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                                  ABSTRACT                          '

  Elastic compliances  for cracked  materials  like rocks  and  rock  masses  are  theoretically
formulated in terms  of  the  generalized  fabric tensor  which  has been  lntroduced as  an  index
measure  to express  explicity  crack  geometry.  By  means  of  uniaxial  compression  tests and

supersonic  wave  velocity  tests on  gypsum  plaster samples  with  random  cracks,  the
formulation is proved  to give a  good  approximatien  for describing the  elastic  response  of
craclced  materials.  The  conclusions  are  summarized  as  follows: The  principal axes  of  the
fabric tensor  of  second-rank  exactly  coincide  with  the  symmetry  axes  of  the  elastic  cem-

pliance  tensor of  fourth-rank. The  so-ealled  self-conslstent  method  is very  useful  to  estimate

the  overall  elastic  rnoduli  by taking  into account  the  effect  of  elastic  interaction among

cracks,  Since the  supersonic  wave  velocity  is closely  related  to the  character  of  the  fabric
tensor, it can  be expected  that  the  field measurement  of  wave  velocity  is useful  to  estimate

fabric tensor  of  in situ  rock  masses.

Key  words  : .an-isot-tgp.y., elasticity,  faults, joint, model  test, roek  mass,  stress-strain  curve,

unconfined  compression  test  (IGC:F3IF6) 
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                                         and  Takeucl;･i (1983). In laboratories, on
INTRODUCTION
                                         one  hand, a great  effort  has been  paid  to

  Faults and  joints (called cracks)  are  of  make  it clear  the  important  influence of

widespread  occurrence  in rocks  and  rock  crack  system  (crael< geometry)  on  mechanical

masses.  For  the  past  two  decades, extensive  properties of  cracked  materials;  e. g., Hayashi
studies  have been done to  estimate  with  (1966), Brown  (1970) and  Einstain and

sufficient  accuracy  the  effect  of  craeks  on  Hirschfeld (1973). In spite  of  these  re-
the  stability  of  engineering  structures  con-  markable  studies,  however, a great  didiculty
structed  on  or  in rock  masses:  Several still  exists  in developing ideallzeti models

computer  models,  for example,  have been  mechanically  equivalent  to  real  rock  masses
successfully  developed to replace  cracks  by whieh  are  commonly  characterized  by very

mechanically  equlvalent  elements;  e. g., complicated  geological setting  of  cracks,
Goodman,  et  aL  (1968), Zienkiewicz and  especially  in craek  geometry;  e,g,,  John
Dullage (1970), Cundall (1971) and  Kawai (1962), Hansagi  (1974), Silveria, Rodrigues
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and  Grossmann  (1966), Kiraly (1965), Ogata

(1978) and  Hudson  and  Priest (1983).
  In order  te overcome  the  present  diMculty,
Oda  (1984) proposed a  tensor  quantity called

the  generalized  fabric tensor  to represent

crack  geometry  (crack system)  in general

form, This  paper is to discuss the  following

two  topics:  (1) A  new  stress-strain  rela-

tion  which  is easily  incorporated inte con-

ventional  FEM  analyses  is formulated in

terms  of  the  generalized  fabric tensor  by
treating  cracked  bodies as  elastically  an{so-

tropic solids,  and  (2) results  of  uniaxial

compression  tests and  supersonic  velocity

tests on  gypsum  plaster samples  with  various

kinds of  cracks  are  reported  to see  if the

elastic'constitutive  equation  is accurate  enough

to be used  in deformation analyses  of  rock

masses.

CRACKS

ModeZing  of Cracks
  Cracks appear  in various  scales  ranging

from  micro-cracks  visible  through  a  scanning

electron  microscope  to great  faults extending
for several  hundred  kilometers, Because of

the  variety  of  natural  cracks,  it i$ alrno$t

impossible to replace  them  by an  equivalent

model  without  losing generality. If elastic

behavior is only  concerned,  however, a  erack

can  be modeled  either  by a  penny-shaped

opening  or  by a  row  of  collinear  openings

(Fig. 1(a)  and  (b)). The  models  are

justified by the  following observations  :

  1) Fig.2 is typical of  cracks  visible  on

thin  sections  slicedi  from  two  moderately

weathered  granites, The  crack  in Fig,2

              e

              1---  r-  
--

              (a)Open crack

                 2a
                 H
            --e  op-  -d

                 t-  2c
            e r -

             (b)Collinear  crack

     Fig. 1. Idealized models  of  cracks

ET  AL.

{a) 05mrn
-

                  Cb)

 Fig. 2. Cracks  in weathered  granites  (A
     large  crack  extending  frem  the left

     to  the  right  of  picture  (a) is part  of

     a  joint commonly  obseryed  in a  mod-

     erately  weathered  granite  haying
     porosity  of  11.4%,  It is clearly  seen

     that  the  craek  is filled with  clav  min-

     erals
 
sueh

 as  
vermiculite

 and  :illite.

