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ABSTRACT

This paper develops a numerical procedure to provide an appropriate lower-bound solution
for the wide range of problems of stability analysis. To represent the equation of equilibrium,
the stress field is discretized in the similar manner as in FEM. To isolate a particular
stress distribution, the problem to find the lower-bound solution is formulated as an
optimization problem. When optimizing the bearing capacity, for instance, the problem
is to find the stress distribution which maximizes the footing pressure within the limitations
of satisfying the equations of equilibrium and of no-yield condition. The formulated optimiza-
tion problem is solved numerically by a nonlinear programming technique. This procedure
furnishes a reasonable solution for the problems not only of the bearing capacity analysis
but also of the slope stability analysis. The results of several case studies by using the

procedure are also reported.
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INTRODUCTION

In spite of the remarkable development
of FEM (Finite Element Method), limit anal-
ysis 1s as yet the principal method of
strength analysis in geotechnical engineer-
ing. Chen (1975) divided the methods of
stability analysis into three groups, i.e., slip
line method, limit equilibrium method, and
limit analysis method. According to this
classification, the limit analysis herein is the
method based on the lower- and upper-bound
theorems in plasticity. The most difficult
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aspect in applying the lower- and upper-
bound theorems, is the skillful construction
of discontinuous fields of stress and velocity
which are related to the collapse mecha-
nism. Moreover in the upper-bound theo-
rem, the velocity fields due to the collapse
mechanism must be compatible or kinematic-
ally admissible.  On the other hand in the
lower-bound theorem, the stress field must
be statically admissible. These complicated
conditions can be easily satisfied by the use
of discretization technique in FEM. For in-
stance, the finite element displacement ap-
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proach can fulfill both the conditions of com-
patibility and of equilibrium by employ-
ing the displacement function and the virtual
displacement theorem respectively. The dis-
cretization technique in FEM makes it pos-
sible to apply the limit analysis method to
wide range of problems which have arbitrary
geometry and boundary conditions. In the
field of geotechnical engineering, Frémond
and Salencon (1973), Turgeman and Pastor
(1982) and Tamura, Kobayashi and Sumi
(1984) proposed such procedures which com-
bined the upper-bound theorem and the tech-
nique in the finite element displacement ap-
proach. In comparison with the upper-
bound approach, it has been known to be
generally difficult to find the appropriate
“lower-bound solution. This is because of
the difficulty in constructing a statically ad-
missible stress distribution which satisfies the
equation of equilibrium and which nowhere
violates the yield criterion. By employing
an analogous technique in FEM, Lysmer
(1970) first developed a numerical procedure
to find a lower-bound solution for the plane
problems involving arbitrary geometry and
stress boundary conditions. Following Lys-
mer’s method, Pastor and Turgeman (1982)
added extending conditions so that the meth-
od can deal with axial symmetry problems.
In order to isolate a unique stress field, Lys-
mer formulated the problem to find the
lower-bound solution as an optimization prob-
lem, which was solved numerically by a
linear programming technique. Though
Lysmer’s method is highly rational and es-
sential, his method seems to contain two
points of shortcoming. One is too intri-
cate discretization of stress field. The other
is too compulsory linearization of Mohr-
Coulomb yield criterion which has high non-
linearity. Owing to these defects, the solu-
tion by Lysmer’s method is considerably
influenced by subdivision system of the soil
mass into elements. And this method re-
quires a lot of computational effort when
desiring to obtain highly precise solution.
To compensate for such defficiency, this paper
investigates a different numerical procedure

to find the lower-bound solution by employ-
ing a nonlinear programming technique. It
is noted that the plane strain condition is
assumed throughout this paper.

