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ABSTRACT

Much attention has been paid to anisotropic behavior of soils, such as the inherent
anisotropy and the stress induced anisotropy. Nevertheless, they often appear in the literature
without any clear definitions. In the theory of finite deformations, the concept of isotropy
is well established and is clearly distinguishable from the objectivity. However, in the
infinitesimal theory, which is usually assumed in soil mechanics, they seem to be in
confusion and, as a result, even simple anisotropy is not clearly defined. In this paper,
we therefore first discuss the general principles of constitutive equations in finite theories
and in infinitesimal theories to make a clear distinction between the objectivity and the
isotropy. One of our most important results is that, if reference vectors or tensors are
employed, in infinitesimal theories, the objectivity requires that anisotropic materials can be
represented by isotropic functions. Using a reference tensor, we finally give a clear definition
of the inherent anisotropy and the stress induced anisotropy. We then examine their
definitions employing a concrete example and show how the principles derived are useful,
including the failure condition and the materials of differential type.

Key words : anisotropy, constitutive equation of soil, (induced anisotropy), (inherent aniso-
tropy), (principle of objectivity), (principle of reference indifference) (IGC : D 6)

by a preferred orientation of particles
developed during deposition (Oda, 1972;
Arthur and Menzies, 1972). Similar aniso-
tropy can also be observed in varved glacial
lake deposits containing alternating layers

of silt and clay. Such anisotropic behavior

INTRODUCTION

Most soils in natural states more or less
exhibit anisotropic behavior. Anisotropy in
soils is, however, one of the. complicated
characteristics to which much attention has

been paid in the literature. It is well
known, for instance, that the deformation
and strength of sand is considerably affected

resulting from the natural structures of soil
is, in general, called the inherent anisotropy.
On the other hand, it is also well known
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that the undrained shear strength of aniso-
tropically consolidated clays varies with the
direction of shear or direction of principal
stress (Bjerrum, 1973; Ladd and Foott,
1974). Hansen and Gibson (1949) showed
that such a phenomenon results from the
anisotropic initial stress state. We may
therefore consider that the strength of soils
depends not only on the natural structures
of soil but also on the initially anisotropic
stress states. The latter is often called the
stress induced anisotropy. The stress induced
anisotropy is, therefore, essentially a differ-
ent concept from the inherent anisotropy.

Precise definitions of these concepts, how-
ever, have not been given in the papers.
Kanatani (1982) defined the concept of an
isotropy and an induced anisotropy. How-
ever, his definitions are not very clear
since he seems to confuse the isotropy with
the objectivity. In fact, in the theories of
finite deformation, several principles such as
the isotropy and the objectivity are well
known and well established. In infinitesimal
theories, which are usually assumed in soil
mechanics, these principles, however, have
not been clarified and have been used con-
fusedly.

As a result, in infinitesimal theories, even
the definition of a simple anisotropy is not
clear. We thus first have to discuss such
general principles to make a clear distinction
between the isotropy and the objectivity not
only in finite theories but also in infinitesimal
theories. This is one reason why we spend
the first two parts on these principles.

In the first part we present brief discussions
about the principles for constitutive equations
for finite deformation theories: 1) Refer-
ence Indifference, 2) Objectivity, and, 3)
Material symmetry (anisotropy) and iso-
tropy. Then, employing reference vectors,
we demonstrate the use of the principles
and show that anisotropic materals can be
represented by isotropic functions.

In the second part, using reference vectors,
we first give a brief discussion about their
principles in infinitesimal theories, and show
that, even in infinitesimal theories, aniso-

tropic materials can be represented by iso-
tropic functions. Using such principles, we
then demonstrate a derivation of a classical
anisotropic material. Furthermore, we
show that there may exist an elastic material
in which an infinitesimal rotation is included.

In the last part, defining a reference
tensor, we discuss our final goal: precise
definitions of the initial anisotropy in soil
materials such as the inherent anisotropy
and the stress induced anisotropy. We then
examine their definitions by using a concrete
example of dilatancy of clays and show how
the principles derived in the previous parts
are useful. We also discuss examples of the
failure condition and the material of dif-
ferential type.