     Picture  (b) is taken  from  a  slightly

     weathered  granite  having  porosity  of

     2.8%  There  are  many  micro-cracks

     filled with  fine particles  stained  by

     brownish  color)

(a) is part  of  "  joint stained  by brownish
color.  Note that  these  cracks  are  fi11ed with

clay  minerals  such  as  vermiculite  and  illite
which  xvere  derived from  weathering  products
or  fault gouge  (Onodera, Yoshinaka  and

Oda, 1974). The  fi11ing materials  are

characterized  not  only  by high cornpressibili-
ty, but also  by low shear  strength,  especially
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when  they  are  saturated  with  water.  Let
us  image what  happens if these  cracks  are

stressed.  It is not  probable  that  they

behave as  cornpletely  closed  cracks  developing
high frlction on  their surfaces,  Their

elastic  response  can  be rather  well  reproduced

by the  models  of  Fig. 1.

  2) Sprunt  and  Brace (1974) directly ob-

serve[I  micro-cavities  in crystalline  rocks  by
a  scanning  electron  microscope,  According
to  their  observation,  a  single  crack  with

high aspect  ratio  is actually  a  string  of  many

low aspeet  ratio  cavities,  with  the  appearance

similar  to  the  model  of  Fig. 1(b).

Crack Geometry

  In order  to define explicitly  crack  geome-
try, we  must  consider  at  least the  following

three  factors:

  1) Volume  density of  cracks:  When  there

are  m[V}  cracks  in volume  V, volume

density p of  cracks  is defined as  the  number

of  cracks  in a unit  volume;  i,e,, p:::mCV)/V.

  2) Dimension ef  cracks:  If each  flat

crack  is identified by its typical dimension

r, the distribution of  the  crack  sizes  is then

characterized  by a  density function f(r).
  3) Orientation of  cracks:  Orientation of

a  crack  is speclfied  by two  unit  vectors,  n{'}

and  n(-), normal  to  its major  principal

plane  (Fig.3). Since E(n,r)  is introduced
as  a  density function for representing  the

distribution of  n,  it satisfi6s

                             {-)
            n--

        1
             l
Fig.

  (-)
  
  
                       nC+)

3. Displabement  vectors  u[') and  u("]

associated  with  positive (+) and  negative

(-) surfaees  respectively  (Note the dif-

ferellee between m  and  n.  That  is, ne

is a  unit  yector  mormal  to a  crack

surface  while  n  is a  unit  vector  nor-

mal  to the  major  plane  of  the  crack)
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        .(IeeJ)E(n,r)dgdr

      =J]OeJ],,2E(n,r)dgdr==1  (1)

where  9  and  2t2 are  solid  angles  showing

the  limits of  integration; 9==an entire  unit

sphere,  and  2/2=a  unithemisphere.  E(n,r)

is symmetric  in the  sense  of  E(n,r)=E

(-n,r), and  is written  as  E(n)f(r)  if n

and  r  are  statistically  independent.

  By  taking  into account  the  three  elements

described above,  a tensor  F  (calied the

generalized  fabric tensor)  is defined as

   F=  ZP J]Oe.Lr3nxn･･･& reE(n,  r)dndr

                                 (2)
where  (29 stands  for tensor  product  (Oda,
l984).  The  generalized  fabrie tensor  is a

dimensionless tensor  with  even  rank.

(Because of  the  symmetry,  E(n,r)=E(-n,
r),  F  is identically zero  if the  rank  is odd.)

Its components  are  symmetric  in the  sense

of  Fij..ic=:Eii."k=･-･=tFiti..t. A  contraction

with  respect  to any  pair of  subscripts

reduces  its rank  by 2. The  zero-,  second-

and  fourth- rank  tensors,  for exarnple,  are

given below where  a  fixed rectangu!ar

Cartesian coordinate  system  is used:

Zero-rank : E,= 
rr4P

 J] 
'Or3f(r)

 dr (3 a)

Second-rank :

     Ezj= lliPJico.J]rsntnJE(n,r)dgdr
                                (3.b)
Fourth-rank :

   Ftpm =:  
!liPrJ]coJ)r3ntnjnkniE(n, r)dedr

               (i,ik, l= 1, 2, 3) (3 c)

  The  zero-rank  tensor  Fo is a scalar

quantity  equivalent  to the  crack  concentra-

tion  parameter  by Budiansky  and  O'Connell

(1976), and  is also  related  to porosity as-

sociated  with  cracks  (Oda, 1984), The

second-rank  tensor  corresponds  not  only  to

the  crack  density tensor  crii  by Kachanov

(1980), but also  to the  fabric tensor  by

Oda  (1982), Fabric tensors  of  higher ranks

than  Fti are  not  directly related  to an  image

NII-Electionic  
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of  the  crack  geometry, It can  be intuitively
said,  however,  that  the  detaii ef'the  crack

geometry  can  be better represented  if higher
rank  tensors  are  considered.  Let us  con-

sider,  for examp]e,  two  cracked  bodies
having a  common  fabric tensor  of  2n-th
rank,  These  bedies cannot  be distinguished

by means  of  fabric tensors  of  rank  lower

than  2n-th.  Ii the  higher rank  tensors

than  2 n-th  are  taken  into account,  however,
two  bedies may  no  longer appear  identical.