PROBLEM FORMULATION

The conditions required to establish a

lower-bound solution are essentially as fol-
lows (see Chen, 1975). 1) The stress dis-
tribution must everywhere satisfy the euqa-
tion of equilibrium. 2) The stress field at
the boundary must satisfy the stress boundary
conditions. 3) The stress field must nowhere
violate the yield condition. These conditions.
are represented as follows.
Equation of Equilibrium : To represent the
equation of equilibrium, the soil mass subject
to analysis is subdivided into many elements
in the same manner as in FEM. Within
each element a set of stresses is assumed
to be constant, because the stress is the
independent variable to be determined by
the lower-bound approach. The present pro-
cedure adopts the quadrilateral element which
is composed of four constant strain triangular
elements as illustrated in Fig.1. The [B]
matrix to calculate strains from nodal dis-
placements in this quadrilateral element, is
constructed by the superposition of the [B]
matrix in each triangular element. And
both the strain and stress are assumed to
be constant throughout the quadrilateral ele-
ment. By employing the principle of virtual
displacement, the following equation defines
a set of equivalent nodal forces which is
statically equilibrium with the stress condi-
tion of element.

{Foi™ Fyi™, -, g™, Fyy™} T
:fv [BI"{oo™, 0,™ Tey™} Tdv (1)

Fig. 1. Quadrilateral element
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Fig. 2. Models in Examples 1, 2, 3 and 5

where F.,”, F,,™ :respectively horizontal
and vertical equivalent nodal forces, o,™,
,™, ©4™ - horizontal and vertical normal
stresses and shear stress in the element,
V., : volume of the element, m :element
number, and = :node number. The equa-
tion of equilibrium is represented in the
same manner as in FEM. That is, at each
nodal point the sum of the equivalent nodal
forces and external nodal loads must be equal
to zero. When considering the bearing capa-
city problem as illustrated in Fig.2, the
following equation of equilibrium must be
satisfied at the all points of node.

Pr=31F.,"+Gyp=0 n=1,2,---, N, (2)

Pzn:ZFynm+Gyn+Hn‘q:O
n=1,2,---, N, (3)

where G,,, G,, : respectively horizontal and
vertical nodal loads, H, : coefficient to replace
the uniform footing pressure ¢ with the
nodal load, and N, : total number of nodal
points. The term G,, in Eq.(3) contains
the weight of soil mass.

Boundary Conditions : The discretization
technique described above is essentially
founded on the finite element displacement
approach. Then the conditions of equilib-
rium are not necessarily satisfied at the
interfaces between two elements. For the
similar reason, the present procedure cannot
represent the arbitrary stress conditions at
the boundary surface.
sider the interface between the soil and the
footing base, in the bearing capacity problem
as shown in Fig.2. For the perfectly rough
footing base, the horizontal displacement are

For instance, con-

completely restricted at the corresponding
points of node. And the equation of equilib-
rium as Eq. (2) is ignored at the nodal point
(see Lysmer, 1970). The adequacy of this
representation will be proved by the com-
putational results. On the other hand, for
the perfectly smooth base, the shear stress
at the interface between the soil and the
footing must be equal to zero. This bound-
ary condition cannot be specified in this
lower-bound analysis, as the analysis assumes
a set of stresses to be constant within each
element. Since Lysmer (1970) and Pastor
and Turgeman (1982) use the linearly vari-
able stress fields in each element, it is pos-
sible to specify the general stress conditions
at the surface of boundary. When giving
no special boundary condition for the footing
base, the present procedure regards the inter-
face as being intermediate between perfectly
rough and perfectly smooth. Such a case
is called ‘pseudo-smooth’ interface in this
paper. However, the perfectly smooth in-
terface between the soil and the structure
may not exist in most of the actual engineer-
ing practices. Based on the upper-bound ap-
proach, Chen (1975) proves that a rather
modest value of base friction is sufficient
to create an essentially perfect rough condi-
tion. These facts make it sense in engineer-
ing to apply the present procedure by assum-
ing the perfectly rough interface between
the soil and the structure. In addition, the
use of triangular element did not provide
a stable solution in this lower-bound analy-
sis. This result may be attributed to the
matter that this analysis assumes a set of
stresses to be constant in each element.

No-Yield Condition: When employing the
Mohr-Coulomb yield criterion, the following
inequality must be satisfied in each element.

