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                                  ABSTRACT

  Much  attention  has been paid to anisotropie  behavior of  soils,  such  as  the  inherent
anisotropy  and  the  stress  induced anisotropy.  Nevertheless, they  often  appear  in the  literature
without  any  clear  definitions. In the  theory  of  finite deformations, the  concept  of  isotropy
is well  established  and  is clearly  distinguishable from  the  objectivity.  However,  in the
infinitesimal theory, which  is usually  assumed  in soil  mechanics,  they  seem  to be in
confusion  and,  as  a  result,  .even simple  anisotropy  ls not  clearly  defined, In this paper,
we  therefore  first discuss the  general  principles  of  constitutive  equations  in finite theories
and  in infinitesimal theories  to  make  a  clear  distinction between the  objectivity  and  the
isotropy. One  of  our  most  important results  is that,  if reference  vectors  er  tensors  are

employed,  in infinitesimal theories,  the  objectivity  requires  that  anisotropic  materials  can  be
represented  by isotropie functions. Using a reference  tensor, we  finally give a  clear  definition
of  the  inherent anisotropy  and  the  stress  induced anisotropy,  We  then  examine  their
definitions employing  a  concrete  example  and  show  how  the  principles  derived are  useful,
including the  failure condition  and  the  materials  of  differential type.

Key  words  :.g,p.l.s.g.lropy, constitutive  equation  of-fioil, (induced anisotropy),  (inherent anise-

tropy),  (princip.L..of.-oLVjeetivity), gp.r.i.n...c"iple of  re.f..e-;ence  indifference) (IGC : D6)

INTRODUCTION

 Most  soils  in natural  states  more  or  less
exhibit  anisotropic  behavior, Anisotropy in
soils  is, however,  one  of  the  complicated

characteristics  to which  mueh  attentlon  has
been  paid in the  literature. It is well

known, for instance, that  the  deformation
and  strength  of  sand  is censiderably  affected

by a  preferred  orientation  of  particles
developed during deposition (Oda, 1972;
Arthur and  Menzies, 1972), Similar aniso-

trepy  ean  also  be observed  in varved  glacial
lake deposits containing  alternating  layers
of  silt  and  clay.  Such anisotropic  behavior
resulting  from the  natural  structures  of  soil

is, in general,  called  the inherent anisotropy.
  On  the other  hand, it is also  well  known
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that  the  undrained  shear  strength  of  aniso-

tropically  consolidated  clays  varies  with  the

direction o'f shear  or  direction of  principal
stress  (Bjerrurn, 1973; Ladd  and  Foott,

1974), Hansen  and  Glbson (1949) showed

that  such  a  phenomenon  results  irom the

anisotropic  initial stress  state.  We  may

therefore  consider  that  the  strength  of  soi!s

depend$ not  only  on  the  natural  structures

of  soil  but  also  on  the  initially anisotropic

stress  states.  The  latter is often  called  the

stress  induced anisotropy.  The  stress  induced

anisotropy  is, therefore,  essentlally  a  differ-

ent  concept  from  the  inherent anisotropy.

  Precise definitions of  these  concepts,  how-

ever,  have  not  been given  in the  papers.

Kanatanl  (1982) defined the  concept  ef  an

isotropy and  an  induced anisotropy.  How-

ever,  his definitions are  not  very  clear

since  he seems  to  confuse  the  isotropy with

the  objectivity.  In fact, in the  theories  of

finite deforrnat'ton, several  principles  such  as

the  isotropy and  the  objectivity  are  well

known  and  well  established.  In infinitesimal

theories, which  are  usually  assumed  in soil

mechanics,  these  principles, however, have

not  been clarified  and  have been used  con-

fusedly.

  As  a  result,  in infinitesirnal theories, even

the  definltion of  a simple  anisotropy  is not

clear.  We  thus  first have to discuss such

general principles to  make  a clear  distinction

between the  isotropy and  the  objectivity  not

only  in finlte theories  but also  in infinitesimal

theeries, This is one  reason  why  we  spend

the  first two  parts  en  these  principles.

  In the  first part  we  present briei dtscussions

about  the  principles for eonstitutive  equatlons

for finite deformatien theories:  1) Refer-

ence  lndifference,  2) Objectivity, aRd,  3)

Material symmetry  (anisotropy) and  iso-

tropy.  Then,  ernploying  reference  vectors,

we  demonstrate the  use  oi  the principles

and  show  that  anisotropic  matera!s  can  be

represented  by isotropic functions.

  In the  second  part, using  reference  vectors,

we  first give a  brief disegssion about  their

principles in infinitesimal theories, and  show

 that, even  in infinitesimal theories, aniso-
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trQplc materials  can  be represented  by iso-

tropic  functions. Using  such  prlnciples, we

then  demonstrate a  derlvation of  a  classical

anisotropic  material.  Furthermore,  we

show  that  there  may  exist  an  elastic  material

in whi ¢h an  infinitesimal rotation  is ineluded.

  In the  last part, defining a  reference

tenser,  we  discuss our  final goal: preeise

definitions of  the  initial anisotropy  ln seil

materials  such  as  the  inherent anisotropy

and  the  stress  induced anisotropy.  We  then

exarnine  their  definitions by using  a  concrete

example  of  dilatancy of  elays  and  show  how

the  principles derlved in the  previous parts

are  useful.  We  also  discuss examples  of  the

failure condition  and  the  material  oi  dif-

ferential type.