  It must  be emphasized  here that  the

generalized  fabric tensor  for reek  masses  was

explicity  written  in terms  of  some  quantities
rneasurable  in conventional  geelogical  surveys

by eda (1983,1984). Accordingly, attention

is paid  here only  to formulate an  equation

of  elastic  cempliance  for cracked  bodies by
using  the  generalized  fabric tensor.

ELASTIC  COMPLIANCE  FOR  CRACKED

BODIES

  Many  theoreticians  have been interested
in forrnulating overal}  rnodulus  of  rock-like

materials  by considering  the  effeet  of  cracks

on  their  elasticity;  e,g.,  Walsh (1965a,b)
Jaeger and  Cook  (1969), Budiansky  and

O'Connell  (1976), Eimer  (1978), Kachanov

(1980, 1982), Oda (1983) Horii and  Nemat-
Nasser (1983) and  Horii (1983). They  con-

sidered  isotropically distributed e!lipsoids  or

penny-shaped  cracks  in an  elastieally  isotrepic

solid.  Recent  progress  has been achieved  by
employing  the  so-called  self-consistent

method  by which  elastic  interaction between
cracks  can  be taken  into account;  e. g.
Budiansky  and  O'Connell (1976) and  Horii
and  Nemat-Nasser  (1983).

Generat  Formulation

  Let us  eonsider  an  elastic  solid  ef  total

volurne  V  containing  mCTJ) eracks.  Average
stress  tensor  o-ii of

             a'tj =:  t7Aatjdv (4)

produces  average  strain  tensor  iii of

         etj==S'Jl.ewdv

ETAL.

           ='e13(ut,J+uJ,t)dv

                      (i, J' -rm 1, 2, 3) (5)
where  ui  (i=L2,3) are  components  of  a

displacement vector,  and  comma  followed
by an  index denotes partial differential with

respect  to the  corresponding  coordlnate.

The  average  strain  tensor  is related  to  the

average  stress  tensor  through  an  elastic

compliance  tensor  Dwkt  as  follows ;

      s',j:=D,j.d,,  (i, JL fe,l=1,2,3) (6)

Diint consists  of  two  parts: The  first Mtint
depends on  the elastieity  ef  matrix  without

any  crack,  while  the  secend  Cire is the

correction  due to  the  existence  of  eracilt's;
'1,

 e., 

'

            D,j,, 
--

 M,jnt +C,j.  (7)

  If an  elastically  isetropic'matrix is only

concerned,  then  thwki is given by

       nLfwk`=-(i-E'Y) 6tle6ji-Illr6ij6lei (s)

where  E  and  v  are  Young's  modulus  and

Poisson's ratlo  respectively,  and  6,/j is
Kronecker's  delta. Horii and  Nemat-

Nasser (1983) theoretieally  showed  that  Ctm
satisfies

     c-ijnttrkt=tr-JI,g(ut7nj+ujmt)ds (g)

where  mt  (i--1,2,3) are  components  of  a

unit  vector  normal  to crack  surfaces,  and

2 S  is the  total surface  area  of  m{i')  cracks.

(A k-th crack  among  mCV)  cracks  consists

of  two  surfaces,  pesitive(+)  and  negative

C-), each  of  which  has an  area  SCn'], Then
the  total  area  2S  cf  t/11 cracks  is the

              m.Cv;

sumrnatien  ef  Z  2S(k}.)
             (k)t･1

  Instead of  integrating the  right  side  uf

Eq.(9)  for all  cracks,  a  fe-th crack  is
first chosen  to see  its effect  on  Cuki, and

afterwards  each  effect  is summed:  Since
the  fe･-th crack  is assumed  to  be fiat in its
shape,  the  unit  norrn,al  vecter  m  is oriented

almost  parallel te  a  unit  vector  n  defining

a general normal  trend  of  the  crack,

Integration of  Eq.(9)  only  for the  k-th

erack  becornes
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       E'Lv.(Is,,,(ujmt+utmpds

     =  2iv [ntls,,,ujds +njLs,,,orids]

       S(te} -. -

     
=
 2v(nt6J+nj6                   ,)  (10)

where  6-i is to denote the  mean  displacement

jump defined by

       6Lt= slte)L,,,(ut(')-ut(-})ds

         =Lsi(  za} J],,.utds (ii)

Here  ui(') and  ui(-)  (==-ui(+)) are  for the

displacements on  the  positive(+) and  the

negative(-)  surfaces  respectively  (Fig. 3).