Py = {(0,™+0,™)sin ¢+2¢ cos ¢p}?
- {(Uxm"aym)a'l'(ZTxym)z} =0
m=1,2,---, N, (4)
where ¢ : cohesion, ¢ : friction angle, and
N, : total number of elements. Eq. (4) re-
presents that Mohr’s stress circle is always
located below the yield surface as illustrated
in Fig. 3.
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P R where % denotes the quantity normalized
OXO‘?’ . by cohesion ¢ such as §=¢/c. And the bear-
17 ”Otbgto:jgr;‘"m ing capacity factor N, is defined as N,=q*/c.
—
NUMERICAL ANALYSIS
0l o3 o o1 o SUMT : To solve the constrained optimiza-

Fig. 3. Yield criterion
Furthermore assuming that soil mass has
no tensile strength,

Uxmgo’ dymgo m=1,2,---,Ne (5)

This constraint is effective to stabilize the
iteration behaviour in the subsequent numeri-
cal analysis.
Problem Formulation (Problem I) : Based on
Lysmer’s method, the problem to find an
appropriate lower-bound solution is formu-
lated as an optimization problem which iso-
lates the particular stress field. The con-
straints to be satisfied are Egs. (2), (3), (4)
and (5). When optimizing the bearing capac-
ity as shown in Fig. 2, the objective function
is to maximize the footing pressure gq.
minimize : J=—g¢q (6)
The unknown variables to be determined
are the footing pressure ¢ and stress compo-
nents in each element. The maximized foot-
ing pressure is designated as the bearing
capacity g*. It is easy to extend the present
procedure to layered soil deposits.
Problem II : As shown later in Example 3,
when the bearing capacity becomes too large,
the numerical procedure founded on Problem
I cannot provide a reasonable solution. This
may be because of the limitation in the
employed nonlinear programming technique.
This deficiency is easily covered by the fol-
lowing modification of Problem I.

minimize : J=—§=—gq/c 7)

subject to
Zﬁxnm+c_;xn=0 (8)
3Py +Gynt Hy §=0 (9)

{(6,™+6,m)sin P+2cos ¢p}?
—{(G:"—3G,™)%+ (27;,™)* =0 (10)
;"=0, d,7=0 an

tion problem formulated above, the present
procedure employs SUMT (Sequential Un-
constrained Minimization Technique) interior
point method proposed by Fiacco and Mec-
Cormick (1968). This method achieves the
minimization of objective function in the
interior of the feasible region by avoiding
the boundary which represents constraints.
On the other hand, in SUMT exterior point
method the movement of solution is from
the outside or infeasible region toward the
inside of the feasible region. The property
of the interior point method is more compat-
ible with the lower-bound approach in which
the stress field must be strictly on the inside
of the yield surface. Moreover in this partic-
ular problem, the solution by exterior point
method is considerably influenced by the
choice of penalty coefficient value.

The procedure in SUMT interior point
method is outlined as follows. 1) Consider
the optimization problem which is to find
x* solving '

minimize : J=f(x) 12)
subject to

h(x)= 0,g(x)=0 a3
2) Define the modified objective function
P(x, lk) as

P(x, dp) =f(x)+ 4z Zigz(xD‘*
+ A, ; hy(2)? (14

where A, is a positive number and is refered
to penalty coefficient. 3) As a starting
point, determine the initial value x, in the
interior of the feasible region. 4) Starting
from x, find an unconstrained minimum
of P(x,1,) for some A, Denote it by
x(2y). 5) Starting from x(4;), find an un-
constrained minimum of P(x, 1,) where 1,<
A;.  6) Proceed in this fashion, minimizing
P(x, ) for a strictly monotonously decreas-

NI | -El ectronic Library Service



The Japanese Geotechnical Society

LOWER~-BOUND SOLUTION 41

ing sequence {1}. As 1;—0, the sequence
of unconstrained minima will approach a local
constrained minimum x*. The modified ob-
jective function for Problem I is defined as

Np
Plx, Ap) = —q+a{xk-w 3 (P
n=1

N N,

F 3 P 2 P
=—q+a{d,"VPQ+ A, Qe+ 4,Qs)

(15)
where « : positive constant which adjusts the
order of magnitude both of ¢ and of the
penalty terms. In SUMT, it is important
to control the order of magnitude both of
the original objective function and of the
penalty terms in the modified objective func-
tion, so that the values of 4, and a can
be commonly used for the wide ranging
values of strength parameters and of element
stresses. In the formulation of Problem I,
the order of magnitude of the penalty terms
varies considerably with the strength para-
meter values. The formulation of Problem II
avoids this difficulty by normalizing the pen-
alty terms by cohesion ¢. The constraint by
Eq. (8) can be simply dealt with at the itera-
tion step as subsequently explained (see Pagu-

rek and Woodside, 1968).

