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                                  ABSTRACT

  The  paper discusses the  effects  of  non-]inearity  in the  failure criterion  of  soil  on  the  upper

bound solution  procedure, By  considering  the  inherent non-linearity  of  the  failure criterion,

it is demonstrated  that  the  upper  bound procedure yields not  only  the  minimum  value  of

and  the  external  load and  the  failure mechanism,  but also  the  stress  distributien along  the  slip

surface.  The  stress  distribution so  obtained  satisfies  a K6tter type  differential equation  and

guaranties  the  global equilibrium  of  the  sliding  mass.  This  result  is valid  for both linear
and  non--linear  failure criteria,  When  the  failure criterlon  is linear, it is demonstrated  that

for a  simple  failure mechanisrn  the  classical  solution  procedure  prevides only  a  partial solution

which  does not  include the  normal  stress  distribution. This  is due to  the  different consequence

of  the  normality  requirement  in the  linear and  non-linear  cases.

Key  werds;  bearing capacity,  failure, plasticity, slip  surface,  stability  analysis,  (failure
criteria),  (limit analysis),  (non-linearlty) (IGC: EO/E3fE6)

INTRODUCTION

  The  upper  bound theorem  of  plasticity

provides a  convenient  framework for the

derivation of  approxirnate  solutions  to  various

stability  problems. The  approach  has been

,successfully applied  to  a  number  of  soil  me-

chanics  problems  (e.g. Finn, 1967) such  as

bearing capacity  (e.g. Chen  and  Davidson,

1973), slope  stability  (e. g. Chen  and  Giger,
1971) and  earth  pressure calculations  (e.g.
Chen  and  Rosenfarb, 1973). These applica-

tions  have  always  utilized  a linear Mohr-
Coulomb  failure.envelope. Although  this is

generally  a  reasonable  approximatien,  there

is evidence  that  in many  ca$es  the  failure

envelope  of  soils  is not  well  represented  by
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   Manuscript  was  receiyed  for review  on

   Written  discussions on  this paper should  be

a  straight  lme (e.g. Vesic and  Clough,

1968; Lee and  Seed, 1967). The  significance

of  this  departure frem linearity may  be
appreciated  by the  £act  that  it has been used

to  explain  scale  effects  in bearing capacity

problems  (e,g. De  Beer, 1970; Vesic, 1975),

  The  validity  of  the  upper  beund  theorem

is not  dependent on  the  shape  of  the  failure

envelope  and  therefore  it is, in principle,
applicable  to materials  with  non  linear failure
envelopes.  In this paper it is demonstrated
that  there  is a  fundamental  difference in the

procedures  used  for applying  the  theeJem

to materials  with  linear and  non  linear failure

envelopes.  This  difference is due  te  the

different roles  played by the  normality  cri-

terion  in these  two  cases.
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THE  UPPER  BOUND  THEOREM
 '
  The  upper  bound  theorem  of  plasticity

(Drucker et al, 1952) has been presented in
various  ways  ; for the  present purpose it will

be stated  in the  following fashion :

  
"The

 load calculated  by equating  the  rate

of  work  of  all external  forces with  the  rate

of  energy  dissipation in the  plastic zone  is
not  lower than  the  

"true"
 limit Ioad, pro-

vided  that  only  kinernatically admissible

collapse  mechanisms  are  considered,  
"

  The  
"true"

 limit load is that  determined
from a cornplete  plasticlty solution  of  the

problem.  A  kinematically admissible  collapse

mechanism  is a  field of  plastic displacement

increments  (velocities) which  satisfied  the

following conditions  :

  (a) The  velecity  field is such  that  no  gaps

er  penetratlons  oecur.

  (b) The  velocity  field satisfies  the  velocity

boundary conditions,

  (c) The  rate  of  work  produced  by the

externa!  forces is non  negative.

  (d) The  velocity  field is consistent  with

the  associative  flow rule  of  plasticity (Le.
the  normality  requirement).