  Next, consider  a  number  dN  of  cracks

(in volume  V)  having  unit  norma!  vectors

oriented  inside a  small  solid  angle  dM  around

n,  and  also  having  sizes  within  a  small

range  from r  to  r+dr  (called (n, r)-cracks),
The  number  results  from  multiplying  the

total number  mCV)  of  cracks  by  the rate  of

the  (n, r)--cra ¢ ks:

         dN=:2m`"'E(n,r)d9dr  (12)
On  the  assumption  that  elastic  interaetlon
between cracks  is neg!igibly  small,  the  effect

ef  each  (n,r)--crack on  Ctjkt is simply  sum-

med  to  find the  total effect  of  all (n,r)-
cracks,  as  follews:

     p

    
'liS(r)(nt6-j+nj6Lt)2E(n,r)d2dr

 (13)
                                   '
Integrating Eq.(13) over  OE912$2x  and

O$r<oe,  it becomes the  right  side  of  Eq.
(9) since  all  cracks  mCV)  are  taken  inte
account,  Then  we  have

     cumtjkiaLki=glO'L,,s(r)(nt6-j

             +nj6Mt)2E(n,r)d9dr  C14)
Accordingly, it can  be said  that  the  com-

pliance Cwkt is formulated in terms  of  the

mean  displacement jurnps 6-i associated  with

all  cracks,

DisPlacement  JumP

  Local base vectors  et' (i--1,2,3) are  set

with  respect  te a  crack  as  follows: et' is
normal  to the  rnajer  plane of  the  crack

(ei'"n) and  e2' and  e3' are  in the  plane.
The  unit  vector$  eit, e2t and  es' make  a

right  hand system  in the  order,  and  are

related  to fixed base vectors  ei (i--1,2, 3) by

               et'=::Qtsej (15)
where  Qw  is an  orthogonal  (rotational)
tenser.

  Here, four example$  are  discussed to seek

a general  eharacter  related  to  the  displace-
     .
ment  jump  :

1) Pennpt--shaped crack:  In this case,  the

displacement jump i$ written  as

          6-,f :-  
8(g

 ik2) r6,/  a6 a)

          6N,'= 3i.6ii(El2,)) ra,i  (i6 b)

          s,'=: 3i8S-i(El'2,)) ra2,'  a6c)

where  6-i' and  o"i/ are  components  with

respect  to the  local base vectors  ei' (i--
1,2,3) (Oda, 1983). For  a rather  special

case  haying v  =O,  Eq. (16) can  be rewritten

with  respect  to the  fixed base vectors  ei

(i=1,2, 3) as

             oMz=-3 rr8Era-tjnj  a7)

Since Eq, (17) greatly simplifies  the  integra-
tion  of  Eq. (14) without  any  serious  error,

it is accepted  here as  a  possible expression

for the  displacement jump of  penny-shaped
crack.2)

 ElliPtical crack:  In the  case  of  an

elliptical  crack  subjected  to the  plane stress,

the  jump ls exactly  given by

             nT

             6t 
m-
 
'l}mE-ra-ijnj

 C18)

without  making  any  simplification  (e,g.,
Walsh, 1965; Oda, 1983).
3) Row  of collinear  cracks:  In  this case,

a  crack  havlng apparent  crack  length r  is
actually  a row  of  many  collinear  cracks

(Fig,1(b)). Let us  assume  that  the  elast.ic

solution  for an  infinite row  of  collinear

cracks  subjected  to the  plane  stress  (e.g,,
Sneddon  and  Lowengrub,  1969) can  be used

to roughly  estimate  the  displacement jump
associated  with  a finite row  of  collinear

NJI-Electionic  
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eracks.  It seems  reasonable  to assume

further that  a,  a  length alloeated  to a col-

linear crack  in Fig,1(b), is proportional  to

r;  Le.  a=kr.  This  is probable  because a

crack  having larger apparent  crack  length

consists  of  larger collinear  cracks,  If the

two  assumptions  are  accepted,  the  displace-

ment  jump becomes

             efit---kra'tjno ag)

where

         k= :S log (sec 
-2T.g).

4) Experiment:  Yoshinaka, Yamabe and

Sekine  (1982) have studies  experimentally

the  displacement jump associated  with  an

artificial  crack.  Increments  of  normal  stress

dan. and  shear  stress  dr  are  applied  on

a  crack  with  successive  measurements  of

associated  displacement jumps d6-. and  A6rr,

corresponding  to  the  normal  and  the  shear

stress  directions respectively.  Then  they

calculated  the  normal  G.  and  the  shear  G,

stffnesses  defined by

                        A7               dan

          
G"=

 tia'.' 
Gs=-A'cs'I,

 (20)

Their  experimental  results  suggest  that  G.
equals  G, if the  increments  are  limited to

the  elastic  range  without  large permanent

slip  along  a  crack;  i.e., zl6.TA7=itl8.IZt8,･

This  means  that  the  jump vector  a is

parallel to  a  traction  vector  T  acting  on  a

crack.  They  also  reported  that  the  shear

stiffness  G, is reciprocally  proportional  to

  enl  [F"+IIII 
-{ly-{}y

 
o

                   D D
  e'22I  F22+IEf -Irfy S-Fz3
                         D l

  ea3 ll 
F3B+IE

 sFEs
     

-D
 Fn+F3s

  e-23iI  ZI' +

 
eL31

 ,

Ls'i,j 
(syrnmetricai)

ET,AL.

crack  area.  Accordingly, the  associated

jurnp is proportional  to craek  length.

