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ELASTIC COMPLIANCE FOR
ROCK-LIKE MATERIALS WITH RANDOM CRACKS
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ABSTRACT

Elastic compliances for cracked materials like rocks and rock masses are theoretically
formulated in terms of the generalized fabric tensor which has been introduced as an index
measure to express explicity crack geometry. By means of uniaxial compression tests and
supersonic wave velocity tests on gypsum plaster samples with random cracks, the
formulation is proved to give a good approximation for describing the elastic response of
cracked materials. The conclusions are summarized as follows: The principal axes of the
fabric tensor of second-rank exactly coincide with the symmetry axes of the elastic com-
pliance tensor of fourth-rank. The so-called self-consistent method is very useful to estimate
the overall elastic moduli by taking into account the effect of elastic interaction among
cracks. Since the supersonic wave velocity is closely related to the character of the fabric
tensor, it can be expected that the field measurement of wave velocity is useful to estimate
fabric tensor of in situ rock masses.
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unconfined compression test (IGC : F 3/F 6)

and Takeuchi (1983). In laboratories, on
one hand, a great effort has been paid to
make it clear the important influence of
crack system (crack geometry) on mechanical
properties of cracked materials ; e. g., Hayashi
(1966), Brown (1970) and Einstain and
Hirschfeld (1973). 1In spite of these re-
markable studies, however, a great difficulty
still exists in developing idealized models

INTRODUCTION

Faults and joints (called cracks) are of
widespread occurrence in rocks and rock
masses. For the past two decades, extensive
studies have been done to estimate with
sufficient accuracy the effect of cracks on
the stability of engineering structures con-
structed on or in rock masses: Several

computer models, for example, have been
successfully developed to replace cracks by
mechanically equivalent elements; e. g,
Goodman, et al. (1968), Zienkiewicz and
Dullage (1970), Cundall (1971) and Kawai

mechanically equivalent to real rock masses
which are commonly characterized by very
complicated geological setting of cracks,
especially in crack geometry; e.g., John
(1962), Hansagi (1974), Silveria, Rodrigues
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and Grossmann (1966), Kiraly (1965), Ogata
(1978) and Hudson and Priest (1983).

In order to overcome the present difficulty,
Oda (1984) proposed a tensor quantity called
the generalized fabric tensor to represent
crack geometry (crack system) in general
form. This paper is to discuss the following
two topics: (1) A new stress-strain rela-
tion which is easily incorporated into con-
ventional FEM analyses is formulated in
terms of the generalized fabric tensor by
treating cracked bodies as elastically aniso-
tropic solids, and (2) results of uniaxial
compression tests and supersonic velocity
tests on gypsum plaster samples with various
kinds of cracks are reported to see if the
elastic’constitutive equation is accurate enough
to be used in deformation analyses of rock
masses.

CRACKS
Modeling of Cracks

Cracks appear in various scales ranging
from micro-cracks visible through a scanning
electron microscope to great faults extending
for several hundred kilometers. Because of
the variety of natural cracks, it is almost
impossible to replace them by an equivalent
model without losing generality. If elastic
behavior is only concerned, however, a crack
can be modeled either by a penny-shaped
opening or by a row of collinear openings
(Fig. 1(a) and (b)). The models are
justified by the following observations:

1) Fig.2 is typical of cracks visible on
thin sections sliced from two moderately

weathered granites. The crack in Fig. 2
—
—r ——

(b) Collinear crack

Fig. 1. Idealized models of cracks

ET AL.

{a) 0.5 mm

(b)

Fig. 2. Cracks in weathered granites (A
large crack extending from the left
to the right of picture (a) is part of
a joint commonly observed in a mod-
erately weathered granite having
porosity of 11.4%,. It is clearly seen
that the crack is filled with clay min-
erals such as vermiculite and illite.
Picture (b) is taken from a slightly
weathered granite having porosity of
2.8%. There are many micro-cracks
filled with fire particles stained by
brownish color)

(a) is part of a joint stained by brownish
color. Note that these cracks are filled with
clay minerals such as vermiculite and illite
which were derived from weathering products
or fault gouge (Onodera,
Oda, 1974). The filling materials are
characterized not only by high compressibili-
ty, but also by low shear strength, especially

Yoshinaka and
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when they are saturated with water. Let
us image what happens if these cracks are
stressed. It is not probable that they
behave as completely closed cracks developing
high friction on their surfaces. Their
elastic response can be rather well reproduced
by the models of Fig. 1.