  The  solution  procedure  using  the  upper

bound theorem  generally  consists  of  the  fol-

lowing stages  :

  (a) A  class  of  kinernatically acceptable

collapse  mechanisrns  is postulated in terms  of

sorne  geemetrical  variables,

  (b) For any  value  of  the  geometrieal

variables,  an  estimate  of  the  collapse  load
is obtained  by equating  the  rate  of  external

work  with  the  rate  of  internal dissipation.
The  estimate  of  the  collapse  load is therefore
a  function of  the  geometrieal variables  defin-
ing the  col!apse  mechanism,

  (c) The  lowest value  of  these  estimates

represents  the  least upper  bound value  for
this  class  of  collapse  meehanisms.

  (d) Other classes  of  collapse  mechanisms

 may  be eonsidered,  and  the  least upper  bound
ebtained  frorn all  classes  is taken  as  the  best
estimate  of  the  true  collapse  load.
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THE  FRAMEWORK  CONSIDERED

 Diseontinuous  velocity  fields are  kinemat-
ically admissible,  and  have been  sound  useful

for the  derivation of  upper  bound  solutions.

The  simplest  type  of  such  a  field consists

ef  the  movement  of  a  single  rigld  body en

a  surface  of  discontinuity. As  the  purpese
of  this note  is to  discuss the  implication of

non-linearity  of  the  strength  envelope  and

not  to derive particular  solutions,  this  simple

mechanism  wil]  be used  throughout  the

following presentation, The  approach  will  be
developed by referring  to a  particular  prob-
lem-that of  the  bearing capacity  of  a  strip

footing on  the  upper  surface  of  a  slope  (Fig.
1). The  soil  is assumed  isetropic and  homo-

geneous  ancl  no  pore  pressures  exist.

  
  

l

 
 

Fig. 1. The  scheme  congidered-A  loaded strip

    footing on  a  slope  surface

  The  failure criterion  of  the  soil  is expressed

by:

       T=f(a)=c+gb,(a)･a  (1)

where  T  and  a  are  the  shear  and  norma!

stresses  respectively  on  the  failure surface;

c is the  cohesion  and  ip,(b)= tan[ ¢ ,(d)]where

¢ s is a  stress  dependent  secant  friction angle

(see Fig, 2). -

The  expression  r=f(a)  is the  functional
relation  defining the  possibly  non  linear
failure criterien,

  In additlon  to  the  secant  quantities  di, and
ip,, it is convenient  to  introduce the  tangen-

tial friction angle  th, and  tangential  friction
coeficient  ipt :tan ¢ t. The  relation  between
,ip, and  ipt is: ･

NII-Electionic  
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   Fig.2. A  non-linear  failure  criterien

       ipt! 
ddf.

 :=ops+a-t'd'opTaS7  (2)

THE  UPPER  BOUND  APPROACH

Formulation of the  Problem

  The  upper  bound procedure  requires  that

the  rate  of  external  work  be equated  to  the

rate  of  dissipatien within  the  plastic zone.

This  requirement  may  be expressed  as  :

        Vir,. (P; 3t) =D(Bt)  (3)
where  Pt',.==rate of  external  work,  P==ap-

plied load, Bt=ra set  of  geornetrical parame-
ters defining the  failure mechanism,  and  D=
rate  of  dissipation.

  For  the  present  purpose,  it is convenient

to write  Eq, <3) as  follows:
      -- -

     W=W(R  BD=D-  VV,.=O  (4)
where  tu may  be defined as  the  total  virtual

work  of  the  system.

  Considering a  single  rigid  body, Vt" is glven
by (e.g. Synge  and  Grifith, 1959),
       - .
       W=aH+"V+9M=:O  (5)
where  M  is the  resultant  moment  about  some

reference  point.

  a, ab are the  rates  of  horizontal and  vertical

virtual  displacement of  the  reference  point.

  In the  present case,  the  reference  point
is taken  as  point O in Fig. 1, through  which

the  external  load P  is applied.  ･

  H,  V  are  the  resultant  horizon'tal and  ver-

tical  forces acting  on  the  rigid  body.