Taking  into account  these  two  evidences,

we  have

             d6-t=brd6tjnj 
'
 (21)

where  11D is no  longer constant,  but depends

nonlinearly  on  normal  stress  acting  on  a

crack.  (This is due to closure  of  the  crack

which  causes  the  increase of  stiffness.  Of

course,  it is very  important to  censider

the  closttre  especially  when  stress-dependent

elasticity  of  rock-like  materials  is concerned,

For  simplicity,  however,  this problem  is

not  diseussed here anymore.)  It is inter-

estlng  to notice,  however, that  Eq, (21) is

quite  similar  to  Eqs. (17) to (19) in the

strueture  of  equations,

  In conclusion,  the  displacement jump can

be formulated in the  form of

              8t ==  IB rat  inj (22)

Using  this in Eq, (14), we  have

  C-ijki =  srrS A"J],r3 (ntnle6ju +njni6tk)

         × 2E(n,r)d9dr

        1
      

=4D(6tzEik+6jiEek+6jkFtt+6tkFji)

                                 (23)
Where  S(r) is set  as  (zl4) r2 in the  case  of

penny--shaped  crack,  and  Fi,･ is the  fabric
tensor  of  second-rank  (Eq. (3 b)).
  Frorn Eqs.(6),  (7), (8) and  (23), an

elastic  stress-strain  relation  is finally given

in matrix  form as

D4G

  
-ll-F,,

    o

   1
  

Li
 
F31

  -1"F,,
   4JFksiF"

 +4DG

1212

1414

4

Fl2

Fl2

o

F31

F23

...1.:..l-tt F...,,-

Tl
 11

 1

 l
 l
 I

:1

all

di22

533

2a-E3

2crsi

l
 /
 /
 /
 lI

l･11

+zDIGfi'-1[2tti21

      (24)
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  Eq.(24) gives  an  elast･lc compliance  bitkv
in terms  of  the  fabrie tensor,  with  the

following two  important  characters:  (1)
The  symmetry  axesi' of  the  fourth-rank
tensor  Dukt exactly  coincide  with  the

principal axes  ef  the  fabric tensor  Fw. (Let
the  reference  axes  be the  principal  axes  of

Fw;  Le.  Fi2=F23==F3i==O. It is easily  s6en

that  the  elastic  compliance  of  Eq. (24) is
reduced  to that  fer a body with  rhombic

symmetry  three  symmetry  axes  of  which

accord  with  the  reference  axes.)  (2) Diike
is symmetric  in the  sense  of

        Dtjki =  bjtki =  btjde =:  Dkeij (25)
It is worthy  of  note  again  that  Eq. (24) is
based on  the  assumption  that  the  elastie

interaction between cracks  is neg!igibly

small.  This  assumption  becomes serious

especially  when  the  crack  density is high.
The  restriction  will  be evercome,  as  wM

be seen  later, if the  self-consistent  method

is adopted.

EXPERIMENTAL  STUDY                                    '

  For the  purpose of  checking  the  applica-

bility ef  Eq, (24) to  rock-like  rnaterials,

unconfined  compression  tests and  supersonic

velocity  tests are  performed  on  gypsum
plaster  samples  including two--dimensional

cracks.

E:rperimental Procedures

  Experimental  procedures  are  as  follows:
(1) Position and  orientation  ef  two-

dimensional cracks  are  previously deter-
mined.  (2) Water-gypsum  mixtgre  (2:3
by weight)  is poured  into a  rectangu!ar

prismatic  mo!d  or  into a  cylindrical  meld

with  a circular  cross  section.  (3) Strips
made  of  greased  picture  postcards  are

inserted into the  water-gypsum  mixture  at

previously  selected  positions  with  previously

selected  orientations.  Since the  greased
picture postcards are  so  soft  as  compared

with  hardened plaster gypsum,  they  are

expected  to act  as  open  cracks  under

stresses.  In one  experimental  series,  the
inserted postcards  are  pulled  out  afterwards
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and

       .,,cB} =[:l  8:g 81 :g: ]                          '

respectively.･  Npte  that  bot'h samples  deform
elaStically  until  the  axial  stress  ifii reaches

the  fifty percent  of  the  ultimate  Value.

When  new  cracking  begins to initi4tg from

pre-exlsting cracks,  as  shown  by arrows  in

Fig.5, the  lateral extension  e-22 suddenly
.mereases.

  Our  interest is limited to the  elastic  range

of  materials  in the  following discussion.
Elastic constants,  if neeessary,  are  calculated

by applying  the  least square  method  to the

linear portion of  stress-strain  curves.

  If the  greased  postcards  behave as  open-

elliptical  cracks,  ltD equals  nj(2E) and  the

iw. o-dimensional  version  of  Eq, (24) becomes

       -llL,.,,.illil'

,

ll2 ,,:,,l ,lil･

,]

 (26)

Taking  into' accodnt  tr'it#O and'  a'22=a'i2=O

for a  uniaxial  compression  test, Eq.(26) is
'further･

 simplified  as

           g.ll 
--

 
Et-

 -} .ll, ., 
(27a)

             tt t

          
-

 :-T 
2,i

 
=

 
V'

 
=･

 {} F:  +1･,  
(27
 
b)

                       '
Note  that'  E' and  

'y'
 defined by Eq. (27) are

apParent  elastic coethcients  for an  elastically

anisotropic  material.