Mathematical Sblmbols

  Light-face letters indlcate scalars;  bold-

face letters indicate vectors  or  tensors;  we

use  standard  indicial notation  and  Cartesian

coordinates:

If A, B  are  second  order  tensorskt･and a, b,

c  are  vectors,

  AT  is the  transpose  of  A.

  A"i is the  inverse of  A

            (AB)ij=Ai,B,j

  A･B=:: tr(ABT)  ==  AijBij

             [IAIi=Vtr(A.'E)

(Ab)i=A,jbj
  a･b=  aibi

    (aopb)ij=atbj thds  (aXb)c:=(b･c)a
If H  is a  forth order  tensor  and  aa  (cr=
1,2,3,4) are  vectors

          (H[A])ij=HwktAtee

  (aiEl)a2{E9a3(g)･a`[A])tj=atiaj2ak3a"Ake

PRINCIPLES  FOR  CONSTITUTIVE

EQUATIeNS  AND  EXPRESSIONS  OF

A,NISOTROPIC  MATERIALS

  Here  we  first present  brief discussions
about  the  principles for constitutive  equations

in finite deformations  (in detail, see  e,g.,

Truesde!1 and  Noll, 1965; Leigh, 1968:

Gurtin, 1981). Then,  introducing reference
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        X-stx  2L-  x=x

         K ･

      Fig, 1. Deformatiom  of  a  body

 vectors,  we  demonstrate their principles  and

 show  that  the  constitutive  relations  for

 anisotropic  materials  can  be represented  by
 isetropic functions,
Reflarence  Indij7erence and  Material  Indurer-
enee  (Ob]'ectivity)
  Consider two  particles, which  are  in a

suficiently  small  distance, X  and  X+dl  in
the  reference  state  (or reference  configura-

tion)  re. Denoting  the  positions  of  these

particles in current  state  by x  and  x+dx

respectively,  a  tensor  Ii' defined by

                         0x

        
dx=FdX

 
or

 F:[-ox  (1)

is called  the  defermation gradient  (Fig.1).
We  consider  here a  material  which  is called

the  simple  material

                 co

           T(t) =i:  
.f;c

 (F (t Hs))  (2)
                s=e

or  briefly,

              T=`fc(Fs)

where  4  is the  history up  to time  t of  the
deformation gradient  and  T  is Cauchy  stress

tensor. As shown  in Eq. (1), the  deforrna-
tion  gradient  F  depends on  the  reference

state  rc, and  so  clearly  the  form of  the

functional f  in Eq, (2) depends on  rc.

For  the same  current  state  but a different

reference  state  k. we  have

         T==fi(F-,), 1ua7,=aXHs
                         ax
Since

             fi,--gxtf--gl-
we  have

          f;r(Fs)=fts(IF'sG-'), (3)
where

          G:  rc-k  G=  OX
                        ax

eF  ANISOTROPY

     ma4
            

     
     

      

     Figr 2. Referenee  indi

         Objectivity

is the  transformation

ence  state  re to a

Fig.2, we  take  simply  a

and  li' for F,, Thus  P=
We  call  Eq, (3) the

indijrerence, or  simply  the

forence,
  When  an  arbitrary  rigid

posed on  a current  state  in

              x*=:c+Qx,

the  deformation gradient
tensor  are  transfo:med  as

              F*=Q,Ft

              T*=:QTQT

where  c  is an  arbitrary

orthogonal  tensor

rotation  in the  superposed

course,  both c and  Q  are

tions  of  time.

  By  Eqs. (4) and  (5), we

         Q.f;:(Fs)QT:=
Eq.(6) is also  a  condition

stitutive  function f  has to
deformatlon  gradient ,F'

rotation  Q. It is called

material  indiference  or

material  obJ'ectivitpt. In
call this simply  the

Material Symmetries and

  Suppose that, at  a

 DT

ldx

17

T'-' QTQ'

        fference  and

   gradient  from a  refer-

  reference  state  k, Ih

       rotation  R  for G

     PG-i.,17R--i..IFTRT.

   PrinciPle of reflarence

         reference  indijny-

        motion  is super-

        the  form

       and  Cauehy  stress

       (Fig. 2)

                 (4)
                 (5)

       vector,  Q  is an

corresponding  to  the  rigid

       rigidmotion.  Of

         generally  func-

       have

    fle(QsFs)･ (6)

         that  any  con-

         satisfy  for any

       and  an  arbitrary

       the  princiPle of
       the  principle of
       what  follows we

 obJ'ectivity,

      lsotrepbl

    material  point  X  in
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   Fig. 3 Material

a  solid,  there  are
-rc

 which  differ by a

constitutive

referenee  states,  that

sarne.  We  have

            f;t(Fs)
for all  deformation

We  note  here that

current  states  as  well

ence  states  rc and

OxlaX=errxlOX (see
meaning  of  Eq. (7) 

'

response  of  the

tinguishable  from its
been  rotated  to  N.