Mathematical Symbols
Light-face letters indicate scalars; bold-
face letters indicate vectors or tensors; we
use standard indicial notation and Cartesian
coordinates:
If A, B are second order tensorsjand @, b,
¢ are vectors,
AT is the transpose of A
A™' is the inverse of 4
(AB>ij=Aik-Bkj
A-B=tr(ABT)=A“B“-
|4l = VAT
(Ab)izAijbj
a'bzaibi
(@®b);=a;b; thus (a@b)e=(b-c)a
If H is a forth order tensor and a* (a=
1,2,3,4) are vectors

(H[A]>ij:HijkLAkL
(a1®a2®a3®a4[A:|) 1j= ailajzak3aZ4Akl

PRINCIPLES FOR CONSTITUTIVE
EQUATIONS AND EXPRESSIONS OF
ANISOTROPIC MATERIALS

Here we first present brief discussions
about the principles for constitutive equations
in finite deformations (in detail, see e.g,
Truesdell and Noll, 1965; Leigh, 1968:
Gurtin, 1981). Then, introducing reference
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vectors, we demonstrate their principles and R <& Q
show that the constitutive relations for %
anisotropic materials can be represented by
isotropic functions. QFR’ &

Reference Indifference and Material Indiffer-
ence (Objectivity)

Consider two particles, which are in a
sufficiently small distance, X and X+dX in
the reference state (or reference configura-
tion) #. Denoting the positions of these
particles in current state by x and x+dx
respectively, a tensor F' defined by

_ _0x
dx=FdX or F= X (1)

is called the deformation gradient (Fig.1).
We consider here a material which is called
the simple material

T(t) =£,50<F<t—s>> (2)
or briefly,
Tzflc<Fs)

where F; is the history up to time t of the
deformation gradient and T is Cauchy stress
tensor. As shown in Eq. (1), the deforma-
tion gradient F depends on the reference
state ¥, and so clearly the form of the
functional f in Eq. (2) depends on «.

For the same current state but a different

reference state XK. we have

= =  0x
T= E(Fs>, Fs: —
s 0X
Since
r . 0%s 0X
F=3x 0X
we have
Je(F)=fi(FG™1), (3)
where :
G . k—K GZ%

TEQTQT

Fig. 2. Reference indifference and
Objectivity

is the transformation gradient from a refer-
ence state & to a reference state % In
Fig.2, we take simply a rotation R for G
and F for F,, Thus F=FG'=FR'=FR".
We call Eq.(8) the principle of reference
indifference, or simply the reference indif-
ference.

When an arbitrary rigid motion is super-
posed on a current state in the form

x*=c+Qx,

the deformation gradient and Cauchy stress
tensor are transformed as (Fig.2)

F*=QF (4)

T*=QTQ" (5)
where ¢ is an arbitrary vector, Q is an
orthogonal tensor corresponding to the rigid
rotation in the superposed rigid motion. Of
course, both ¢ and @ are generally func-

tions of time.

By Egs. (4) and (5), we have

Q.fK(Fs)QT:fIC(Qst)’ (6)

Eq. (6) is also a condition that any con-
stitutive function f has to satisfy for any
deformation gradient F and an arbitrary
rotation Q. It is called the principle of
material indifference or the principle of
material objectivity. In what follows we
call this simply the objectivity.

Material Symmetries and Isotropy
Suppose that, at a material point X in
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a solid, there are two reference states & and
% which differ by a rotation, such that the
constitutive functionals with respect to these
reference states, that is, f and f% are the
same. We have

Je(Fs)=fc(Fs) (7
for all deformation gradient histories F\,.
We note here that we have two different
current states as well as the different refer-
ence states & and % but such that F =
0x/0X=0%/0X (see Fig.3). The physical
meaning of Eq.(7) is that the mechanical
response of the material at X in & is indis-
tinguishable from its response after it has
been rotated to k.
By replacing F, by F.G in Eq.(3) with
G a rotation R and using Eq. (7) we have

| Fe(F ) =Fo(F:R) (8)
for all F, and some rotations R. A material
property in Eq.(7) or Eq.(8) is called the
material symmetries. 1f a material has a
reference state in which Eq. (8) is satisfied
for arbitrary rotations R, the material is
said to be isotropic, otherwise we call gener-
ally anisotropic.