Iteration Procedure : In the search for the
unconstrained minimum of the modified ob-
jective function P(x, 1) for a certain 2,
the present procedure employs the conjugate
gradient technique proposed by Fletcher and
Reeves (1964). The Davidon’s method (see
Fletcher and Powell, 1963) requires too much
computation time to obtain the search direc-
tion at each iteration step, due to a great
number of decision variables to be deter-
mined. The iteration procedure in the con-
jugate gradient technique by Fletcher and
Reeves is summarized as follows. 1) Set
the initial values of decision variable x.
2) Calculate the gradient r;=0P(x, 1;)/dx,
where 7 implies the iteration number. 3)
$;=—r;+ @ r)|(r;-,"r;_)-8;-;. When the
iteration number { coincides with the total
number of decision variables, §,=—r; 4)
X;11=X;+ 38;, where § has to be determined
so that B minimizes the modified objective

function locally. To decide the value of
B, the present procedure uses the one-dimen-
sional search method by Sayama (1969).
When stress component violates Eq. (5), take
the boundary value. 5) Repeat the steps
1) to 4) until the following condition is
satisfied.
[P(x, 22):—P(x, 22);-1/P(x, 22):| <1074
(16)
Uniqueness of Solution : Under the several
conditions, it is proved that SUMT interior
point method gives a global minimum solu-
tion (see Kowalik and Osborne, 1968). In
these conditions, the following ones are
thought to be important from the practical
point of view. 1) Both the original objec-
tive function f(x) and the constraint equa-
tions are continuously twice differentiable.
2) f(x) has a lower limit. 3) The region
involving the decision variables is closed with
boundary. 4) Both f(x) and g(x)~! are con-
vex functions. When these conditions are
not satisfied, the solution by SUMT should
be considered as a local minimum. In the
present bearing capacity problem (Problem
I and II), the original objective function
f(x) is only once differentialbe, and that
f(x) has neither lower limit nor convexity.
As shown in Fig.3, the region containing
the element stress (decision variable) has
not the boundary which restricts the expan-
sion of Mohr’s circle. This tendency be-
comes more remarkable with the increase
in friction angle ¢. In conclusion, the solu-
tion by the present procedure should be re-
garded as a local minimum. (The devision
such as replacing the righthand side of Eq. (6)
with 1/g did not provide a stable solution.)
When applying the present procedure, one
must take care both of the penalty coefficient
value and of the initial value of decision
variables. Many trials prove that the fol-
lowing selection provides a reasonable solu-
tion in general cases.
2;=1.0, 1,=0.01, 4,=0.0001
a(see Eq.15)=0.25 N,/B
initial value : ¢=3¢,0,"=0,"=c+71,h,
Tay™=0

an
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where B : width of the strip footing (see
Fig.2), 7, : unit weight of the soil, and & :
depth from the ground surface to the ele-
ment.

Causes of Error : The solution by the present
procedure involves the following errors. 1)
In the particular problem in which no initial
strains and no initial stresses exist, the finite
element displacement approach is known to
produce a smaller solution both of displace-
ment and of stress than the correct solution
(see Zienkiewicz, 1971). It is noted that
the external loads are specified in the primary
finite element analysis. When optimizing
the bearing capacity or external load by use
of the independent element stresses, the ob-
tained bearing capacity may be greater than
the precise solution under the condition.
This tendency will become more pronounced
as the rough discretization of soil mass as
seen in Example 2. 2) SUMT furnishes at
most an approximate solution roughly satisfy-
ing the equality constraints such as Eq. (3)
which relates the footing pressure with the
element stresses. 3) As pointed out previ-
ously, with the increase of friction angle
¢, the effect that the region containing the
element stresses is not closed with boundary,
becomes more considerable. 4) The iteration
procedure by a combination of SUMT and
conjugate gradient technique may not be able
to reach the strictly optimum solution. And
that, the final result by the iteration pro-
cedure is a local optimum solution. 5) At
the boundary where displacement is fixed,
the stress field becomes close to the yield
state. This phenomenon is remarkable in
the weightless soil mass and at the corner
element being lower and remote from the
footing, as shown later in Figs.5 through
11. This effect may prevent the footing
pressure from approaching to more precise
solution. The factors 1) through 3) cause
the overestimation of bearing capacity, where-
as the factors 4) and 5) yield the underes-
timated result. However the errors by the
factors 1) and 2) may not be larger than
the solution violates the lower-bound. So
far as employing Eq. (17), the present pro-