2) Sprunt and Brace (1974) directly ob-
served micro-cavities in crystalline rocks by
a scanning electron microscope. According
to their observation, a single crack with
high aspect ratio is actually a string of many
low aspect ratio cavities, with the appearance
similar to the model of Fig.1(b).

Crack Geometry

In order to define explicitly crack geome-
try, we must consider at least the following
three factors:

1) Volume density of cracks: When there
are m™" cracks in volume V, volume
density p of cracks is defined as the number
of cracks in a unit volume; i e, p=mM|V.

2) Dimension of cracks: If each flat
crack is identified by its typical dimension
r, the distribution of the crack sizes is then
characterized by a density function f(r).

3) Orientation of cracks: Orientation of
a crack is specified by two unit vectors, n‘*
and n”, normal to its major principal
plane (Fig.3). Since E(m,7) is introduced
as a density function for representing the
distribution of n, it satisfies

positive (+)

negative (-) l

(+)
m(+) u
nt)

Fig. 3. Displacement vectors u" and u'?
associated with positive (+) and negative
(=) surfaces respectively (Note the dif-
ference between m and n. That is, m
is a unit vector normal to a crack
surface while n is a unit vector nor-
mal to the major plane of the crack)

J;mLE(n,r)d.er

=f°° 9E(n,dQdr=1 (1)
0 2/2

where £ and £/2 are solid angles showing
the limits of integration; £=an entire unit
sphere, and £/2=a unit hemisphere. E(n,r)
is symmetric in the sense of E(n, r)=E
(—=n,r), and is written as E(n)f(r) ii n
and » are statistically independent.

By taking into account the three elements
described above, a tensor F' (called the
generalized fabric tensor) is defined as

F=i’4ﬁf Lﬂn@n-u@) nE(n, r)dQdr
0

(2)
where & stands for tensor product (Oda,
1984). The generalized fabric tensor is a
dimensionless  tensor with even rank.
(Because of the symmetry, E(n,r)=E(—n,
r), F is identically zero if the rank is odd.)
Its components are symmetric in the sense
of F;j4=Fj.=-=F.,. A contraction
with respect to any pair of subscripts
reduces its rank by 2. The zero-, second-
and fourth- rank tensors, for example, are
given below where a fixed rectangular
Cartesian coordinate system is used:

F,="0 (T rcdr  (3a)

Zero-rank : 1),

Second~-rank :

Fuzz—e-fwfr?'nij(n,r)d.er
4 Jo Ja

(3b)
Fourth-rank :

kal:%ﬂfwfr?’ninjnknlE(n, rdQdr
0 Jo
(4, j, b 1=1,2,3) (8¢)

The zero-rank tensor F, is a scalar
quantity equivalent to the crack concentra-
tion parameter by Budiansky and O’Connell
(1976), and is also related to porosity as-
sociated with cracks (Oda, 1984). The
second-rank tensor corresponds not only to
the crack density tensor «;; by Kachanov
(1980), but also to the fabric tensor by
Oda (1982). Fabric tensors of higher ranks
than F;; are not directly related to an image
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of the crack geometry. It can be intuitively
said, however, that the detail of the crack
geometry can be better represented if higher
rank tensors are considered. Let us con-
sider, for example, two cracked bodies
having a common fabric tensor of 2n-th
rank. These bodies cannot be distinguished
by means of fabric tensors of rank lower
than 2#n-th. If the higher rank tensors
than 2 n-th are taken into account, however,
two bodies may no longer appear identical.

It must be emphasized here that the
generalized fabric tensor for rock masses was
explicity written in terms of some quantities
measurable in conventional geological surveys
“ by Oda (1983,1984). Accordingly, attention
is paid here only to formulate an equation
of elastic compliance for cracked bodies by
using the generalized fabric tensor.

ELASTIC COMPLIANCE FOR CRACKED
BODIES

Many theoreticians have been interested
in formulating overall modulus of rock-like
materials by considering the effect of cracks
on their elasticity; e.g., Walsh (19654, b)
Jaeger and Cook (1969), Budiansky and
O’Connell (1976), Eimer (1978), Kachanov
(1980, 1982), Oda (1983) Horii and Nemat-
Nasser (1983) and Horii (1983). They con-
sidered isotropically distributed ellipsoids or
penny-shaped cracks in an elastically isotropic
solid. Recent progress has been achieved by
employing the so-called self-consistent
method by which elastic interaction between
cracks can be taken into account; e.g.,
Budiansky and O’Connell (1976) and Horii
and Nemat-Nasser (1983).