Expressions of Anisotropic Materials by
Reference Vectors _

To represent anisotropic solids by tensorial
expressions, we employ the unit vectors b,
which are, in general, linearly independent ;
these vectors indicate directions intrinsically
chosen in the undeformed material, such as
the directions of the axes of symmetry (i.e.

principal axes of anisotropy). Assignment
of such vectors, therefore, results from a
priori knowledge concerning the nature of
the undeformed reference state. Here and
in what follows we call & the reference
vectors.

Then consider an elastic material in the

form
T=FF,b). (9)

We note that Eq.(9) is a special case of
the simple material of Eqg.(2) and the
dependency of f on the reference state & in
Eq. (2) is replaced by the reference vectors
b. Since b are material elements in a
reference state, b rotated by R are given

by
b=Rb

Thus the principle of reference indifference
in Eq. (3) requires Eq. (9) to be

FF,b)=f(FR*, Rb) (10>
for all F, b and all rotations R since G=R
in Eq. (3) and R!'=R”. By objectivity in
Eq. (6), we must have

Qf(F,b)Q"=f(QF,b) an

for all F, & and all rotations @.
By replacing ' by QF and R by Q in
Eq. (10) and then using Eq. (11), we have

QFf(F,0)Q"=f(QFQ",Qb). (12)

Eq. (12) shows that the constitutive function
f is isotropic in F and b. (If improper
rotations are excluded from rotations, Jf is
called hemitropic. In this paper, however,
when we say rotations, they are regarded
as full rotations,)

On the other hand, the material symmetry
in Eq. (7) is rewritten as

Sf(F,b)=f(F,Rb) a3

for all F, b and some rotations R. If the
material is isotropic, Eq.(13) must be
satisfied for all rotations R. Then, by
Cauchy Theorem, unit vectors & are elimi-
nated and Eq. (12) requires f to be isotropic
in F. We note that it is not a result of
the isotropy but a result of the objectivity
and the reference indifference that requires
the function f to be isotropic in F and b;
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the isotropy merely requires the function S
to be independent of &.

To make the above idea clear, we consider
two typical expressions of anisotropic materi-
als:

T=g(B,a), a=Fb, (14

S=h(C,b), (15)
where B=FFT (left Cauchy-Green strain
tensor), C=F"F (right Cauchy-Green strain
tensor) and S=(detF)F'T(F YT (second
Piola-Kirchhoff stress tensor).

It is not difficult to show that T, B, and
a are independent of the rotation of
reference state but transformed to QTQT,
QBQ", Qa respectively under the rotation
Q of current state. Conversly, 8, C, and
b are independent of the rotation of current
state, but transformed to RSR, RCR and
Rb respectively under the rotation R of
reference state. Thus, in Eq.(14), the
principle of reference indifference is auto-
matically satisfied and the objectivity requires
the function g to be isotropic in B and a.
In Eq. (15), the objectivity is automatically
satisfied and the reference indifference re-
quires the function h to be isotropic in C
and b. If the material is isotropic, g and
h are independent of @ and & respectively.
Note again that it is not the isotropy but
the objectivity or the reference indifference
resectively that requires the function g and
h to be isotropic.

PRINCIPLES FOR CONSTITUTIVE
EQUATIONS IN INFINITESIMAL THE-
ORIES
Objectivity and Symmetries in infinitesimal
T heories
Let u denote the displacement from the
reference state
u=x—X (16)
and H the gradient of displacement
H=0u/0X=F—1. ~an
The infinitesimal strain tensor e is defined
by a symmetric part of H
e=(H+HT)/2 a8

and the skew part
r=(H—-HT)/2 (19
is called the infinitesimal rotation.