  By  replacing  F,

G  a  rotation  R  and

          .f;: (Fs) =

for all  F, and  some

property  in Eq. (7)
material  symmetries.

reference  state  in

for arbitrary  
'

said  to be
ally  anisetroPic,

ExPressions  of
Reflerence Vectors

  Te  represent  
'

expresslons,  we

which  are,  in

these  vectors

chosen  in the

the  directions of  the

ftd-

              U
       symmetry  and  isotropy

      two  reference  states  rc and

        rotation,  such  that  the

 funetionals with  respect  to these

         is, fk and  fiE, arethe

        =fl(Fs)  (7)

         gradient  histories Fs.
        we  have twe  different

          as  the  different refer-

        k but  such  that  F,=

         Fig.3). The  physical
        is that  the  mechanical

    materlal  at  X  in ze is indis-

          response  after  it has

       by P,G  in Eq, (3) with

        using  Eq. (7) we  have

        Jl (FsR) (8)

       rotations  R. A  material

        or  Eq.(8)  is called  the

           If a  material  has a

       which  Eq, (8) is satisfied

   rotations  R, the  material  is

isotropic,otherwise we  call  gener-

      AnisotroPic Materials bbl

    anisotropic  solids  by tens6riai

     employ  the  unit  vectors  b,

   general, linearly independent  ;

  indicate directions intrinsically

   undeforrned  material,  such  as

         axes  of  symmetry  (i.e.
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 principal axes  of  anisotropy).  Assignment

 of  such  vectors,  therefore,  results  ir,om a

 priori knowledge concerning  the  nature  of

 the  undeformed  reference  state.  Here and

 ln what  follows we  call  b the  reference

 vecters.

   Then  consider  an  elastic  materiai  in the

 form

              T=- f(E  b). (9)

 We  note  that  Eq.(9) is a  special  case  of

the  sirnple  material  ef  Eq,(2) and  the

dependency  of  f on  the  reference  state  re in

Eq. (2) is replaeed  by the  reference  vectors

b. Since b are  material  elements  in a
              - t
reference  state,  b rotated  by R  are  given

by

               b=  Rb       '

Thus  the  principle  of  reference  lndifference

in Eq, (3) requires  Eq. (9) to be

        f(F, b) -f(FRT,  Rb)  (IO)
for all Ji', b and  all  rotations  R  since  G=R
in Eq. (3) and  Rr'i=RT, By  objectivity  in

Eq. (6), we  must  have

        Qf(F,b)QT:-f(QF,b) (11)

for all F, b and  all rotations  Q.
  By  replacing  pa by Qff and  R  by Q in

Eq, (10) and  then  using  Eq, (11), we  have

      Qf(F,b)QT=f(QFQT,Qb).  (12)
Eq. (12) shows  that  the  constltutive  function

f  is isotropic in P  and  b, (If improper
rotations  are  excluded  from rotations,  f is

called  hemitropic. In this paper, however,

when  we  say  rotations,  they  are  regarded

as  full rotations,)  
･

  On  the  other  hafid, the  material  symmetry

in Eq. (7) is rewritten  as

          f(F, b) =f(I7,  Rb)  (13)
for all F, b and  some  rotations  R. If the

material  is isotropic, Eq.(13) rnust  be
satisfied  for all rotations  R. Then, by

Cauchy Theorem,  unit  vectors  b are  elimi-

nated  and  Eq. (12) requires  f  to be isotropic
in 11. Vile note  that  it is not  a  result  of

the  isotropy but a  result  of  the  objectivity

and  the  reference  indifference that  requires

the  funcfJion f  to be isotropic in F  and  b;
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 the  isotropy merely  requlres  the  functien f
 to be independent of  b.

  Te  make  the  above  idea clear,  we  consider

 two  typical expressions  of  anisotrepic  materi-

als:

         T=g(B,a),  a=]Fb,  (14)

 
･
 S== h(C,  b), (15)
where  B::=FLP' (left Cauchy--Green  strain

 tensor),  C==,F'illi' (right Cauchy-Green strain
tensor)  and  S=:(detF)I'-iT(17'"')T (second
Piola-Kirchhoff stress  tensor).

  It is not  dithcult to show  that  T, B, and

a  are  independent of  the  rotation  Qf

reference  state  but transformed  to QTQT,
QBQT, Qa respectively  under  the  rQtation

Q  of  current  state.  Conversly, S, C, and

b are  independent  of  the  rotation  of  current

state,  but transformed  to RSR,  RCR  and

Rb  respectively  under  the  rotation  R  of

reference  state.  Thus, in Eq.(14), the

principle  of  reference  indifference is auto-

matically  satisfied  and  the  objectivity  requires

the  function g  to be isotropic in B  and  a.

In Eq.(15), the  objectivity  is automatically

satisfied  and  the  reference  indifference re-

quires  the  function h  to be isotropic in C
and  b, If the  material  is isotropic, g  and

h  are  independent  of  a  and  b respectively.

Note  again  that it is not  the  isotropy but
the  objectivity  or  the  reference  indifference
Tesectively  that  requires  the  function g  and

h  to be isetropic.

PRINCIPLES  FOR  CONSTITUTIVE
EQUATIONS  IN  INFINITESIMAL  THE-
ORIES

Obj'ectivity and  Symmetries  in infinitesimal
Theories

  Let u  denote the  displacement from the
reference  state

              u=  x-X  (16)
and  if the  gradient  of displacement

           H=aufaX=F-1.  (17)
The  infinitesimal strain  tensor  e  is 

'defined

by a symmetric  part of  ]ilr

             e=(H+HT)12  (18)

OF  ANISQTROPY  19

  and  the  skew  part

               r=(El-ffT)12  (19)
  is called  the  infinitesimal rotation.