General Formulation

Let us consider an elastic solid of total
volume V containing m"? cracks. Average
stress tensor &;; of

5”:—‘171;0“41317 (4)

produces average strain tensor &;; of

51j:*‘17j;8”dv

1 (1
= [ F . 0dv

G,7=1,2,3) (5)

where u; (i=1,2,3) are components of a
displacement vector, and comma followed
by an index denotes partial differential with
respect to the corresponding coordinate.
The average strain tensor is related to the
tensor through an elastic
compliance tensor Dim as follows;

£15=Dyjuidrn (G, §, £ 1=1,2,3)  (6)

Diikl consists of two parts: The first M”m
depends on the elasticity of matrix without
any crack, while the second C,,, is the
correction due to the existence of cracks;

1. e,

average stress

Diyjor=M 1550+ C i (7)
If an elastically isotropic matrix is only
concerned, then M, is given by

— 1
o= 6,050~ 2 b0 (8

where E and vy are Young’s modulus and
Poisson’s ratio respectively, and d;; is
Kronecker’s delta. Horii and- Nemat-
Nasser (1983) theoretically showed that C_i;’kl
satisfies

C_mezakzZVLLS%‘(Uz”HJrujmz)dS (9)

where m; (:=1,2,3) are components of a
unit vector normal to crack surfaces, and
2 S is the total surface area of m" cracks.
(A k-th crack among m") cracks consists
of two surfaces, positive(+) and negative
(=), each of which has an area S®. Then

the total area 25 of <ll cracks is the
(V)
m

summation of 2] 28®.)
(R)=1

Instead of integrating the right side of
Eq.(9) for all cracks, a £A-th crack is
first chosen to see its effect on Cimy and
afterwards each effect is summed: Since
the k-th crack is assumed to be flat in its
shape, the unit normal vector m is oriented
almost parallel to a unit vector n defining
a -general normal trend of the crack.
Integration of Eq.(9) only for the k-th
crack becomes
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l\D!H
<

f (ujmt—%uzmj)ds
28 (k>

:»—%/—lj?’lif ujds —}—njf uzdS_]
28 ® PRI

® i
4 (146 5+n484) (10)

ol D

where §; is to denote the mean displacement
jump defined by

- 1 _
01 =5k Sm(“im‘uz( Nds
__1 ) d
TS e a
Here u;" and u;"” (=—u;'") are for the

displacements on the positive(+) and the
negative(—) surfaces respectively (Fig. 3).

Next, consider a number dN of cracks
(in volume V) having unit normal vectors
oriented inside a small solid angle d£ around
n, and also having sizes within a small
range from r to r+dr (called (n,r)-cracks).
The number results from multiplying the
total number m™ of cracks by the rate of
the (m, r)-cracks:

AN=2m"E(n,r)dQdr 12

On the assumption that elastic interaction
between cracks is negligibly small, the effect
of each (n,r)-crack on éijlcl is simply sum-
med to find the total effect of all (m,r)-
cracks, as follows:

—g—sm (m&s+n8)2 E(n,r)dQdr (13)

Integrating Eq.(13) over 0=£2/2=<2% and
0<r<oo, it becomes the right side of Eq.
(9) since all cracks m" are taken into

account. Then we have

C—tjklakl:'g"f; sz(?‘) (746 5

+n;5—z>2 E(n, r)d!?dr (14)

Accordingly, it can be said that the com-
pliance éim is formulated in terms of the
mean displacement jumps §; associated with
all cracks.

Displacement Jump

Local base vectors e;/ (:=1,2,3) are set
with respect to a crack as follows: e’ is
normal to the major plane of the crack

(e,///n) and e, and e;’ are in the plane.
The unit vectors e,’, e, and e; make a
right hand system in the order, and are
related to fixed base vectors e; (i=1,2,3) by
e, =Q,,e; (15)

where Q;; is an orthogonal (rotational)
tensor.

Here, four examples are discussed to seek
a general character related to the displace-
ment jump :
1) Penny-shaped crack: In this case, the
displacement jump is written as

= 8(1—yp?
51/:‘%—”2)—7‘511’ (16 a)
- 16(1—v?