 ,If a  sample  is isotropic in the  sense  of

Ft,=ll21ili6tb Eq,(27) can  be rewritten  in

E'erms of  the  iabric,tensor F, of  zero-rank

as

              E-..,, .E 
'
 (2sa)

                 g' iL+'i

 at1CMPa}

es

 Ro 5

  K
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Fig. 5. The  relations  between  axial  stress

   aii, axial  strain  S. and  lateral strain

    E22 for two  sftmples  (A) and  (B) (Note
    that  the  stress-strain  curves  are  line-

    arly  elastic  until  new  cracking  begins

    to initiate from  pre-existing  cracks,

    as  elearly  shewn  by  arrows  in the

    figure)

                   v
             p=

                fFb+i
where  E  and  p are  a  cornplete  set

elastic  constants  for the isotropic,

material,
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O,5

       O,25

7. The  effeet

the  apparent

cracked  bodies

       O.5
  Fnof

 the  fabric tensor
 Poisson's  ratio  p'

O:75

emof

    O O,5  1.0･ l.27 ],5                                   '
                  .Fe  '        '  tt

  
'I"igr

 8. The  effect  of  the  zero-rank  fabric

    
''tens

 Fe en  Young's inodulus,  E' of
      .

      isotropically  cracked  bodies (Experi-
      mental  results  are  plotted around  the

      broken  line derived from  the self-con-

      sistent  method  which  makes  it possible
      te take  inte  accountthe  elastic  inter-

      action  between  cracks)

and  7, together  with  the  theoretical  lines
of  Eq. (27), Young's  modulus  E  for isotrop-
ic samp!es  are  also  shown  in Fig.8  in
which  the  theoretical  line of  Eq, (28) is
also  given  as  a  solid  Iine. The  following
conelusions  can  be pointed  out:

.1) Roughly  speaking,  the  cracked,samples
'loses

 their  elasticity  with  the  increase of

Fn  or  Fo in accordance  with  Eqs. (27) and

(28). Unfortunately, however, the  theore-
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 tical lines are  not  exact  tp follow .the expelri-

 mental  results,  but rather  give the  upper

 bounds for the  measured  values  (Fig. 6 and
 8). This  observation  seems  quite  ireasonable
 because the  elastic  interaction between cracks

 is negleeted  in the  fermulatien of  the
     .
 equatlons.

 2) The  results  of  y'lp  and  pfy do net  show

 any  consistent  trend,  but are  randomly  dis-
 tributed  from  O,5 to 1.66. The  measured

 values  are  apparently  independent of  the

 f'abric tensor. The  result  might  be partially
 because the  measurement  of  i22 is not

 accurate  enough  as  compared  with  that  of
･eUi!.

 (The axial  stress  is transm'itted thrQugh

 a  rigid  upper  pedestal moving  downward

 uniformly.  The  laterai expansion,  on  the
other  hand, freely occurs  without  any

restriction  which  causes  non-uniform  Iateral
strain  e-22.)

          '

Seij-Consistent Methed  for Cracfeed Bodies
Having  Jsotropic Fabric

  If attention  is confined  to isotropieally
cracked  bodies (Fii=lf2Fe6tD, the  self-

consistent  method  is conveniently  used  to
estimate  the  effect  of  the elastic  interaction
among  cracks  on  the  overall  elastic.  compli-

ance  (Budiansky and  O'Connell, 1976; Horii
and  Nernat-Nasser, l983;  Mura,  1982).

  In the  formulation of  Eq. (24), the  effect

of  cra ¢ ks on  the  oyerall  elastic  behavior is
considered  by assuming  that  each  craek  is
isolated from  others  in an  isotropic elastic

matrix  of  E  and  v. The  same  formulatien  '             '                               '
is adopted  in the  self-consistent  method

except  that  the  elastic  consta'nts  E  and  y

are  simply  replaced  5y the  overall  ones  EM
and  p respectively  including the  effect  of
cracks.  This  method  is based on  the  think-

ing that  the  effect  of  the  elastic  interaction
is already  included in E  and  p-.                            ttt        -

  Using E  and  p in Eq, (23) C-.ijkt becomes
                          '

        c-,j,, =  glE;1ti- (6,,6jk +  a,,6j,) (2g)
                           .t.
since  Ftj is set  as  112F,6tj and  cracks  are

considered  elliptical.  Using Eq. (29) in Eqs.
(6) and  (7), we  have

NII-Electionic  
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 [( I E+- P -  I E+ Y)  6tk6,n h  (t?- 
-
 lilr) 6tj6ki] trki

   rrFo

 
=

 sE;-(6tt6jk+6tk6ji) 
a-hi

 (3o)

Eq. (30) corresponds  to

           {}==(i {}F,) (3ia)

and

               yr E
              

-iJ'=-E-
 (31b)

Eq. (31 a)  is shown  by broken line in Fig, 8.