  E21 is the  rate  of  virtual  rotation  of  the

FRYDMAN

rigid  body.

  Referring to Fig. 1, expressions  for H,  V

and  M  may  be developed (e.g, Garber and

Baker, 1977), as  follows:

     H=  Lin [a(di,-y')+c] dx (6a)

  v=  
.Ili'"

 [aa+  ipsy') +  cy'-r(y-  y-)]dx 
-p

                                 (6b)

  M=li"{.[ip,(y-yrx)-(x+ysy)]
     +c(y-y'x)+r(y-ti)x}dx  (6c)

 where  y=.'y(x)=the  equation  describing the

 discontinuity (i.e. the  slip  surface),  a=a(a;)

 ==the  normal  stress  acting  on  the  slip

 surface,  x., x,.  are  the  end  points  of  the

 slip  surface,  y' ==  dyldx, e=- Y(x) =the  equation

 describing the  soil  surface,  and  r:=total  unit

 weight  of  the  soil

 Taking af as  unity  with  ti and  2  then  taking

 their  compatible  values  and  defining Vi==

 V+P,  Eq. (5) may  be solved  for P  yielding
                         .

            P== V,+Hab+M9  (7)

 Introdueing the  expressions  fer H,  Vi, and

 M  from  Eq. (6) into Eq. (7), the  following

 equation  is obtained:

  P=Vi+Hab+Mn==G[y(x),a(x)]=J)I"gdx
                                 (8)
 where  G  is the  functional relation  between

 the  load P  and  the  unknown  functions y(x)

 and  o(x).

 The  function g is given  by
        .
    g=e[(di,gt+g2)a+(cgi-rg3)]  (9)
 where

     g,=:(:. +y)+y'(b.  
-x)

 aoa)

     g2=(b. 
-x)-y'(top=+y)

 aob)

     g3 =(  b. 
-x)(y-v)

 (ioc)

 In developing Eqs. (8) to (10), it has been

 assumed  that  2  is not  zero.  Consequently

 this  set  ef  equations  applies  to  a  rotational

 mode  of  failure. An  alternative  set  of  equa-

 tions  for a  translational  failure mode  can  be
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 derived by setting  2=O  in Eq. (7).
  Comparing  Eqs. (5) and  (8), it is clear  that

 G  represents  that  part  of  the total  virtual

 work  which  is not  related  to the  external

 load P. This part  includes the  work  et", done

 by the  body forces (weight) and  the  dissi-

 pated  werk  D. On  the  basis of  Eq.(9), the

 follosving identifications may  be made:

     G=D-ll',  (11a)

     D==9.J]:"[(ip,g,+g,)a+cg,]dx  (11b)

     tur= g' rLI"  g, dx ai c)

  As  a  results  of  equating  the  rates  of  exter-

nal  work  and  internal dissipation, Eq.(8)
has been obtained,  expressing  the  load P  as

a  functional of  y(x)  and  a(x).  According
to  the  upper  bound procedure, the  least
upper  bound value  of  P  is therefore  obtained

by minimizing  this functional relation  with

respect  to  the  parameters  Bi defining the

failure mechanism,  The  minimization  must

be subjected  to  the  constraint  that  the  failure
mechanism  is kinematically admissible.  This

procedure  may  be summarized  in the  follow-
ing equations  :

          4=min  [G] (12a)
                pi

          K(B,)  =:O  (12b)
where  P.  is the  minimum  value  of  P, and

K(Bi) represents  the  kinematic constraints.

The  Kinematic  Constraints

  In the  present  case,  for a smooth  footing
which  is free to rotate,  there  are  no  velocity

boundary conditions,

  The  requirement  of  non  negative  rate  of

external  work  will  be satisfied  if both the

point of  application  of  the  load and  the

centre  of  gravity of  the  sliding  mass  move

downwards,

  Attention  is now  turned  to the  normality

requirement.  Accerding  to Hill (1959), the

requirement  that  the  plastic velocity  field
satisfy  the  associative  flow rule  is equivalent

to  the  requirement  that  the  rate  of  plastic
work  (i.e. dissipation) is stationary  with

respect  to the  stress,  for all stress  systems

satisfying  the  failure criterion.  Consequent-
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 ly, the  normality  requirement  is equivalent

 to the  following expression:

             6D
             

-Si
 
M-O

 (13)

 where  6 is the  variational  operator.