0= ?E“CE’Z?_V_—S‘S*@QI (16 b)
s 160 e

S T BRE(R—y)  ou

where §,/ and &,/ are components with
respect to the local base vectors e,/ (i=
1,2,3) (Oda, 1983). For a rather special
case having v=0, Eq.(16) can be rewritten
with respect to the fixed base vectors e;
(i=1,2,3) as

giz-g—:——E—r(?“nj (17)

Since Eq. (17) greatly simplifies the integra-
tion of Eq. (14) without any serious error,
it is accepted here as a possible expression
for the displacement jump of penny-shaped
crack.

2) Elliptical crack: In the case of an
elliptical crack subjected to the plane stress,
the jump is exactly given by

§i=5 o (18)

without making any simplification (e.g.,
Walsh, 1965; Oda, 1983).

3) Row of collinear cracks: In this case,
a crack having apparent crack length » is

actually a row of many collinear cracks

(Fig.1(b)). Let us assume that the elastic
solution for an infinite row of collinear
cracks subjected to the plane stress (e.g.,
Sneddon and Lowengrub, 1969) can be used
to roughly estimate the displacement jump
associated with a finite row of collinear
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cracks. It seems reasonable to assume
further that a, a length allocated to a col-
linear crack in Fig.1(b), is proportional to
r; i.e, a=kr. This is probable because a
crack having larger apparent crack length
consists of larger collinear cracks. If the
two assumptions are accepted, the displace-
ment jump becomes

é?z:%zrﬁwnj (19)

where

1_ 8k log<sec£>

K #E 2a )"
4) Experiment: Yoshinaka, Yamabe and
Sekine (1982) have studies experimentally
the displacement jump associated with an
artificial crack. Increments of normal stress
45, and shear stress 4% are applied on
a crack with successive measurements of
associated displacement jumps 4§, and 4§,
corresponding to the normal and the shear
stress directions respectively. Then they
calculated the normal G, and the shear G
stiffnesses defined by
4a, 4%
45 a0
Their experimental results suggest that G,
equals G, if the increments are limited to
the elastic range without large permanent
slip along a crack; i.e, 4G,/4%=45,/45;.
This means that the jump vector & is
parallel to a traction vector T acting on a
crack. They also reported that the shear
stifiness G, is reciprocally proportional to

Gp=

m ] N D D D

€11 F“+E_ —FV -E 0
D D

€92 F22+E‘ E %Fﬂ,
- D
€33 :—1— Fy+ %Fm
= D Fyy+Fyy
€93 —71—_
€31
_ (Symmetrical)
€12

4G

crack area. Accordingly, the associated
jump is proportional to crack length.
Taking into account these two evidences,
we have

%7‘45”72) ' (21)

where 1/D is no longer constant, but depends
nonlinearly on normal stress acting on a
crack. (This is due to closure of the crack
which causes the increase of stiffness. Of
course, it is very important to consider
the closure especially when stress-dependent
elasticity of rock-like materials is concerned.
For simplicity, however, this problem is
not discussed here anymore.) It is inter-
esting to notice, however, that Eq. (21) is
quite similar to Egs. (17) to (19) in the
structure of equations.

In conclusion, the displacement jump can
be formulated in the form of

Agt:

= 1
o=y (22)
Using this in Eq. (14), we have

— w o
Cijkl:—‘%\f; Lng(ninkaﬂ—{—njnl&ik)
><2E(n,r)d!2dr

4D (031 F 30+ 03 Fyn+0 52 Fr+ 81 F50)
(23)
Where S(r) is set as (z/4) r* in the case of
penny-shaped crack, and F;; is the fabric
tensor of second-rank (Eq. (3b)).
From Egs.(6), (7), (8) and (23), an
elastic stress-strain relation is finally given
in matrix form as

1 1

‘2_F13 ‘2_F12 011
0 -;—Fm P

1
2F O 633

1
——F12 [ll F31 2(723
F. +F D 1 -
334 11 +4G ZF% 26,
Fi+Fy D -
BTl Rl
@24
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Eq. (24) gives an elastic. compliance .E,-m
in terms of the fabric tensor, with the
following two important characters: (1)
The symmetry axes of the fourth-rank
tensor D;;, exactly coincide with the
principal axes of the fabric tensor F,;. (Let
the reference axes be the principal axes of
Fi5; ie, F=Fy;=F;;=0. It is easily seen
that the elastic compliance of Eq.(24) is
reduced to that for a body with rhombic
symmetry three symmetry axes of which
accord with the reference axes.) (2) Eim
is symmetric in the sense of

Dzjkz:Djzkz:Der:Dknj (25)

It is worthy of note again that Eq. (24) is
based on the assumption that the elastic
interaction between cracks is negligibly
small.  This assumption becomes serious
especially when the crack density is high.
The restriction will be overcome, as will
be seen later, if the self-consistent method
is adopted.