 Note  that  there  is a marked  tendency  for
the  experimental  points  to be plbtted around

the  broken line in the  figure, When  the

elastic  interaction becomes serious  at high
Fo, however, the  experimental  points seem

to  be plotted between the  upper  solid  line

and  the  Iower broken  line. Eq,(30) also

suggests  that  the  isotropically cracked  body

loses its elasticity  if
                              '
               4
            Fo=:-iEgl･27 (32)

Look  at  Fig.9 illustrating a  crack  pattern
of  Fo==1.2Z Open  cracks  are  set  so  closely

that  the  cracked  body probably loses its
elasticlty  and  should  be treated  as  a granular

material.

Results ojC Supersonic IVave Velocity Tests

 Cylinder of  gypsum  plaster having  200mm

in diameter and  50mm  in height is casted,

and  is trimmed  to make  an  equiiateral

pQlygon  (Fig.4b), A  generator  and  a

receiver  of  supersonic  wave  are  tightly

tt
/

Y
X

-,

/

wh
i

y

ETAL.

pressed to  the  sample  at  diagonal positions.
Supersonic wave  velocity  ,is determined in

eight  directions for each  sample.  Since

shear  wave  is not  measureable  because of

high damping of  wave  energy,  !ongitudinal
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 Fig. 12. Result ef  supersonic  waye  velo-

     city  test on  sarnple  (C) whose  second-･

     rank  fabrie tensor  is strongly  ani-

     sotropic  due  to completely  parallel

     alignment  of  cracks

wave  velocity  v.' is only  reperted  here.

  Three samples  (A),(B) and  (C) are  chosen

since  they  have different crack  patterns
(Figs.IO(a), 11(a)  and  12(a)).  Their
fabric tensors FwCA>, FijtB) and  Ftj(a) are

written  below by setting  the  reference  axes

ei  and  e2 parallel to the  minor  and  major

principal  axes  of  the  each  fabric tensor

respeetively:

          F,j(- =[O･  682 o. 201o]

          F,f,) 
-rm
 [o･ 843 o. ?3g]

          Ftj(c) =[:  o. gs2]
Sample (A) is nearly  isotropic, while  sample

(C) is distinctly anisetropic  due  to the

parallel alignment  of  cracks.  Sample (B)
is intermediate between  samples  (A) and

(B).
  For an  elastically  isotropic body chara-

cterized  by elastie  constants  E  and  y, the

longitudinal wave  velocity  vp'  is written  as

        (v.')2== {} a+(yl)71Pl2y) (33)
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 where  d is unit  weight.  A  cracked  body

 concerned  here is elastically  anisotropic

beeause of  the  preferred alignrnent  of  cracks.

 Accordingly, Eq.(33)  is not  directly appli-

 cable  to describe its wave  velocity.  It is

 reasonable  te  assume,  as  a rough  approxima-

 tion,  that  the  square  of  wave  velocity

 (v,')2 is proportional to the  apparent  Young's
modulus  E' for the  corresponding  direction :

               
'(v,')2ocE'

 (34)
  In Figs.le(b),  11(b)  and  12(b),  the

square  (w.')2 of  the measured  longitudinal
wave  velocity,  instead of  v.'  itself, is given
by normalizing  it by the square  of  the

longitudinal wave  veloeity  of  crack-free

sample  (v.)2.
  For sample  (A) having  the  slight  aniso-

tropic  fabric tensor, (v.7v.)2 is almost

independent  of  the  measured  direction.
Accordingly, it behaves as  an  elastically

isotropic rnaterial  as  being expeeted  from the

nearly  isotropic fabric tensor  FtiCA). For
samples  (B) and  (C) having the  distinct
anisotropic  fabric tensor,  on  the  other  hand,
(v.'/v.)2 changes  markedly  from the  maxi-

mum  to  the  minimum  velocities.  It is of

great importance  to know  that  the  rnaximum

and  the  minirnum  wave  velocities  correspond

to  the  minor  and  the  major  principal axes

of  the  fabric tensor  Fij respectively.  This
result'  means  the  coaxiality  between the

principal axes  of  Ftj and  the  symmetry  axes

of  Dtmi  as  suggested  by Eq. (24).
  The  conclusion  that  the  wave  velocity

profiles are  in good  accordance  with  the crack

geometry  expressed  by Ftj suggests  one  more

important  point.  That  is, geophysical pro-
specting  can  be used  to estimate  fabric
tensors  of  in situ  rock  masses.  