Referring to Eq. (11), since  Vt", is independ-
ent  of  a, Eq. (13) may  be replaced  by

             6G
                =:O  (14)
              6a

Since G  is a  functional of  a(x),  this statio-

nary  requirement  may  be expressed  by the

following Euler equation  (Elsgolc, 1972).

     3G. -  ,d.[,a.g ]- gg --o (is)

From  Eqs,(15), (9) and  (2) it follows that

           giipt+g2=:O (16)
Substituting g, and  g2 from Eqs. (10) :

     dit[( ii･ +y)+y'(2.;  
-x)]

       +[(  2･i 
mx)-y'(li.

 +y)]=o  (i7)

Eq. (17) can  be simplified  considerably  using

the  following coordinate  transformation:

        y=--Ui  +rcose  (18a)
             9
             1
          x=  . -r

 sinO  (18 b)
             9

The  coordinates  r  and  e represent  a polar
system  centred  at  the  point

           ab 1
     Xe=-  ., y.=.  (see Fig.3)
           2 9

Eq. (17) then  yields:

           dr
           de 

==-cbt(U)r
 (19)

Eq,(19) is a  well  known  condition  (e.g.
Davis, 1968) for kinematic admissibility  in
the  case  of  rigid  body rotation.  This equation
was  derived from the  requirement  of  nor-

mality;  the  geometric  significance  of  this
requirement  is that  the  plastic velocity

vector,  M, at  the  slip  surface  acts  at  an

angle  ip, to  the  surface.  Combining  this

with  Eq. (19):

NII-Electionic  
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 Fig. 3, The  kinematic  constraints  of  the

        system

       
dA'.'

 -gbt(a)---l-  [iS (2o)

where  dN  and  liT are  components  of  A
nermal  and  tangential  to the  slip  surface

(Fig. 3).
It is instructive now  to consider  separately

the  following two  limiting cases  :

  (a) Linear Failure  Criterion-The  assurnp-

tion  of  linearity has the  following conse-

quences  :

  1. Eq. (20) represents  a  severe  kinematic

constraint,  since  
'
 ¢ t:=ips= ¢ :=const,  and

therefore  only  a  single  value  of  dNfdT  is

possible all along  the slip  surface.

  2. With a  constant  ¢ ,
 Eq.(20) can  be

integrated, yielding:

              r==Ae-VO  (21)
where  A  is an  integration constant

  3. In order  to  obtain  an  expression  for the

rate  of  dissipation, D, whieh  includes the

effect  of  the  normality  requirement,  Eqs.

(16) and  (2) are  substituted  into Eq,(11b),

resulting  with

      D=2Jll"(c-a2  
ddipos

 )g,dx (22)

For ip, constant,  thi$ expression  simplifies

to

FRYDMAN

         D=2cJ)i"g,dx  (23)

Using  Eqs, (10a), (18) and  (19), Eq. (23)
yields :

        D=9e.J]:" r2 (0) de (24)

Eq, (24) is essentially  the  same  as  the  ex-

pression  presented  by Chen  (1975) for the

case  of  a  linear failure criterion,

  (b) Non-Linear  Failure Crlterion-A

limiting case  of  a non-linear  failure criterion
is considered  (Fig. 2) xvhere  ip, varied  from

infinity te zero  as  the  normal  stress  increases;

this  has the  following consequences:

  1. Eq. (20) restricts  the  form  of  the  slip

surface  only  to the  extent  that  dr/fdO must

be negative,  but the  function rCe)  may  be

arbitrary  otherwise.  This  freedom  in the

form  of  r(e)  is due to the  fact that  any

vector  ti will  be normal  to  the failure curve
at  some  point;  the  point  at  which  this

normality  occur$  defilles a  unique  value  of

if(Fig.4(a)).  Hence, Eq, (20) constitutes,  in

effect,  a  relationship  between  the  functions

r(0)  ana  o'(e).  This is in contrast  te  the

linear case  where  the  vector  d  is normal  at

          tL

:::l1
(El)

'z

ff-

(b}

cr

Fig.

                     cr

4. Conseq'uence of  the

norrnality  requirement  for

(a) non-linear,  (b) linear,
failure  eriterion
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every  point along  the  !inear failure curve

and  therefore  cannot  be associated  with  a

unique  value  of  a  (Fig.4(b)).
 2. Eq. (20) cannot  be integrated without

prior specification  of  the  function a(e).

Consequently  it is not  possible  to  obta{n  an

equation  such  as  Eq. (21) defining the  shape

of  the  failure surface.

 3. The  rate  of  dissipatien is given by
Eq. (22); in this  case  it depends  on  a.

Sotution Procedares

  Two  solution  procedures are  consldered.

Procedure A, which  follows directly from
Eq,(12) is based on  minimization  of  the

functional G  with  respect  to the  geometrieal
parameters  Bi ; in procedure  B  this minimiza-

tion  is done  indirectly by solving  a  system

of  equations.  The  set  of  parameters  Bi, is
defferent for linear and  non  linear fairure
criteria  due  to  the  different roles  played by
the  normality  constraint  in these  two  cases.

Consequently  it is necessary  to  consider  solu-

tion  procedures  separately  for the  linear and
non  Iinear cases.

  (a) Procedure A, Linear Failure Criterion-
Substituting Eq. (21) into Eq. (24), and  using

Eq.(11a),  it follows that  G  is a  function
            -
of  A, ab and  9. The  set  of  parameters  Bt
defining the  failure rnechanism  (see Eq. (3))
is therefore  (A,de,2). Consequently, Eq.

(12) can  be written  as  :

                      ,
      Il,,::: min  C(A,ti,2) (25a)
          cA,il,b)
                     .

   y(x=-bf2)  =:  y,(A, ti, e) ==O  (25b)
where  Eq.(25b) is a  geometrical boundary
condition  requiring  that  the  slip  surface

starts  at the  footing edge  (see Fig. 1): Note
that  rk and  9 define the  origin  of  the  polar
coordinate  system  (see Fig.3) so  that  the

minimization  in Eq. (25 a)  Iocates the  critical

center  of  the  coordinate  system,  which  is
                               .
al$o  the  center  of  rotation,  When  9"O  the

center  of  rotation  is located at  infinity; this

situation  corresponds  to a translation  mode  of

failure. Consequently  translation  can  be

viwed  as  a limiting case  of  rotation  and

need  not  be studied  separately.
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 Eq. (25) represent  the  classical  solution

procedure  (e.g. Chen, 1975),  which  yields
the  minlmum  load P.  and  the  slip  surface

y(x), but not  the  normal  stress  distribution
a(x).

  (b) Procedure  A, Non-Linear  Failure
Criterion-In  this case  the  normality  con-

straint  constitutes  a  relation  between the

slip  surface  and  normal  stress  functions. This
relation  makes  it possible to consider  G  as  a

function of  y(x)  only  (see Eq, (8)). Con-
sequently,  the  set  of  parameters  Bt defining
the  failure mechanism,  is the  totality  of

values  of  the  function y(x). Therefore,
Eq. (12a) defines the  variational  problem  of

minimizing  G  with  Tespect  to  the  function

y(x),  i. e.