EXPERIMENTAL STUDY

For the purpose of checking the applica-
bility of Eq.(24) to rock-like materials,
unconfined compression tests and supersonic
velocity tests are performed on gypsum
plaster samples including two-dimensional
cracks.

Experimental Procedures ,
Experimental procedures are as follows:
(1) Position and orientation of two-
dimensional cracks are previously deter-
mined. (2) Water-gypsum mixture (2:3
by weight) is poured into a rectangular
prismatic mold or into a cylindrical mold
with a circular cross section. (3) Strips
made of greased picture postcards are
inserted into the water-gypsum mixture at
previously selected positions with previously
selected orientations. Since the greased
picture postcards are so soft as compared
with hardened plaster gypsum, they are
expected to act as open cracks under
stresses. In one experimental series, the
inserted postcards are pulled out afterwards

o A

7 e |
/ 200

/ / mm

e, / //

Le.

{a) Uniaxial compression (b) Supersonic velocity
test test

l.__.

Fig. 4. Samples for a uniaxial compres-
sion test and for a supersonic wave
velocity test

to make real open cracks. It is proved that
there is no distinction between the greased
postcard and the real open crack in their
mechanical response. (4) After about an
hour, the well-hardened water-gypsum
mixture is taken out of the molds, and is
trimmed to make a rectangular prism or an
equilateral polygon (Fig.4). The former is
for a unconfined compression test and the
later for a supersonic velocity test. (5)
The samples thus made are cured for about
three weeks in a constant temperature and
humidity room.

Result of Unconfined Compression Tests
Base vectors e; (i=1,2) are fixed to a
longitudinal and a transversal directions of
each sample respectively (Fig.4(a)). Since
uniaxial stress is increased vertically down-
ward, it is labeled as 4,;. To determine
complete strain tensor (two-dimensional),
three extensional strains are at least mea-
sured by the following procedures: Several
markers are glued on a surface of a sample,
and the change of the distances between them
is measured step by step by a contact gauge
with accuracy of 1/1000 millimeter.
Relations between axial stress &,,, axial
strain &,, and lateral strain &,, are shown
in Fig.5 for two samples (A) and (B) whose
fabric tensors are ‘

Fy, F 0 0
(4) — 11 12 —
By ]:F21 Fzz] I:O 0.309]
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and

F m_[& 189 0.028 }
710,028 0.253

respectively.~ Note that both samples deform
elastically until the axial stress &,, reaches
the fifty percent of the ulltima"ce.‘ value,
When new cracking begins to initiate from
pre-existing cracks, as shown by arrows in
Fig.5, the lateral extension &y suddenly
increases. :

Our interest is limited to the elastic range
of materials in the following discussion.
Elastic constants, if necessary, are calculated
by applying the least square method to the
linear portion of stress-strain curves.

If the greased postcards behave as open-
elliptical cracks, 1/D equals #/(2 E) and the
tWo—dimensional version of Eq. (24) becomes
7]

€11 ‘;iFu’l'l —V
" 1 b4
€22 :E EFzz"{‘l
&1s L (Symmetrical)
%Fm 11
TP Gu | (26)
1 ‘ «
e e

Taking in,to‘ account di;%0 and Gp,=0,,=0
for a uniaxial compression test, Eq.(26) is
further simplified as

Dop=—t @72
1 §F11+;

€20 ~V’_'7Z—V——— (27b)
11 G Futl

Note that E’ and v’ defined by Eq. (27) are
apparent elastic coefficients for an elastically
anisotropic material.
_If a sample is isotropic in the sense of
F;;=1/2F,0;;, Eq.(27) can be rewritten in
terms of the fabric tensor F, of zero-rank
e ‘ ) , ) v
E=rf
TR

(28a)