By infinitesimal theories we mean, briefly,
that both the strain and the displacement
from the reference state are negligibly
small. We can not therefore distinguish
between reference and current states; in
other words, we must consider the same
rigid rotation in the reference state whenever
we consider an arbitrary rigid rotation in
a current state. This means that we must
consider R=Q in Fig.2. If we assume, in
infinitesimal theories, that the strain is small
but the displacement is not necessarily small,
it is not difficult to show that even a linear
constitutive function, such as T'=F [e] with
E being a forth order elastic constant, does
not satisfy the objectivity. (See, in detail,
Casey and Naghdi, 1980)

Consider an elastic material in infinitesimal
theories in the form

c=f(e, b),

where ¢ is the infinitesimal stress tensor.
When an arbitrary rigid motion (or re-

placement) is superposed on a current state
by

x*=c+Qx,
infinitesimal deformations require the same
replacement for the reference state

X*=c+QX.
We note that, therefore, @ and ¢ in infini-
tesimal theories must be constant in time
since they are independent of time in the
reference state. Reference vectors are then
transformed as

b*=Qb
and, by Egs. (16)—(18),
e*=QeQT,
Then the objectivity trivially requires
o*=QaQr,

that is, f is isotropic in e and &:

f(QeQ7,Qb)=Qf(e,5)Q7.  (20)

We note that, in infinitesimal theories, the
principle of reference indifference is indis-

NI | -El ectronic Library Service



The Japanese Geotechnical Society

20 YATOMI AND NISHIHARA

tinguishable from the objectivity since the
reference state is indistinguishable from the
current state.

The material symmetry in Eq. (7) or (13)
is written as

Sfle, b)=f(e, Rb) @D

for all e and & and some rotations R. By
replacing @ by RT and b by Rb in Eq. (20)
and then using Eq. (21), Eq. (21) is rewritten
as

R’f(e,b) R=f(R"eR, b).

Applications of the Principles

Here we demonstrate several applications
of the principles derived in the previous
section.

Let & be a reference vector, that is, the
mechanical response is assumed to be
independent of arbitrary rotations about the
vector. Since the objectivity in Eq. (20)
requires f to be isotropic in e and b, a
polynomial isotropic temsor function o=
f(e,b) has the representation (see Smith,
1971) :

c=a,1+aet+ae®+a,bXRb
+a;(bReb+ebXb)
+a(bRe*b+e*bXRb) 22

where ay, - -, a, are scalar-valued functions of
{tre, tre?, tre®, b-eb, b-e*b}. Eq.(22) is
a general expression of nonlinear transversaly
isotropic elastic material in infinitesimal
theories.

Let b5* («=1,2,3) be three orthogonal
reference vectors. Then, similarly to Eq.
(22),

o=f(e, b%) (23)
can be represented by an isotropic function
in e and % However, we consider here
an alternative approach in order to compare
with classical expressions of anisotropic
materials.

Since b* are three unit orthogonal vectors,
we may put

e,s=b"-eb’ (24)
so that Eq. (23) yields

o=f(eas, b%).

Then, noting that
eaﬂ*:Qba' (QeQT>Qbﬁ:eaﬂ
we use the objectivity (Eq. (20)) so that
Qﬁeaﬂ’ ba) QT:f<e«xﬁa Qba) . (25>
Eq. (25) requires f to be isotropic in b* and
then has the representation (see Smith,
1971) :

o= F a2 b* Qb (26)

where & stands for the symmetric part of
®. Eq.(26) is a general tensorial represen-
tation of anisotropic  elastic
materials in infinitesimal theories. If f in
Eq. (26) are linear in e, we have

G‘:Eaﬁrcserabaé@bﬁ
or using Eq. (24),
0=E3,,b°Qb’Qb'Qb’e] @n

where E,,; are constant with Eup=Esars=
Eosor- |

We then have a classical expression of
linear anisotropic elastic materials in the
component form of Eq.(27) with respect to
b

nonlinear

daﬂ:Eaﬁréeré
or, in arbitrary fixed Cartesian coordinates,
Uij:EaﬁraembiabJﬁ.

