123$

6) 残りの $(\log R_k, \log S_k)$ がただ1点であれば上記 2直線の交点を求めて終わる。

7) 残りの $(\log R_k, \log S_k)$ が2あるいは3点であれ ば,それを1組として最小二乗直線を求め、4)、5)の直 線との交点を求めて終わる。

8) 4点以上残っておれば, $J_{i_0+1}-J_{i_0+i+2}$ の最大値 を探し,その値が1より大きいとき,その荷重階の前後 で2組に分けて最小二乗近似直線を求め,それらの交点 および 4),5)の直線との交点を求める。上記の最大値 が1以下であれば1組とする。最大値が2つ以上あると きは, iの大きいほうで2組に分ける。ただし, i_0 は 4)で得られた組のiの最大値であり, i_p を 5)で得ら れた組のiの最小値として $i_0+i \leq i_p-2$ である。

なお、4) においては、直線の曲り方が**付図-2**(a)、 (b) の双方の場合が検出されるが、5)、8) においては 同図(a) の場合 が検出されるのみである。これは J_i $-J_{i+2}$ の絶対値を採るか否かによっている。

参考文献

- 1) C. Van der Veen (1953): "The bearing capacity of a pile," Proc., 3 rd Intern. Conf. on S. M. F. E.
- 村山朔郎・柴田 徹(1958):粘土中の摩擦グイの支持力 とその新測定法,「土木学会論文報告集」,第 59 号.
- 3) 山肩邦男(1962):支持杭の載荷試験における降伏荷重の 力学的意義に関する考察(第1報,第2報)、「日本建築学 会論文報告集」,第79,80号.
- 4) 塩井・宇都・冬木・近藤・桜井(1978):杭の荷重-変位曲線の非線型回帰結果による支持力の一評価法,「第23回土 質工学シンポジウム」,土質工学会、
- 5) 日本建築学会 (1974): 建築基礎構造設計規準·同解説
- 6) 金谷祐二・秋野矩之(1977): 杭先端の沈下性状と寸法効 果,「第 14 回土質工学研究発表会」.
- 7)山肩邦男・永井興史郎(1980):杭の鉛直載荷試験における log R₀~log S₀ 直線の特性と極限荷重の推定法 について、「日本建築学会大会学術講演梗概集」・
- 8) 山肩邦男・永井興史郎・富永晃司(1982):鋼管杭の鉛直 載荷試験および水平載荷試験の結果に関する統計的検討, (限定版報告書).