    By  infinitesimal theories  we  mean,  briefly,
  that both the  strain  and  the  displacement

  from  the  reference  state  are  negligibly

  small.  We  can  not  therefore  distinguish

  between  reference  and  current  states;  in
  other  words,  we  must  consider  the  same

  rigid  rotation  in the  reference  state  whenever

  we  censider  an  arbitrary  rigid  rotation  in

  a  current  state.  This  means  that  we  must

  consider  RiQ  in Fig.2. If we  assume,  in

  infinitesimal theories, that  the  strain  is small

  but the  displacement is not  necessarily  small,

  it is not  diMcult to show  that  even  a  linear

  constitutive  function, sueh  as  T=::E[e] with
  E  being a forth order  elastic  constant,  does

  not  satisfy  the  objectivity.  (See, in detail,

  Casey and  Naghdi, 1980)

    Consider an  eiastic  material  in infinitesimal
  theories  in the  form

               a=f(e,b),

  where  cr is the  infinitesimal stress  tensor.

   When  an  arbitrary  rigid  motion  (or re-

  plaeement) is superposed  on  a  current  state

  by

               x"=c+Qx,

  infinitesimal deformations require  the  same

  replacement  for the  reference  state

              I*=:e+Q.XL

  We  note  that,  therefore,  Q  and  c  in infini-

  tesirnai theories  must  be constant  in time

 since  they  are  independent of  time  in the

 reference  state.  Reference  vectors  are  then

 transformed  as

                 b* ==  Qb
 and,  by Eqs, (16)-(18),

               e"=QeQT.

 Then  the  objectivity  trivially requires'

               a"  ==  QeQT,
 that  is, fis isotropic in e  and  bI
    '

        f(QeQT,Qb)==Qf(e,b)Q'. (20)

 We  note  that, in infinitesimal theories, the

 principle  of  reference  indifference is indis-

NII-Electionic  
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tinguishable  from  the  objectlvity  since  the

reference  state  is indlstinguishable frorn the

current  state.

  The  material  symmetry  in Eq. (7) or  (13)
ls wntten  as

           f(e, b) =f(e,  Rb)  (21)

fer all e  and  b and  some  rotations  R. By

replacing  Q  by RT  and  b by Rb  in Eq. (20)
and  then  using  Eq, (21), Eq. (21) is rewritten
as

        RfT(e,  b)R=f(RTeR,  b) .

Applications of the  PrinciPles

  Here  we  demonstrate several  applications

of  the  principles  derived in the  previous
   .sect!en.

 
'

  Let  b be a  reference  vector,  that  is, the

mechanical  response  is assumed  to be

independent  of  arbitrary  rotations  about  the

vector.  Since the  objectivity  in Eq.(20)

requires  f  to  be isotropic in e  and  b, a

polynomial  isotropic tensor  functien ff=

f(e,b) has the  representation  (see Smith,

1971):

        6==evtl+ev2e+ev3e2+a4bopb

          +evs(bXeb+eb(29b)

          +a6(bope2b+e2bopb) (22)

where  ai,  ･･, a6  are  scalar-valued  funetions o £

{tre, tre2,  tre3,  b･eb, b･e2b}, Eq. (22) is

a  general  expression  of  nonlinear  transversaly

isotropic elastic  material  in infinitesimal

theorles.

  Let  ba (ev:=1,2,3) be three  orthogonal

reference  vectors.  Then,  sifriilarly  to Eq.

(22),
              a=f(e,  ba) (23)

can  be represented  by an  isotropic function

in e  and  b". However,  we  consider  here

an  alternative  approach  in order  to compare

wlth  classical  expressions  of  anisotropic

materlals.

  Since ba are  three  unit  orthogonal  vectors,

we  may  put

              e.s=ba･ebP  (24)

so  that  Eq. (23) yields  
'

             a==f(e.p,ba).

NISHIHARA

 Then, noting  that

        e.p'=Qb"J(QeQT)Qbe--e.,,

 we  use  the  objectivity  (Eq. (20)) so  that

        Qf-(e.,,, ba) QT =S'(e,,p,  Qba) . (25)

 Eq. (25) requires  f" to be isotropic in ba and

 then  has the representation  (see Smith,

 1971) :                           '
                        N

             o=f.pCera)ba(Ei)bP  (26)

 where  (I5 stands  for the  symmetric  part of

 X, Eq. (26) is a  general  tensorial  represen-

 tation  o'f nonlinear  anisotropic  elastlc

 materialg  in infinitesimal theories. If f.in
 Eq, (26) are  linear in e, we  have

             e==Eev,irsereb"(E9bP

 or  using  Eq. (24),

         a=:E.fi,aba(Ei)bB(E9b'(E)bS[e]  (27)

 where  E.prs are  constant  with  Ecr,erfi=Efiari=

 Ea,sar' '

   We  then  have a  classical  expressien  of

 linear anisotropic  elastic  materials  in the

 component  form of  Eq. (27) with  respect  to

 b

               aa･,s=Eaprsera

 or,  in arbitrary  fixed Cartesian coordinates,

            Otj ='=  E.prs ersbtabjfi  ･

   Finally, we  introduce a new  type  of

 elastic  material  :

                es =-  f(e, r)

 in which  an  infinttesimal rotatien  is included.