Finally, we introduce a new type of

elastic material :
o=f(e, )
in which an infinitesimal rotation is included.
Since f is independent of the reference state,
it is clearly isotropic. Since r*=QrQ’ by
Eq. (17) and (19), the objectivity requires
f to be isotropic in the symmetric tensor
e and the skew symmetric tensor r in the
form
Qf(e,1)QT=F(QeQT, Gra™).
Then f has the representation (see Smith,
1971) :
o=a1+a.e+a e+ ari+a;(er—re) +agrer
+a,(err—re®) +as(rer*—rler) (28)

where «,, -+, &g are scalar-valued functions
of {tre, tre?, tred, trr? tr(er?, tr(er?,
tr(e’rer)}. We note that in the anisotropic
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elastic material in finite theories defined by

T=f(F),
the rotation has been completely eliminated
since, replacing @ by R and F by U in
Eq. (12), we have
Rf(U)R"=f(RURD) =f(V)=T

where U and V are the right and left strech
tensor respectively defined by F=RU=V R.
If we assume that ¢ in Eq.(28) is a first
order function of e and r, we have a classical
linear elastic material

o=A(tre)1+2ue

where 2 and g are constant and in which
the infinitesimal rotation r is eliminated.

EXPRESSIONS OF ANISOTROPY IN
SOIL MATERIALS

We are now in a position to state our
definitions of anisotropy in soil
The discussions are confined to

precise
materials.
infinitesimal theories.

Inherent Anisotropy and Stress Induced
Anisotropy

Previous discussions are concerned with
the deformations from the undeformed state
or unstressed state. In soil materials, our
main concern is, however, the deformation
from an initial state, which is already
stressed, or experienced some deformations
for a long period. In the laboratory, soils
are often given preceding stress histories such
as consolidation before we have an initial
state. In order to distinguish between an
undeformed reference state at =0 and an
initial reference state at t=¢, (>0), we
introduce the reference tensor defined by

3
K=>'C,b*®b* (C, :scalars) (29)
a=1]

for the undeformed reference state and
similarly K, for the initial reference state.
The constitutive equation of an initially
stressed material is then assumed to be
s<t—to
e(t)= sf (e(t—s), o(t0), Ky) (30)

=0

and

K="k (0(-9,K) (3D

with e(®)=0 if oe(t—s)=0(t,) for 0<s<
t—t,, We note that K, is a function of K
and stress histories o(¢t—s) for t—z,<s<z¢.
Here and in what follows, for convenience,
we write

e=f(es, 6, Ky) (32)
and

K,=k(o;-, K) (33)
for Eq. (30) and Eq. (81). (See Table 1.
for Eq. (32)—Eq. (65))

When the reference state is rotated, the

reference tensor in Eq. (29) is transformed
as

K= z Cb Qb= z C,(Qb)R(Qb)
-0 3 C.r'®b" Q"= QKG"

Thus the objectivity in infinitesimal theories
requires

Qf (05,00, Ko)Q"=f(Qo,Q7, Qo,Q7, QK,Q7)

: B
and
Qk(o;-, K)Q"=k(Qo;-Q7, QKQT)
(35)
for all ¢, K and all rotations Q so that f
and k are isotropic in {oy, @y, Ko} and {o,_,
K} respectively.

If the material is (inherently) isotropic
at ¢=0, the material symmetry requires
Eq. (83) to be

k(os;., K)=Fk(o;, QKQ") (36)
for all ¢,_, K, and all rotations @. Or if
K is an isotropic tensor

K=11 37
with 2 a scalar, the material is automatically
(inherently) isotropic at t=0.

Thus we call the material the inherent
anisotropy if

k(os-, K)xk(o;-, QKQT) (38)
for some o,_, K, or some rotations @ and

K=x11 (39)