cedure provides a stable lower-bound solu-
tion within a certain limit of friction angle.

CASE STUDIES IN BEARING CAPAC-
ITY PROBLEM

Throughout the examples of bearing capac-
ity problem, the force acted on the footing
is assumed to be normally and uniformly
loaded. It is further assumed that the inter-
face between the soil and the footing is
either pseudo-smooth or perfectly rough. In
most cases, however, the footing base is
assumed to be pseudo-smooth except in Ex-
ample 4. Because concerning the imponder-
able soil the result by the present procedure
is little affected by such interface conditions.
Based on the upper-bound approach, Chen
(1975) draw the same conclusion concerning
the imponderable soil. As shown in Fig. 2,
the base of soil stratum is supposed to be
rigid and pseudo-smooth, since this assump-
tion provides more precise and stable solution
in most cases.

Ezxample 1:The first example (see Fig.2)
considers a strip footing on a purely cohesive
weightless soil. At first the cohesion ¢ is
supposed to be 1tf/m? (9.8kPa). Table 1
shows the performance of SUMT interior
point method by use of the formulation of
Problem 1. Fig. 4 illustrates the iteration
behaviour of the conjugate gradient tech-
nique at each SUMT stage. As seen in
Fig. 4, the search for the optimum solution
requires a number of iterations, due to the
non-convexity in the original objective func-
tion as stated previously. The computation
time required for the total iteration steps
in this case, is about 8 minutes when using
a combination of a personal computer NEC

PC9801, TALOS68K (CPU :MC®68000, 8
MHz), CP/M-68K and SVS FORTRAN
Table 1. Performance in SUMT (Example 1)
stage A P(x, 1) [ q } (o)} Q2 I Q3
1 1.0 4.63 | 2.42 | 0.5470 | 0.1651 6.82
2 0.01 ~4.30 | 4.66 | 0.0008 | 0.0039 | 31.47
3 | 0.0001 | —4.59 | 4.67 | 0.0002 | 0.0006 | 44.51

Ax : penalty coefficient, ¢ : footing pressure (tf/m?), and
Q1 @; and Q;:see Eq.(15). (1tf/m?=9.8kPa)
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(a) Principal stresses
Plx Il = | - —
1 tf/m =9.8kN/m 1 tf/nf =9.8kPa HH]
(a) Principal stresses 1.02 1.04 1.09 1.04
H H 1.00 1.00 1.01 1.18
1.04/1:0411.20 1.24 | 1.20 | 147
Lo11.011.02) 1,00 | a3 | 1.4 1.00 117 1.04 1.01
1.03/1.02(1.05| 1.18 | 1.10 1.06
' (b) Safety factor F
1.02(1.04/1.23) 1.87 | 1.1 1.01 Fig. 7. Results in Example 2 (c=1 tf/m?,
$=0°, 7o=0 tf/m?)

(b) Safety factor F

Fig. 5. Results in Example 1 (c=1 tf/m?,
$=0°, 7,=0 tf/m3)

compiler. As seen in Table 1, the optimized
bearing capacity g* takes the underestimated
value comparing with the lower-bound solu-
tion ¢*=5.0c¢ obtained by Shield (1955).
Fig.5(a) shows the principal stress distribu-
tion by the present procedure. Fig.5(b)
shows the distribution of safety factor F
which is defined as

F=bla 18)

where both a and & are prescribed in}Fig. 3.
As seen in Fig.5(b), the safety facter F
becomes close to unity in the corner element
being lower and far from the footing. This
result is attributed to the constraint by bound-
ary condition as stated previously. Fig.6
shows the bearing capacity factor N, by the
present procedure (Problem I) under the vari-
ous values of cohesion c.