 ,Since f  is independent  of  the  reference  state,

 it is clearly  isotropie. Since r*=QrQT  by

 Eq,(17) and  (19), the  objectivity  requires

 f to  be isotropic in the  symmetric  tensor

 e and  the skew  symmetric  tensor  r  in the

 form

       Qf(e, r)QT  ==f(QeQT,  QrQ') .

 Then  f  has the  representation  (see Smith,

 1971) :

 a=ail+at2e+ase2+a4r2+dis(er-re)+evarer

    +aT(e2r-re2)+evs(rer2-r2er)  (28)

 where  evi, ･･･, as  are  scalar-valued  functions

 of  {tre, tre2, tre3,  trr2, tr(er2),  tr(e2rE),

 tr(e2r2er)}.  We  note  that  in the  anisetropic
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elastic  material  in finite theories  defined by

              T=f(F),  .

the  rotation  has been completely  eliminated

since,  replacing  Q by R  and  "}i'  by U  in
Eq. (12), we  have 

'

     Rf(U)  RT=f(RURT)  =f(V)  -  T

where,  U  and  V  are  the  right  and  lefZ strech

tensor  respectively  defined by I'=:RU=VR.
If we  assume  that  a  in Eq. (28) is a first

order  function of  e and  r, we  have  a  classical

linear elastic  material

            a=Z(tre)1+2"e

where  A and  nc are  constant  and  in whieh

the  infinitesimal rotation  r is eliminated.

EXPRESSIONS  OF  ANISOTROPY  IN

SOIL  MATERIALS

  We  are  now  in a  position  to state  our

preeise definitions of  anisotropy  in soil

materials.  The  di$cussions are  eonfined  to

infinitesimal theQries.

Jnherent Anisot'roPy and  Stress lnduced

AnisotroPy
  Previous  discussions are  concerned  with

the  deformations  frorn the  undeformed  state

or  unstressed  state.  In soil  materials,  our

main  concern  is, however,  the  deformatlon

from an  initial state,  which  is already

stressed,  or  experlenced  some  deformations

for a  long period, In the  laboratory, soils

are  often  given  preceding  stress  histories such

as  consolidation  before we  have an  initial

state.  In order  to distlnguish between  an

undeformed  reference  state  at  t=O  and  an

initial reference  state  at  t=to  (>O), we

introduce the  reflerence  tensor  defined by

          s

     K=Z  C.b"(g)ba (C. : scalars)  (29)
         a =.' 1

for the  undeiormed  reference  state  and

sirnilarly  Ke  for the  initial reference  state.

  The  constitutive  equation  oi  an  initially

stressed  material  is then  assumed  to be
                       '
          s<t-to

     e(t)=  f (o4(t-s), a(to),Kli)  (30)
           s=o

and
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             s==t

         Kb=  k  (es(t-s),K) (31)
            s;b-to

with  e(t)=O  if a(t-s)=a(t,)  for OgsS

t-to.  We  note  that  Ko  ls a function of  K
and  stress  histories a(t-s)  for t-toKsKt.

Here  and  in what  follows, for convenience,
     .
we  wrlte

            e=-f(es,  ffo, Ko) (32)
and

            Ko  ==k(asT,  K)  (33)
for Eq,(30) and  Eq,(31). (See Table 1.

for Eq. (32)-Eq. (55))
  When  the  reference  state  is rotatedi,  the

reference  tensor  in Eq. (29) is transformed

as

        s s

   K  =  2  C.b"(g)b"= =  C. (Qb") (E) (Qba)
       a=1  a=1

       JQ(tF.,C.ba(E9ba)QT=eKQT
Thus  the  objectivity  in infinitesirnal theories
    .requlres

  Qf(ifs, ao, K6)QT  =:f(QasQ',  QaeQ', eKhQT)
          ･ (34)
and

    Qk(as-, K)  QT ==  le (Qa,-Q', QKQT)
                                 (35)
for all a,K  and  all  rotations  Q  so  that  f
and  k are  isotropic in {a,,ao,Ko} and  {a,-,
K}  respectively.

  Ii the  material  is (inherentty) isetropic

at  t==O, the  material  symmetry  requires

Eq, (33) to be

        k(os-, K)  ==k(os-,  QKQT)  (36)
for all a,-,  liC, and  all rotations  Q. Or  if

K  is an  isotropic tensor

                K:=A1                                 (37)
with  2 a  scalar,  the  material  is automatically

(inherentlbl) isotrepic at  t=O.

  Thus  we  call  the  material  the  inherent

anisotroPy  if

        le (a,N, K)  #k(a,H,  QKQT) (38)
for some  a,-,  K,  or  some  rotatiens  Q  and

                K]\al  (39)

  Similarly to  Eqs. (36) and  (37), the  materi-

al  is called  the  initial isotropy at  t=O  if

NII-Electionic  
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and  stress  induced anisotropy

e  =f(a,,  a-,  K6)

Kb==le(at.,K)

   (lnherent)

or

     K=::A1

(32)(33) (f.::,1･ 
.fr,

 
a;.e

 g?O, 
`::7:'.C,,,,

 )
'(g45''''

(35)

         it'e-tr'o-El-i'
le(as.,K)!k(a,-,QKQT)(36)

(37)

  inherent anisotropy

k(ae-,K)#k(a,-,QKQ')

and

      K#Al

(38)

(39)

  l}zitial isotropy

 f(ee, ao,  Kli) 
'

 ==f(as,  ao,  QKbQT)
            (40)
or

    Kb=Bl  (41)

I initial anisetrqno,

1 f(ae,ao,Kh)#f(tis,ao,QKhQT) (42)
                   andi  .