Oy -o=0~ sample (A)
{(MPa) -s~e~ sampie(B)
" . initiation of
cracking °
-]
\o\o 5 - O
‘o\ o
o e O/
% o
sl i
) N
\ b /
o o Y
-~\.‘°* /oﬁ./
/%‘ R;}‘.\
1 k ) ] ]
-0.05 - o} 005 - O O.15
Egg(o/o) €II (cyo)
Fig. 5. The relations between axial stress

@, axial strain &,; and lateral strain
&, for two samples (A) and (B) (Note
that the stress-strain curves are line-
arly elastic until new cracking begins
to initiate from pre-existing cracks,
as clearly shown by arrows in the
figure)
v
ﬁz————n_ (28b)
—F,+1
gt

where E and 7 are a complete set of the
elastic constants for the isotropic, cracked
material.

Experimental results of the elastic
coefficients E’ and v’ are shown in Figs. 6

o isotropic sample
e anisotropic sample
1.0 { E=6.4x10°MPa)
\
e 3 ° .\
_E— |0 % & o o o
° ' o
. ° ® ° °
< o ‘ Ky o
0.5 * )
R o
~°
o
O°
o} ) 0.25 0.5 Q.75
Fll
Fig. 6. The effect of the fabric tensor on

-the apparent Young’s modulus E’' of

cracked bodies (Note that Eq. (27a)
is not exact to follow the experimental
results, but rather gives an wupper
bound)

NI | -El ectronic Library Service



The Japanese Geotechnical Society

ELASTIC COMPLIANCE FOR ROCK-LIKE MATERIALS 35

o isotropic sample
e anisotropic sample
2 " | (v=026)
o -3
v e
- Co®
° ©
o ° o ®
] o—8 . - —
!\‘ ° ) ! o
o § T — . |
® \
O 0.25 05 0.75
Fii ' o
Fig. 7. The effect of the fabric tensor on
the apparent Poisson’s ratio y’ of
cracked bodies
no elastic interaction between
e — Self-consistent method cracks
1.0 : (E=6.4x10°MPa)
E o
E
0.5
<~ ©
o \\
N
~ o
00\
™~
\\
~
N
~
o] 0.5 1.0 1.27 1.5
f F° ’
Fig. 8. The effect of the zero-rank fabric

" tens F, on Young’s modulus E of
isotropically cracked bodies (Experi-
mental results are plotted around the
broken line derived from the self-con-
sistent method which makes it possible
to take into account the elastic inter-
action between cracks)

and 7, together with the theoretical lines
of Eq. (27). Young’s modulus -E for isotrop-
ic samples are also shown in Fig.8 in
which the theoretical line of Eq. (28) is
also given as a solid line. The following
conclusions can be pointed out:

1) Roughly speaking, the cracked samples
loses their elasticity with the increase of
F,; or F, in accordance with Egs. (27) and
{28). Unfortunately, however, the theore-

tical lines are not exact to follow the experi-
mental results, but rather give the upper
bounds for the measured values (Fig.6 and
8). This observation seems quite reasonable
because the elastic interaction between cracks
is neglected in the formulation of the
équations.

2) The results of v//v and §/v do not show
any consistent trend, but are randomly dis-
tributed from 0.5 to 1.66. The measured
values are apparently independent of the
fabric tensor. The result might be partially
because the measurement of &, is not
accurate enough as compared with that of
€11 (The axial stress is transmitted through
a rigid upper pedestal moving downward
uniformly. The lateral expansion, on the
other hand, freely occurs without any
restriction which causes non-uniform lateral
strain £,,.)

Self-Consistent Method for Cracked Bodies
Having Isotropic Fabric

If attention is confined to isotropically
cracked bodies (F;;=1/2F,8;,), the self-
consistent method is conveniently used to
estimate the effect of the elastic interaction
among cracks on the overall elastic compli-
ance (Budiansky and O’Connell, 1976; Horii
and Nemat-Nasser, 1983; Mura, 1982).

In the formulation of Eq. (24), the effect
of cracks on the overall elastic behavior is
considered by assuming that each crack is
isolated from others in an isotropic elastic
matrix of E and v. The same formulation
is adopted in the self-consistent method
except that the elastic constants E and v
are simply replaced by the overall ones E
and 7 respectively including the effect of
cracks. This method is based on the think-
ing that the effect of the elastic interaction
is already included in E and 5. .