Example 2 : To investigate the effect of ele-
ment subdivision system, the second example
considers the model illustrated in Fig. 7(a).
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The calculated bearing capacity, principal
stress distribution, and the distribution of
safety factor F are shown in Figs.7(a) and
7(b). The optimized bearing capacity is
more precise one than the solution given
in Example 1. This may be because of the
overvaluation of footing pressure caused by
the rough discretization of stress field as
stated previously in the paragraph Causes
of Error. It is important to note that the
solution by the present procedure is not ex-
tremely influenced by the element subdivision
system.

Ezxample 3 : The third example (see Fig.2)
investigates a strip footing on a weightless
soil which has both cohesion ¢ and friction
angle ¢. Figs.8(a) and 8(b) show the re-
sults under the certain values of soil para-
meters. Fig. 9 compares the bearing capacity
factor N, by the present procedure (Problem
ID with the lower-bound solution by Shield
(1955) and with the upper-bound solution
by Chen (1975). As seen in Fig.9, when
the friction angle ¢ increases beyond 25°
the solution of Problem I becomes unstable.

4 scale of stress
c 2
0 10 30 tf/m

o

q*:9.
[

i
%\\\/
JV
{

~Mo| — — —

»

Yol =1 —
1 tf/nf =9.8kPa
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/
|
|

e
/
|
|

1.20{1.09{1.10| 1.25 | 1.31 1.35
1.02{1.00[1.10| 1.00 | 1.00 1.03
1.00{1.00{1.19| 1.18 | 1.00 1.00
1.00(1.00(1.25] 1.56 | 1.00 1.00

1 tf/m =9.8kN/m

(b) Safety factor F

Fig. 8. Results in Example 3 (¢c=1 tf/m?
$=20°, 7,=0 tf/m3)

40 solution by
present procedure /
oc=1 °
e 5 ;tf/rﬁ /
° 10/ //
30"upper—bound solution /
by Chen (1975) /
O / /
z /
5 lower-bound solution / /
2 by Shield (1955) /o
2 20f /
>
h~4 .
@
Qo
@
o
4
£ 10r
8
£
7 )
il 1 tf/mt =9.8kPa
1 [} 1 § I
0 10 20 30 40

friction angle ¢ ()
Fig. 9. Comparison between some solutions
in Example 3 (weightless soil)

Generally the procedure by Problem I dose
not provide a reasonable solution, when the
bearing capacity g* to be determined exceeds
about 100 tf/m? (980 kPa). In such a case,
one should employ the procedure by Problem
II which corresponds to the case of cohesion
c¢=1tf/m? in Fig.9. Even if employing the
procedure by Problem II, Fig.9 reveals that
a reasonable solution cannot be obtained
when friction angle ¢ exceeds 30°. This
is because of the property of this lower-
bound problem that the region containing
the element stress is not closed with bound-
ary as pointed out previously.

Example 4 : The fourth example (see Fig.2)
studies a strip footing on a ponderable soil.
Figs. 10(a) through 11(b) show the results
under the certain values of soil parameters.
Fig. 12 compares the bearing capacity factor
N, by the present procedure with the two
types of upper-bound solution by Chen (1975)
according to the interface condition between
the soil and the footing base. For the case
of pseudo-smooth base, the lower-bound
solution by the present procedure exceeds
the upper-bound solution for the perfectly
smooth base. This result means that the
pseudo-smooth base is rather close to the
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scale of stress
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Fig. 10. Results in Example 4 (¢c=1 tf/m?,
$=0°, yo=1.5tf/m3)
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Fig. 11. Results in Example 4 (¢=1tf/m2,
$=20°, 7,=1.5tf/m?)

solution by present procedure
°%=1.5tf/m (rough base)
. 1.5 # (pseudo-smooth)
o 0 (pseudo-smooth)
60"upper-bound
solution by Chen

" (1975) Y=1.5tf/m
{" rough base

30

bearing capacity factor Nc

1 tf/rﬁ‘=9.8kN/lrﬁ

1
0 10 20 30
friction angle ¢ )

Fig. 12. Comparison between some
solutions in Example 4

perfectly rough base than the perfectly
smooth base in this bearing capacity prob-
lem.