                         Kh#Bl  (43)

        
'(',)

 , 

''kTi'5'''L'"'----""'
 (,5 

''
 

'"

     Stress induced i inherent Combined
     initial anisotrop3t  l' .initial anisotropy  

'
 initial anisotrepy

      K6==kCa..) (44) 
i
 Kli=tle(K)  (45) i K6==k(a.",K)  (46)

/, Oe-#Ps-1  1                                       /
.Tt'-.IL=-. -.MJ.tt'/'tt.1.."'tT..".--..:".'...1'='1:lt"-'--'-"l'--:t-'L'-''l/tttl':[tVL:t"':1/Llt:ttL/'..

(Example)
   tttttttttt-t tt

 Kh=Bl

.
 e..f. 

rt6

 [Kop:G::rl(.//....r 
,;/i.)...ir.....t.Eir.-=k(ife･

 
K-).--.

               
'1

Kh=::Z-apl- (50) K6=K

                   1
                   i
                   i
                   !

       ao=po  1

      vd;36IlnU

 
'"-'il='"S'('iTti!2-1!op,Il!)it2

 I
              (55) 1
                   i

      f(as, ao, Ko) =:

for all  a,,  ao, Ko, and  all 
'

               Kli=B1

with  B a scalar.

  The  initial anisotropy  is
similarly  to  Eqs. (38) and  (39),

     f(6s, eo, Ke)  diFf(as,  oo, QKoQ
for some  as, cro, Ko  or  some

               Kh  2i: B 1

The  initial anisotropy  is
three  types  depending on  the

  (1) Ko=le(Cs-)
  is called  the  stress  indecced

  tropy.  (Eq.(35) and  (43)
history e,-  is not  isotropic,

  (2') Ke==k(K)
  is called  the  inherent  initial

  (3) Ke=k(a,-,K)

  is called  the  combined  initial

 tttt. . t..

vd==Ba[lpoaom'(n-no)11

            (54)
 vd==z6  lia,ae-t- :-( 

op

 
-
 :.)]

...."..."""".""..."...({l?..,...
  ao=ac

val  =a"11n-voli

     (53)

    ao#ad

  (ao==pol)
     1 cr

 vd=A6i  
-;i.-n

1 (52)

'i'

 l

i'

 oo=tPol

vd=6[1dnll  (4g)

i!li.1

      (47), (48)

   Kb==k(a,,K)  (48)

vd=6  Iihpoao"(f-fl ) I
             (47)

f(as,eo,QKoQ') (40)
      rotations  Q or

               (41)

         then  defined,

          as

           
T)

 (42)

       rotations  Q  and

               C43)

      decomposed into
        function k:

               (44)
         initial aniso-

         requlre  stress

       as-  ijps-1)

              ･ (45)
           '
         anlsotroPy.

               (46)
         anisotroPy.

                 1

We  note,  that  the  stress  induced anisotropy

in Eq.(44) is not  the  inherent anisotropy

but the  (inherent) isotropy.
Examples

  Here  we  demonstrate  several  examples  of

constitutive  equatiens  of  anisotropic  material

of  soils  and  show  how  the  principles derived
in the  previous parts are  useful.

  (1)Dilatancy of clays
  Assume  that  the  volumetric  straln  vd  by
dilatancy from an  initial state  is given in
the  form

  
'
 vd 

--
 61[Kopoao-i (c,!fi, 

-ao
 Lp o)  [i (47)

and

            K6 ==k(e,,  K)  (48)
where  ti is a  scalar,  p=tra13 is the  mean

principal ofective stress,  and  a,  is a  certain

dominant  constant  stress  over  K,, for in-

stance,  a,==a(s)  constant  for OSs<t.  It is
not  diMcult to show  that  Eq,(47)  satisfies
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the  objectivity  in Eq. (34) and  vd=O  when

a=a,,  Eq,(48) also  must  satisfy  Eq,(35).
The  general  polynomial  form is given in
Smith(1971).

  Let Eq.(48)  satisfy  Eqs.(38) and  (39).
Then  the  material  assumed  by Eq. (47) with

Eq.(48) is an  inherent anisotrepy.  If,
furthermore, KotFBI, the  material  in Eq,
(47) with  Eq. (48) is an  initial anisotropy

since  Eq(47)  satisfies  Eq.(42). For  the

general  Ko, the  material  is a  combined

initial anisotropy  by the  definition Eq, (46).
If Ko  is independent  of  stress  histories

(There is such  a possibi!lty in the  case  of

an  isotropically consolidated  clay.),  the

material  in Eq. (47) with  a  form of  Ko in
Eq.(45)  is an  inherent initial anisotropy.

Let Ko=:K  simply  and  apply  the  pressure
ao=pol  to the  initial stress.  Then  Eq. (47)･
yields

              v,=al[Knll  (4g)
where  v=s/p  and  s=a-pl.  Eq, (49) gives
a  simple  form of  dilatancy equations  of  the
inherent initial anisotropy  in the  case  of

isotropically pre-censolidated  clays.