Similarly to Eqgs. (36) and (37), the materi-
al is called the initial isotropy at t=0 if
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Table 1. Inherent anisotropy and stress induced anisotropy
e=f(os, 00, Ko) (32) <f and kB are isotropic ) (&))
K,=k(0,-, K) (33) functions in all variables (35)
(Inherent) Isotropy Inherent anisotropy
k(o,_, K)=Fk (0., QKQT) (36) k(o., K)xk(o,-, QKQT) (38)
or and
K=11 &) Kx21 (39)
- Initial isotropy Initial anisotropy
f(os, 00, Ky) f (04, 00, Ko) X f (05, 00, QKoQT) (42)
:f(a'm O, QKOQT) and
(40) Kixp1 43
or (1) (2) ! (3)
Ko=L1 “D Stress induced Inherent “ Combined
initial anisotropy initial anisotropy 1 initial anisotropy
Ky=Fk(os.) (44 Ky=k(K) (45) | Ky=k(0,-, K) (46)
oo ps-1 | )
I v oo o i
(Example) 0i=0] [ Kapuo(S-= )|, Ki=kon KO an, @)
K=B1 K=2-0 (50) K=K Ko=k(c, K) (48
o o Jo o
v3= 6] pogo™ (=70 Il vg=20 dcdo_l‘g%(?—’;:) v¢=6| Ko poso 1(7_};%> 1|
(54) GD (CYp)
go=po1 0¢9=0¢ : G0, o= po1
v4=83]Inl] vy={m—nolli  (Go=po D v=0||Knll (49)
3 | |
va=0 (12— [lmol V2 R R |
(55) :
(52)

f(os, 00, Ko) = f (0, 00, QK,Q") (40)
for all ¢, @,, K, and all rotations @ or
K,=p1 (41)
with B a scalar.
The initial anisotropy is then defined,
similarly to Egs. (38) and (39), as
J (o, oy, K,) xf(a;, 0y, QK,Q") (42)
for some o, 0, K, or some rotations @ and
K,>p1 (43)
The initial anisotropy is decomposed into
three types depending on the function %:
(1) K,=k(o) (44)
is called the stress induced initial aniso-
tropy. (Eq.(35) and (43) require stress
history o,_ is not isotropic, &, 3p;_1)
(2) K,=kIEK) (45)
is called the inherent initial anisotropy.
(3) K,=k(o;, K) (46)

is called the combined initial anisotropy.

We note that the stress induced anisotropy
in Eq. (44) is not the inherent anisotropy
but the (inherent) isotropy.
Ezxamples

Here we demonstrate several examples of
constitutive equations of anisotropic material
of soils and show how the principles derived
in the previous parts are useful.

(1) Dilatancy of clays
- Assume that the volumetric strain v; by
dilatancy from an initial state is given in
the form

04 =0 Kopooo™ (@/p—a0o/po) |l 4n

and

K,=k(c,, K) (48)
where 6 is a scalar, p=tre/3 is the mean
principal effective stress, and o, is a certain
dominant constant stress over K, for in-
stance, o,=0a(s) constant for 0<s<t. It is
not difficult to show that Eq. (47) satisfies
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the objectivity in Eq. (34) and v;=0 when
o=0,. Eq.(48) also must satisfy Eq. (35).
The general polynomial form is given in
Smith(1971).

Let Eq. (48) satisfy Egs.(38) and (39).
Then the material assumed by Eq. (47) with
Eq.(48) is an inherent anisotropy. If,
furthermore, K,%p1, the material in Eq.
(47) with Eq.(48) is an initial anisotropy
since Eq.(47) satisfies Eq.(42). For the
general K, the material is a combined
initial anisotropy by the definition Eq. (46).
If K, is independent of stress histories
(There is such a possibility in the case of
an isotropically consolidated clay.), the
material in Eq. (47) with a form of K, in
Eq. (45) is an inherent initial anisotropy.
Let Ky=K simply and apply the pressure
g,=p,1 to the initial stress.
yields

ve=0| K7l (49

where 7=8/p and s=a—pl. Eq.(49) gives
a simple form of dilatancy equations of the
inherent initial anisotropy in the case of
isotropically pre-consolidated clays.