             6G
                =O  (26)
             6y

Eq. (26) is a  necessary  but not  suMcient'

condition  for a  minimum.  However  due tg

the  upper  bound theorem,  the  existence  of

minimum  is guaranteed  and  there  is no  need

to study  the  nature  of  the  stationary  point
using  the  second  variation  (62G162y).
Eq, (26) is equivalent  to the  following Euler
    Jequatlon

     gG, -,fl.[,O,g,]-  3g =:o  (27)

Substituting from Eqs.(9) and  (10), and

using  the  differential Eq. (19) and  the  coordi-

nate  transformation  (18) :

   da
      -2ip,(a)a-2c+rrsine==O  (28)
   deThe

 form of  this equation  is the  same  as

that  of  one  of  the  K6tter equations  (e.g.
Davis, 1968).  It is however a generalization
of  the  usual  K6tter equation  since  it is valid

for a  non  linear failure criterion.

  Eqs. (19) and  (28) constitute  a pair of

simultaneous  differential equations  for the

determinatien  of  the  forms  of  r(0)  and

a(e)  ; the  solution  depends on  the  particular
function ip(a) eonsidered,  but can  always  be
written  as  follows;
                     .
        r=::r(elA,  B, rk, 9) (29a)                     '
        a=a(elA,  B, di, 9) (29b)

NII-Electionic  
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where  A, B  are  two  integration constants

and  notation  (0[A,B,di,9) is used  to ern-

phasize the  dependence  of  the  solution  on
                                  '
the  four unknown  parameters  A,B,  ab,9

  Substituting Eq. (29) into the  definition of

G  makes  this quantity  a  function of  the
                     '
four parameters  A,B,  ab,2. Hence the  solu-

tion  proeedure  given  by Eq.(12) becornes:

     P.=  min  G(A,B,rk,2) (3ea)
         AtB)usO

     y, (A, B, ti, 2) =O  (30 b)

Eqs.(30) yield the  minimum  load P., the

slip  surface  y(x) and  the  normal  stress

distribution a(x),

  (c) Procedure B-Both  Eqs, (25) and  (30)
require  minirnization  of  G  with  respect  to

a and  9. This  requirement  is equivalent  to  :

OG!Ode=:O; (OGI02)=iO, Frorn Eq. (8), It is
                               ,
seen  that  (aGfOdi):=lll and  (OG!a2)=M.
Consequently, the  rninimization  with  respect

to ab and  9  is equivalent  to the  satisfaction

of  the  equilibrium  conditions  H:=O, M==O.

Furthermere,  from Eq.(5) also  V=O,  so

that  all three  equilibrium  equations  are

satisfied,  This result  is due  to the  equivalence

between the  virtual  work  statement  tu=O,
and  the  equilibrium  requirement.

  Non-Linear  Failure Criterion-Since  mini-

mization  of  G with  respect  to st and  9 is

equivalent  to H==O, M=O,  Eqs. (30) can  be
    .rewrltten

 as  :

      Ph,=minG(A,  B, a, 2) (31)
          A,R

       Subject to:

      y,= (A, B, a, 9) =O  (32 a)
                   .

      H=H(A,  B, ck, 9) =O  (32b)

      M:=  M(A,  B, ab, 2) =O  (32 c)
                        '

Eqs. (32) may  be solved  to  express  three  oi

the  parameters  A,B,ti,9  in terms  of  the

fourth; hence the  minimization  of  G  in

Eq, (31) has to be done in terms  of  one  para-

meter  only.  Furthermore,  even  this mini-

mization  can  be avoided  by the  use  of  the

transversality  condition  which  fixes the  criti-

cal  location of  the exit  peint =.,  y. (Fig,1)
and  is expressed  by (Elsgolc, 1972):

FRYDMAN

      [g+(ti'rm gy') o08r ].=..=O (33)

 where  pt'=V'(x) is the  slope  of  the  soil

 surface.

  Substituting Eqs,(29) into Eq.(33), the

 transversality  equation  can  be expressed  as
          .
 T(A,  B, ab, 9) =O.