  If Ko  is independent of  a  reference  tensor

K  such  as  Ko :k(a,),  Eq. (47) is a  stress

induced initial anisotropy  as  is defined in
Eq. (44), The  objeetivity  in Eq. (35) then

requires  k  to be isotrQpic in a,, but Eq.

(43) to be ff.iEP.1.  That  is, the  stress

induced initia! anisotropy  is always  a  result

of  the  anisotropic  censolidation  before the

initial state,  Let

             Ko  =:  Zacfpc･ (50)
Then  Eq. (47) ylelds

     vd=:161･]a,aonipo/p,(a/p-aa/po)]1  (51)
Eq. (51) with  (50) is a  dilataney equatlon

of  anisotropically  overconsolidated  clays  if

p,>p,, In particular, if e,=p,1,  Eq,(51)

ylelds

            vdi=Z611(aefPc)V]l  (52)
Eq.(52) with  (50) gives a  slrnple  form of

dilatancy equations  of  the  stress  induced
initial anlsotropy  in the  case  of  initial
isotropically consolidated  clays.  If ae:=:a,  in
Eq. (51), we  have
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             v,=A6ilty-v,[l  (53)
Eq. (53) under  a  condition  such  as  Eq. (50)
with  a,=ao  is a  stress  induced dilatancy
equation  of  norrnally  eonsolidated  clays

employed  by Sekiguchi and  Ohta(1977),

  If Ke=Bl  in Eq,(47), the  reduced  form

         vd==B61[poao-'(n-vo)II  (54)
is an  initial isotropy by the  definition in
Eq, (41). In particular, if a,==p,1,  Eq. (54)
yields the  simplest  initially isotropic materi-

al:

              vd  =B6[lvij

  We  note  that  the  form employed  by  Ohta
and.Hata(1971)

          vd=6(IInll2-]irp,1[2)i!2  (ss)

is not  a  stress  induced anisotropy  but an

initial isotropy since  Eq, (55) is independent
of  Ko if rpo is independent  of  Ko and  even

if rp, is related  to Ko  such  as  rpo (Ko), the

objectivity  requires

   Ilrp,(QKhQT)U=1!Q?,(M)erll=rUrp,(Kh)ll
and  Eq, (55) therefore  satisfies  Eq, (40). The
material  ln Eq. (53) is also  an  initial isotropy
if vo is independent  of  Ke. It is stress

induced anisotropic  only  if vo is related  to

liC6 such  as  nyo=KolR-1  as  Eq.(50) with

ac=ao.

  (2) Failure conditions

  Matsuoka,  Nakai and  Ishizaki(1980) pro-

posed  an  interesting failuie condition  for
anisotropic  soils. Let their condition  for
isotrQpic soils  be

             f(a) ==  const,  (56)
in the  concrete,

             Ji LJhft]k  ==  const

where  Ji=tra,  J2={tra2-(tra)2}i2, J3=
deta.

  In order  to give  anisotropic  structures,

they  introduced an  anisotropic  parameter
related  to an  undeformed  state,  that  is,
introduced a  reference  tensor  K  in eur

symbol  and  replaced  a  by Ka  in Eq. (56) :

             f(Ka) ==  const  (57)
We  note  that  it is not  the  isotropy but the

objectivity  that  requires  f in Eq. (56) to  be

NII-Electionic  
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isotropic, that  is, to be a  function of  Jb

J2 and  J3. If the  function f is assumed  as

Eq, (57), the  objectivity

  f(QKQ'eaQ')  =  f(Q (Ka)QT) =r  f(Ka) ,
requires  f to be isotropic in Ka.  Thus f is

necessarily  a  function of  Ji*=:tr(Ka), J2*=:

1/2{tr(Ka)2-(trKa)2},  J,"==det(Ko). If K
in Eq.(57) is a reference  tensor  of  an

undeformed  state,  the  failure condition  in

Eq.(57) is an  expression  of  the  inherent
  .anlsotropy.

  (3) Materials of differentiat type

  Constitutive equations  in soil  rnechanics

are  often  assumed  to  be elastic-plastic

materials  in the  form of  a  rate  independent

differential type  sueh  as

           - J
           e=  H(a,  ao,  Ko) [a] (58)

er

             etj=Htjhldkt

with  an  initial condition  e=O  and  a  :ao  at

t==to, We  note  that  if a(T)  is given for

to<T<t,

         e  =r  Jl: H(a, ao , Ko)[di]dT

is a  form of  Eq. (30) or  Eq. (32).
  Thus  all  the  principles  stated  in the  prevl-

ous  seetion  are  similarly  applied  to the

constitutive  equation  of  differential type.

However, noting  that  when  we  consider  the

objectivity  in infinitesimal theories, the

rotatlon  Q  is constant  in tirne,  (Note that

Q is a  function of  time  in finite theories.),

we  may  easily  apply  the  ebjectivity  to Eq.

(58) directly as  
'

                                .
  QeQT=  H(QaQ',  Qa,QT, QKoQT) [QcrQ']

fer all a,  a,, if, Ke and  all  rotations  Q.
For  simplicity,  we  assume  that  H  is a

function of  a  ; then
            - -
     Qff(a)[a]QT=H(QaQT)[QaQ']
for all o,  b, and  all rotations  Q. Then

by a  representation  theorem  by Wang(1970)

er  Smlth(1971), we  have

Il(a)[b]==[Bttrb+S,tr(adi)+B,tr(a2di)･]1
               - - -
         +[34tra+B,tr((TcT)+B,tr(a26)]a

         +[B7trb+Batr(ha)+B,(a2dr)]a2

NISHIHARA

             - --  . -
         +Bioff+B"(aa+aa)+Bi2(tscr2+cr2a)

 where  Bb ･-･, Bi2 are  functions of  the  principal

 invariants of  6. We  note  that  even  if Eq.