If K, is independent of a reference tensor
K such as K,=~Fk(o,), Eq.(47) is a stress
induced initial anisotropy as is defined in
Eq. (44). The objectivity in Eq. (35) then
requires 2 to be isotropic in @, but Eq.
(43) to be o,xp, 1. That is, the stress
induced initial anisotropy is always a result
of the anisotropic consolidation before the
initial state. Let

: K,= /10'0/?0. (50)
Then Eq. (47) yields

va=A0||6.007 po/ po(@lp—ao/po)]l  (B1)
Eq. (61) with (80) is a dilatancy equation
of anisotropically overconsolidated clays if
Pe>po.  In particular, if e,=p,1, Eq.(51)
yields

va =40 (oe/ P 7|l (62

Eq. (62) with (50) gives a simple form of
dilatancy equations of the stress induced
initial anisotropy in the case of initial
isotropically consolidated clays. If e,=e, in
Eq. (61), we have

Then Eq. (47).

Va= 46119~ (63)
Eq. (63) under a condition such as Eq. (50)
with 6,=@, is a stress induced dilatancy

equation of normally consolidated
employed by Sekiguchi and Ohta(1977).

If K,=p51in Eq.(47), the reduced form
va= B0 peoo™ (7 —70) || G2y
is an initial isotropy by the definition in
Eq. (41). In particular, if e,=p,1, Eq. (54)
yields the simplest initially isotropic materi-
al:

clays

ve= 307l
We note that the form employed by Ohta
and Hata(1971)

va=0 (|71 —lin,l1*) '/ (85)

is not a stress induced anisotropy but an
initial isotropy since Eq. (55) is independent
of K, if 7, is independent of K, and even
if 7, is related to K, such as %, (K,), the
objectivity requires

17, (@K,Q) ||=1Q7%,(K,) Q7| = |7,(K,) ||
and Eq. (65) therefore satisfies Eq. (40). The
material in Eq. (63) is also an initial isotropy
if 7, is independent of K, It is stress
induced anisotropic only if %, is related to
K, such as 7,=K,/i—1 as Eq.(50) with
o.=a,.

(2) Failure conditions

Matsuoka, Nakai and Ishizaki(1980) pro-
posed an interesting failure condition for
anisotropic soils. Let their condition for
isotropic soils be

f(o)=const, (56)
in the concrete,

JiJp/Jy=const
where Jy=tre, J,={tre®—(tre)?}|2, J,=
deto.

In order to give anisotropic structures,
they introduced an anisotropic parameter
related to an undeformed state, that is,
introduced a reference tensor K in our
symbol and replaced ¢ by Ko in Eq. (56) :

f(Ko) =const GY))

We note that it is not the isotropy but the
objectivity that requires f in Eq. (56) to be
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isotropic, that is, to be a function of J,
J, and J,.  If the function f is assumed as
Eq. (67), the objectivity

F(QKQ™QaoQ") = f(Q(Ko)Q") = f(Ka),
requires f to be isotropic in Ke. Thus fis
necessarily a function of J*=tr(Ke), J,*=
1/2{tr (Ko)*— (trKo)?}, Jy*=det(Ko). 1f K
in Eq.(57) is a reference tensor of an
undeformed state, the failure condition in
Eq. (57) is an expression of the inherent
anisotropy.

(3) Materials of differential type

Constitutive equations in soil mechanics
are often assumed to be elastic-plastic
materials in the form of a rate independent
differential type such as

e=H(z, 0, Ky)[a] (58)
or
ézj=H¢jkz5kz
with an initial condition e=0 and e¢=0, at
t=t,, We note that if e(z) is given for
<7<t

t .
ezf H(o, 0., Ky)[oldr
to

is a form of Eq. (30) or Eq. (32).

Thus all the principles stated in the previ-
ous section are similarly applied to the
constitutive equation of differential type.
However, noting that when we consider the
objectivity in infinitesimal theories, the
rotation @ is constant in time, (Note that
Q is a function of time in finite theories.),
we may easily apply the objectivity to Eq.
(58) directly as ‘

QeQT=H(QoQ", Qo,Q7, QK,QN)[QcQ"]
for all @, @, o, K, and all rotations Q.
For simplicity, we assume that H is a
function of ¢ ; then

QH(0)[01Q"=H(QoQ") [QsQ"]
for all @, o, and all rotations Q. Then
by a representation theorem by Wang(1970)
or Smith(1971), we have
H(o)[6]=[Bitro+Batr (99) +Bstr (6°0) 11
+[Bitra+Bstr (00) +Betr (a®0) Jo
+[Bitra+Bstr (90) + By (60 Jo*

+BIO&+BII<&0‘+0&)+812<0.’0'2+0'2&>
where 8, ---, B, are functions of the principal

invariants of . We note that even if Eq.
(58) is a form

e=H(o,0,)[0] (59
with an initial condition €=0 and e=e, at
t=t,, the material in Eq. (59) is an initially
isotropy if @, is independent of K,. On the
other hand, even the simplest material such
as

e=H(o)[a]
can be a stress induced initial anisotropy
if the initial stress &, is related to K,.