  Solution proeedure B  therefore  reduces  to

determination of  the  four constants  Ao, Bo,
    .
 cko, 9e as  a  solution  of  the  set  of  simultaneous

     .equatlons
 :

                   ,
         y, (A, B, ab, 2) =O  (34 a)
                   ,
         H(A,  B, a, 9) =O  (34b)
                   ,
         M(A,  B, ab, 2) =O  (34 c)
                   ,
         T(A,  B, a, e) -O  (34d)

 Following  determination of  the  constants  Ao,

Be,rko,9o the  minimum  value  P.  is feund

 from the  relation:

                      i

       Pin =G(Ae,  Bo, rko, 2o) (34 e)

  Linear Failure Criterion-Application of

Eqs. (34) requires  that  the  function a(x)  be
specified;  consequently  it appears  that  this

approaeh  cannot  be used  for a  linear failure
criterion.  It is possible, however,  to  view

a  linear criterion  as  a  limiting case  of  a

 general non-linear  one.  Even  the  slightest

 non  linearity will  yield a  unique  point  Qf

 normality  between the  displacement vector  d
and  the  failure criterion,  resulting  in an

 association  between slip  surface  and  normal

 stress  distribution. From  this point of  view,

Eq, (28) with  a  constant  ip, defines the  limit-

 ing form  of  the  normal  stress  distribution as

 the  non-linearity  tends  to zero.

  Substituting the  value  of  r  irom  Eq, (21)
 into Eq. (28), and  integrating,  the  following

 results  is obtained  (Baker, 1981);

  a=B  exp  (2 ip0)
        Ar
             (cosO+3esine)exp(-ip0)     +
       1+9  ip2
        1-exp(2  ipe)
     

-c
 ip 

--
 (35)

It is seen,  then  that  the  assumption  of

linearity decouples the  pair of  simultaneous

differential Eqs, (19) and  (29) making  it pos-
sible  to  solve  them  in turn,  With the  form

of  the  funetion a  given  by  Eq. (35) it is
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now  possible  to follow the  same  approach  as

was  used  for a  non  linear criterion,  resultlng

with  a  system  of  equations  the  same  as  Eqs.
'(34)

 except  that  now  yo and  G  are  independ-
ent  of  B, This procedure yields  P.,  y(x)
and  a(x)  even  for the  linear failure criterion.

CONCLUSIONS

  The  classical  solution  procedure  for the

linear failure eriterion  (Eq.(25)) provides

only  a  partial solution  to the  problem;  the

introduction of  the  assumption  of  linearity
at  too  early  a  stage  of  the  analysis  results

in a  loss of  information regarding  the  normal

stress  distribtttion. The  assumption  of  a

linear failure criterion  is, at  best, a  con-

venient  approximatlon  to a  non-linear  real-

ity, and  hence the stress  function defined
by Eq. (35) has relevance  for most  real  soils.

The  suggested  fQrm  of  this  distribution is

supported  by the  fact that Eq,(35)  is the

solution  of  the  K6tter equation  (Eq. (28))
which  has a  physical  basis,
  The  conventional  solution  procedure  of

upper  bound  problems  requires  minlmization
                    .
with  respect  to rk and  9. It has been shown

here that  this minimization  is equivalent  to

satisfaction  of  global  equilibrium  for the

sliding  mass.  This observation  makes  it

possible  to solve  the  problem  by solving  a

system  of  four slmultaneous  equations,  To

the  authors'  knowledge, such  a  solution

procedure  has not  been  used  before, It may

be verified  that  this  type  of  procedure is

equivalent  to  the  variational  limit equilib-

rium  approach  formulated  by Baker  and

Garber (1977). That  approach  has been  used

to  solve  problems  of  bearing capacity  (Garber
and  Baker, 1977) and  slope  stability  (Baker,
1981)  for soils  with  a  linear failure criterion,

  The  use  of  the  upper  bound  approach  is

greatly  simplified  by assuming  a  linear failure

criterion.  This simplification  is due  to  the

decoupling of  the  stress  distribution and  the

slip  surface  functions, making  it possible  to

define the  shape  of  the  slip  surface  in

advance.  Even  with  this assurnption,  the

possibility exists  for evaluating  the  normal
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stress  distribution ･along the  slip  surface,

providing  valuable,  additional  iniormation
not  obtained  by the  classical  procedures.
           '
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