 (58) is a  form

             b=ll(ff,e,)[6] (59)
 with  an  initial condition  e:::O  and  6==ao  at

 t=te,  the  material  in Eq. (59) is an  initially

 isotropy if eo  is independent of  Ko, On  the

 other  hand, even  the  simplest  material  such

 as

              e=H(e)[6]
 can  be a  stress  induced  initial anisotropy

 if the  initial stress  ao  is related  to Ko.

CONCLUSIONS

  In the  first part we  present brief discussions

about  the  principles for constitutive  equations

in finite theories:

  (1) Reference indifference

  (2) Objectivity 
'
 

'

  (3) Material symmetry  (anisotropy) and

       .
       Isotropy

Intreducing reference  vectors  b and  a==Pb,

we  then  conclude  that

  T=f(E  b) must  be isotropie in F  and

b  by (1) and  (2)
  T=g(B,  a)  must  be lsotropic in B  and

a  by (2)
  S=:h(C, b) must  be isotropic in C  and

b by (1).
  In the  seeond  part  we  note  that,  in

infinitesimal theories, (1) is indistinguishe-

able  from  (2) but preier calling  them  the

objectivity,  We  then  conclude  that  cr=

f(e, b) must  be isotropic in e and-b  by

the  objectivity,  We  must  note  that  even

if the  above  functions are  independent  of

reference  vectors,  they  all must  be isotropic

functions. We  then  note  that  requiring

them  to be isotropic is not  the  isotropy  in

(3), but the  principles  in (1) er  (2). More

importantly, employlng  reference  vecters,

anisotropic  materials  can  be represented  by

isotropic functions whose  representations  are

well  established  in Wang(1970) or  Smith

(1971). Using  the  objectivity,  we  demon-
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strate  a  derivation of  a  classical  anisotropic

material.  Furthermore we  show  that  there

may  exist  an  elastic  material  in which  an

infinitesimal rotation  r  is included and

conclude  that  if we  assume  that  a  is a  first

order  funetion of  the  strain  and  r, only  r

is eliminated  and  we  get a  classical  linear
elastic  material.

  Introducing a reference  tensor  K  in the

last part, we  define the  initial anisotropy

such  as  the  inherent anisotropy  and  the

stress  induced anisotropy.  Briefly conclud-

ing, the  irpherent anisotropy  is that  the

initial reference  tenser  Ko  is a  tensor  valued

function of  the  undeformed  reference  tensor

K  and  the  stress  induced anisotropy  is that

Ko  is a  tensor valued  function of  only  the

stress  histories up  to the  initial time, Thus

the  stress  induced anisotropy  is not  the

inherent anisotropy  but the  (inherent) iso-
tropy,

  We  must  note  that  K,  does not  often

appear  explicitly  in the  constitutive  equa-

tions, If ao  is related  to Ke, and  ao  is not

included in the  invariant forms in the  con-

stitutlve  equations,  the  material  is a  stress

induced initial anisotropy.

  We  further nete  that  if the  censtitutive

equations  are  given  in the  differential type,
not  enly  Ko  but also  ao  might  not  appear

explicit!y  in the differential equations,

since  eo  is often  given  as  an  initial condition.

Then  the  material  is a stress  induced initial
anisotropy  or  initial isotropy corresponding

to whether  ifo is related  to  Ko  er  not.
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NOTATION

     a=:director  in the  current  state

  b,ba=  reference  vectors

    B=left  Cauchy-Green  strain  tensor

     C==right Cauchy-Green strain  tensor

     e:=infinitesimal  strain  tensor
     .
     e=rate  of  strain  or  strain  lncrement

    E=elastic constant

    P:=deformation  gradient

    G=transformation gradient

    lir:=gradient of  displacement

Jb J2, J3=invariants of  stress

  K,Ko=:reference tensor  in the  undeformed

       state  and  the  initial stress  state

  P,Pe=mean  principal  effective  stress  in the

       current  state  and  the  initial stress  state

    Q=orthogonal tensor corresponding  to the

       rigid  rotation

     r==infinitesimal  rotation

    R==rigid rotation  of  the  referenee  state  in
       finite theories

     s:=deviatoric  stress  tensor

    S=second  Piola-Kirchhoff stress  tensor

    T=Cauchy  stress  tenser

     u=displacement  vector

    U=right  strech  tensor

    vd=  volumetric  strain  by dilatancy
    V=Ieft  strech  tensor

   x,x=position  vectors  of  a  particle  in the

       current  states

  X,X=position  vectors  of  a  particle in the

       reference  state  s  and  E

     v==slp,  pressure  normalized  deviatoric stress

       tensor

   x,i=reference  states

     a=  infinitesimal $tress  tensor

    as=  stress  history from the  initial stress  state

       up  to the  current  state

   asT==stress  history up  to  the  initial stress

       state

    ao==initial  stress  .

    a,==dominant  constant  stress  ever  Ko                           '
     b=rate of  stress  er  stress  increment
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