Using E and 7 in Eq. (23) C—fim becomes

= F , S
Ctj/ez?%io‘ (6il§jk+6$k6ﬂ>'; (29

since Fy; is set as 1/2F,0;; and cracks are
considered elliptical. Using Eq. (29) in Egs.
(6) and (7), we have
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[<1+17_1+V>6 5 —-(*17'———!-/—>5 5 ]6 pressed to the sample at diagonal positions.
E E-)ORCRT\ETE )R M Supersonic wave velocity is determined in
_nF, - eight directions for each sample. Since
T 8E (0udsnt01n05)3n: 30 shear wave is not measureable because of
Eq. (30) corresponds to high damping of wave energy, longitudinal
%:(1——}1?0) (3la)
and
;.:.g (31b)

Eq. (81 a) is shown by broken line in Fig. 8.
Note that there is a marked tendency for

the experimental points to be plotted around (a) Sample(A)
the broken line in the figure. When the
elastic interaction becomes serious at high
F,, however, the experimental points seem e,
to be plotted between the upper solid line
and the lower broken line. Egq.(30) also e,
suggests that the isotropically cracked body
loses its elasticity if
4
FOZ—};EI.Z’] (32) o)

Look at Fig.9 illustrating a crack pattern Fig. 10. Result of supersonic wave velo-
of F,=1.27. Open cracks are set so closely city test on sample (A) whose second-
that the cracked body probably loses its rank fabric temsor is considered
elasticity and should be treated as a granular isotropic
material.
Results of Supersonic Wave Velocity T ests

Cylinder of gypsum plaster having 200 mm V2
in diameter and 50 mm in height is casted, : 84706 08 1.0 (‘5%)
and is trimmed to make an equilateral
polygon (Fig.4b). A generator and a '
receiver of supersonic wave are tightly (a) Sample (B)

(b)

€.

Fig. 11. Result of supersonnic wave velo-

Fig. 9. A crack system having city test on sample (B) whose crack
a zero-rank fabric tensor geometry is intermediate between
of 1.27 samples (A) and (C)
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(a) Sample (C)

e’
04 0608 1.0 ‘E‘

Fig. 12. Result of supersonic wave velo-
city test on sample (C) whose second-
rank fabric tensor is strongly ani-
sotropic due to completely parallel
alignment of cracks

wave velocity v, is only reported here.

Three samples (A), (B) and (C) are chosen
since they have different crack patterns
(Figs.10Ca), 11(a) and 12(Ca)). Their
fabric tensors F;;4, F;;® and F;@ are
written below by setting the reference axes
e; and e, parallel to the minor and major
principal axes of the each {fabric tensor
respectively :

0.182 0

V(A):_

Fy® =" 0.210]
Cr0.143 0
. _To.

Fy®=" 0.739]

0 0
) —
Fy@=10 0.882]

Sample (A) is nearly isotropic, while sample
(C) 1is distinctly anisotropic due to the
parallel alignment of cracks. Sample (B)
is intermediate between samples (A) and
(B).

For an elastically isotropic body chara-
cterized by elastic constants E and v, the
longitudinal wave velocity v,/ is written as

oy e U
? d (A+v)A-=2y)

(33)

where d is unit weight. A cracked body
concerned here is elastically anisotropic
because of the preferred alignment of cracks.
Accordingly, Eg. (33) is not ‘directly appli-
cable to describe its wave velocity. It is
reasonable to assume, as a rough approxima-
tion, that the square of wave velocity
(vp/)? is proportional to the apparent Young’s
modulus E’ for the corresponding direction :
(vy!)Poc B/ (340

In Figs.10(b), 11(b) and 12(b), the
square (v,’)? of the measured longitudinal
wave velocity, instead of v, itself, is given
by normalizing it by the square of the
longitudinal wave velocity of crack-free
sample (v,)2

For sample (A) having the slight aniso-

tropic fabric tensor, (v,/[v,)%* is almost
independent of the measured direction.
Accordingly, it behaves as an elastically

isotropic material as being expected from the
nearly isotropic fabric temnsor Fy ;4. For
samples (B) and (C) having the distinct
anisotropic fabric tensor, on the other hand,
(vy'[v,)? changes markedly from the maxi-
mum to the minimum velocities. It is of
great importance to know that the maximum
and the minimum wave velocities correspond
to the minor and the major principal axes
of the fabric tensor F;; respectively. This
result means the coaxiality between the
principal axes of F;; and the symmetry axes
of 5““ as suggested by Eq. (24).