CONCLUSIONS

In the first part we present brief discussions
about the principles for constitutive equations
in finite theories:

(1) Reference indifference

(2) Objectivity '

(3) Material symmetry (anisotropy) and

isotropy
Introducing reference vectors & and a=Fb,
we then conclude that

T=f(F, b) must be isotropic in F and
b by (1) and (2)

T=g(B, a) must be isotropic in B and

a by (2)

S=h(C, b) must be isotropic in C and
b by ().

In the second part we note that, in

infinitesimal theories, (1) is indistinguishe-
able from (2) but prefer calling them the
objectivity. We then conclude that o=
f(e, B must be isotropic in e and b by
the objectivity. We must note that even
if the above functions are independent of
reference vectors, they all must be isotropic
functions. We then note that requiring
them to be isotropic is not the isotropy in
(3), but the principlesin (1) or (2). More
importantly, employing reference vectors,
anisotropic materials can be represented by
isotropic functions whose representations are
well established in Wang(1970) or Smith
(1971). Using the objectivity, we demon-
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strate a derivation of a classical anisotropic
material. Furthermore we show that there
may exist an elastic material in which an
infinitesimal rotation r is included and
conclude that if we assume that ¢ is a first
order function of the strain and r, only r
is eliminated and we get a classical linear
elastic material.

Introducing a reference tensor K in the
last part, we define the initial anisotropy
such as the inherent anisotropy and the
stress induced anisotropy. Briefly conclud-
ing, the inherent anisotropy is that the
initial reference tensor K, is a tensor valued
function of the undeformed reference tensor
K and the stress induced anisotropy is that
K, is a tensor valued function of only the
stress histories up to the initial time. Thus
the stress induced anisotropy is not the
inherent anisotropy but the (inherent) iso-
tropy.

We must note that K, does not often
appear explicitly in the constitutive equa-
tions. If @, is related to K,, and &, is not
included in the invariant forms in the con-
stitutive equations, the material is a stress
induced initial anisotropy.

We further note that if the constitutive
equations are given in the differential type,
not only K, but also ¢, might not appear
explicitly in the differential equations,
since @, is often given as an initial condition.
Then the material is a stress induced initial

anisotropy or initial isotropy corresponding

to whether &, is related to K, or not.
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NOTATION

a=director in the current state
b, b*=reference vectors
B=left Cauchy-Green strain tensor
C=right Cauchy-Green strain tensor
e=infinitesimal strain tensor
e=rate of strain or strain increment
E =elastic constant
F =deformation gradient
G =transformation gradient
H=gradient of displacement
Jy, Jg, Jy=invariants of stress
K, K,=reference tensor in the undeformed
state and the initial stress state
P, pp=mean principal effective stress in the
current state and the initial stress state
Q=orthogonal tensor corresponding to the
rigid rotation
r=infinitesimal rotation
R=rigid rotation of the reference state in
finite theories
s=deviatoric stress tensor
S =second Piola-Kirchhoff stress tensor
T =Cauchy stress tensor
u=displacement vector
U =right strech tensor
vg=volumetric strain by dilatancy
V =left strech tensor
X, x=position vectors of a particle in the
current states
X,f:position vectors of a particle in the
reference state £ and ¥
n=8/p, pressure normalized deviatoric stress
tensor
&, k=reference states
o=infinitesimal stress tensor
o =stress history from the initial stress state
up to the current state
o,.=stress history up to the initial stress
state
g,=Initial stress
oc=dominant constant stress over K

o=rate of stress or stress increment
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