'

Theoretical ConEideration

  In Eq.(15), the  local base vectors  et'

(i=1,2) were  related  to the  fixed base
vectors  ei  (i=1,2) through  an  orthogonal

tensor  Q, For  a two-dimensional  case,  Q'
has components  of  ･

          Q,,-[-co,f.e, g.ig,O] (3s)

where  e is an  angle  between ei' and  et

NII-Electionic  
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(counterclockwise being positive). The
elastic  compliance  Diiki must  sati$fy  the

following coordinate  transformation  rule:

        Dmnep'=QmtQnjQoinQpiDejki  (36)
where  D..op' is defined with  respect  to the

axes  ei' (i=1,2). Using Diiks of  Eq.(24)
in Eq. (36), we  have  '
  '

 Dmnep' =  zulD' wn (QmtQpi 6noFt i +QmzQok6mp  Ft lt

        +QnRpt6molJlsi+QnjQok6mpFjk)

        +[  
(liiP)

 6moOnp-[k6mn6op] (37)

Let  us  consider,  fer example,  Dmt'.  Eq,
(37) becomes

         b,,,,t-IBQ,,Q,,F,,+12i (3s)
   'If

 a  sample  composed  of  elliptical  cracks  is
compressed  parallel to  the  direction of  eS

Eq. (38) becornes 
'

Et 1
E-  rr

     
m2'QitQijEtj+1

                    1
   T

   
-l}-

 (Fii cos2  
e+2Fi

 2 
cos

 
e
 
sin

 
0+

 
F22

 
sin2

 
e)

 +1

                                (39)
where

                lx
                D  2E

and

                   alll
               Et..
                   s-11r

atii and  i'n are  stress  and  strain  components

with  respect  to the  local axes  ei' (i=1,2).

  FigsllO(c),  11(c)  and  12(c)  show  the

change  of  E'iE  by the  angle  for the  three

samples  (A), (B) and  (C). Note  that  the

profiles of  E'IE are  quite  similar  to.those

of  (v,'tv,)a. Accordingly, Eq. (24) is proved
to  be applicable,,  at  least in a  qualitative

manner,  to show  the  elastic  compliance  of

real  cracked  materials,

 tt 
t.ttt
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CONCLUSIONS

 EIastic cempliance  for cracked  materials

like rQcks  and  rock  masses,  is theoretically

fofm'ilated in terms  of  
'the

 generalized

fabric ･tensor which  has ,been, introduced as

an  index measure  to express  explicitly  the
crack  geornetry.  By  meanp  of  uniaxial

compression  tests and  supersonic  wave

velocity  tests on  gypsum  plaster samples

with  random  cracks,,the  formulation is

proved  to be a  goold,･approximation  for

desgribing the elastig  response  of  cracked

materials.  The  conclusiops  are  summarized

as  f611ows.: 
'

  1) The  principal axes"of  the  fabric tensor
of  second-rank  exactly  coincide  with  the

symmetry  axes  of  the  elastic  compliance

tensor  of  fourth-rank.

 2) The  so-called  self-consistent  methodi

is very  useful  to estimate  the  overall  elastic

moduli  by taking  into account  the  effect,

of  elastic  interaction among  cracks.

  3) Since the  supersonic  wave  velocity  is･
closely  related  to the  eharacter  of  the  fabric
tensor,  it can  be expected  that  the  field
measurement  of  wave  velocity  is useful  to

estimate  fabric tensor  ef  in situ  rock  masses.
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NOTATION

      CiJ･kc=elastic compliance  tensor  due to

          pre･sence ef  cracks  - '

      Do-ke 
!elas.tic  compliance  tensor  for a

          cracked  body
et(i--1,2,  3) =fixed  base vectors

e't(i=1,2,3)=Iocai  base vectors

        Et=Young's  modulus  for isotropic ,ma-
           trix  without  a  crack

        E=Yoting's modulus  for an  isotropicallY

           cracked  body

        E'=apparent Young's  modulus  for an
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       anisotroplcally  cracked  body
E(n,r)=probability  density function to de-
       scribe  orientatien  of  cracks  

'

  f(r)==probability density function to  de-
  ' scribe  slze  of  cracks

    F=  generalized fabric tensor
    Fb=fabric tensor  of  zero-rank

   Fis= fabric tensor  ef  second-rank

  Fijki =fabric  tensor of fourth-rank
  mCV)  =number  of  cracks  in volume  V

    m=unit  vector  normal  to  a  crack  sur-
                         '
       face . '

 thijki==elastic compliance  tensor for elastic
           '
       matrlx

    n=unit  vecter  normal  to the  major

       principal  plane of  a  crack

 ･ Q=orthogonal tensor to relate  ei'  to ei

 2S(r)  =total  surface  area  of  cracks

    u=dispiacement  vector

    V=:volume  .

    wp=longitudina!  wave  veloclty

   aij･=crack  density tensor  by Kachanov

    O =displacement  jump vector

   6is= Kronecker's delta

   eMtj=taverage  straln  tensor

    e==angle  between  ei and  ei'

     y=Poisson's  ratio  for isotropic matrix

       without  a  crack  -'

     v=Poisson's  ratio  for an  isotropically

       cracked  body

    p'=apparent  Poisson's ratio  for an  aniso-

       tropically  cracked  body

    p==volume  density of  cracks

   6o---aveTage stress  tensor

    9==solid angle  equivalent  to an  entire

       unit  sphere
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