The conclusion that the wave velocity
profiles are in good accordance with the crack
geometry expressed by F;; suggests one more
important point. That is, geophysical pro-
specting can be used to estimate fabric
tensors of in situ rock masses.

T heoretical Consideration
In Eq.(15), the local base vectors e,
(z=1,2) were related to the fixed base
vectors e; (i=1,2) through an orthogonal
tensor Q. For a two-dimensional case, @
has components of
cosf sinf

Quy= —sin @ cos @ (35)

where 0 is an angle between e,/ and e,
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(counterclockwise being positive). The
elastic compliance D;;; must satisfy the
following coordinate transformation rule:

D_mnop/:thanonQplDtjkl (36)

where D—mnoﬁ,’ is defined with respect to the

axes e;! (i=1,2). Using Eiikl of Eq.(24)

in Eq. (36), we have
Drnos' = 15 (QuiQutBraF s+ QuiQosdn i
+QuQurmoF i+ @ RorrmsFse)
| CEE tnatna— g Bmndion | (3D

Let us consider, for example, D,;;,’. Eaq.
(37) becomes
D=L QuQuFi+% (39
1111 D 11154 1] E

If a sample composed of elliptical cracks is
compressed parallel to the direction of e/,
Eq. (38) becomes

£ _ 1
P Louupt
— 1
% (Fycos?0+2F;, cos 0sin 0+ Fysin®0) 41
(39
where »
| 1_7
D 2E
and
B=9

d’,, and €', are stress and strain components
with respect to the local axes e,/ (i=1,2).

Figs.10(c), 11(c¢) and 12(c) show the
change of E'/E by the angle for the three
samples (A), (B) and (C). Note that the
profiles of E’[E are quite similar to those
of (v,/[vp)
to be applicable, at least in a qualitative
manner, to show the elastic compliance of
real cracked materials.

i
-

Accordingly, Eq. (24) is proved-

CONCLUSIONS

Elastic compliance for cracked materials
like rocks and rock masses is theoretically
formulated in terms oﬁ ‘the generalized
fabric itensor which has been introduced as
an index measure to express .explicitly the
crack geometry. By means of uniaxial
compression tests and supersonic
velocity tests on gypsum plaster samples
with random cracks, the formulation is
proved to be a good  approximation for
describing the elastic response of cracked
materials. The conclusions are summarized

wave

as follows:

1) The principal axes'of the fabric tensor
of second-rank exactly coincide with the
symmetry axes -of the elastic compliance
tensor of fourth-rank.

2) The so-called self-consistent method
is very useful to estimate the overall elastic
moduli by taking into account the effect
of elastic interaction among cracks.

3) Since the supersonic wave velocity is
closely related to the character of the fabric
tensor, it can be expected that the field
measurement of wave velocity is useful to
estimate fabric tensor of in situ rock masses.
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NOTATION

Cijm=elastic compliance
presence of cracks
ﬁiﬂd:elastic compliance tensor for a
cracked body
e;(:=1,2,3)=fixed base vectors
e';(:=1,2,3)=local base vectors
E=Young’s modulus for isotropic ma-
trix without a crack
E=Young’s modulus for an isotropically
cracked body

E'=apparent Young’s modulus for an

tensor due to
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anisotropically cracked body
E(n,r)=probability density function to de-
scribe orientation of cracks
f() =probability density function to de-
scribe size of cracks
F =generalized fabric tensor
Fy=fabric tensor of zero-rank
F;;=fabric tensor of second-rank
F;jy=1fabric tensor of fourth-rank
mV) =number of cracks in volume V
m=unit vector normal to a crack sur-
face
Mim:elastic compliance tensor for elastic
matrix
n=unit vector normal to the major
principal plane of a crack
Q=orthogonal tensor to relate e;' to e;
2 S(r)=total surface area of cracks
u=displacement vector
V=volume
vp=longitudinal wave velocity
a;;=crack density tensor by Kachanov
8=displacemernt jump vector
d;;=Kronecker’s delta
§;;=average strain tensor
f=angle between e; and e,
y=DPoisson’s ratio for isotropic matrix
without a crack
p=Poisson’s ratio for an isotropically
cracked body
y'=apparent Poisson’s ratio for an aniso-
tropically cracked body
o=volume density of cracks
G;j=average stress tensor
2=solid angle equivalent to an entire
unit sphere
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