Ezxample 5: The fifth example (see Fig.2)
considers a strip footing on a multi-layered
soil deposit. Figs.13(a) and 13(b) show the

q*=4.43tf/nt

2

1.001.041.26| 1.39 | 1.39 1.38 c=1tf/m
=0

1.03(1.05{1.00] 1.02 | 1.58 2.67 Yo=0tf/m

1.96/2.06(2.24| 2.45 | 2.64 2.70 c=5tf/nt
¢-0

— 3

2.11/2.322.80} 4.65 | 2.81 2.45 Yo=0tf/m

1tf/m =9.8kN/m 1 tf/nf =9.8kPa

(a) Weak upper-layer

q*=8.48tf/nf

1.42{1.35{1.17] 1.67 | 2.91 7.81 ¢ =5tf/nf
$-0
1.33|1.24[1.27| 1.23 | 1.04- 1.00 Yo=0tf/nt
1.02|1.02|1.04] 1.33 1.10 1.0t C=1tf/rﬁ
p=0
1.02(1.02[1.02 1.03 | 1.02 1.00 Yo—0tf/nt
1 tf/m =9.8kN/m 1 tf/nf =9.8kPa

(b) Weak lower-layer

Fig. 13. Results in Example 5 (safety
factor F)
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-‘ scale of stress

= 2
0 20 60f/nt

1tf/m =9.8kPa
1 t6/m =9.8kN/m

> > -

15m

- __ﬁ.*_.l

(a) Principal stresses

I‘OI\I 0PN 1.13%2.03~2.24

1.01 1.01 1.03 1.1 1.51

1.00 \ 1.01 1.03 11 1.20
i

1.0 1.00 1.02 1.06 1.10

1.03 \ 1.00 1.00 1.00 L 1.03

(b) Safety factor F
Fig. 14. Results in Example 6 (c=1tf/m?
$¢=20°, 7o=1.5tf/m?)

results for the particular values of soil para-
meters. It may be an accident in numerical
computation that the bearing capacity in Fig.
13(a) is less than that in Example 1.
Ezxample 6 : The sixth example (see Fig.
14a) investigates a strip footing on a slope.
Being different from Figs.2 through 13, the
base of soil stratum is supposed to be perfect-
ly rough. In this particular case the present
procedure provides too small bearing capacity
when assuming the pseudo-smooth base of
soil stratum. This is because the boundary
constraints give more important effect in
this example. That is, the stress field at
the toe of slope tends to become close to
the yield state. This effect prevents the
footing pressure from approaching the precise
solution. The results are shown in Figs.
14(a) and 14(b). Kusakabe, Kimura and
Yamaguchi (1981) gave a full study to this
kind of bearing capacity problem.

APPLICATIONS TO SLOPE STABILITY
ANALYSIS

Problem Formulation : When applying the
present lower-bound approach to the slope
stability analysis, the quantity to be maxi-

mized is the unit weight of soil which cor-
responds to the footing pressure in the bear-
ing capacity analysis. @ The problem here
(Problem III) is to find y* solving

minimize : J=—7y a9
subject to Eqs. (2) through (5). The safety

factor in this slope stability analysis, F,,
is defined as
where 7, : primary unit weight of the soil,
and 7* : unit weight of soil provided by the
present procedure, which corresponds to the
maximum unit weight of soil to be sustained
by the slope within the limitations of the
lower-bound theorem. This Problem III can
be solved in the same manner as in bearing
capacity analysis. However the solution of
Problem III is highly sensitive to the selec-
tion of penalty coefficient value in SUMT
interior point method. Hence Problem III
is converted to Problem IV as

minimize : J=—7=—7/c can
subject to the modified form of Egs. (2)
through (5) which are normalized both by
7 and by cohesion ¢. Eq.(17) is also valid
in this Problem IV except replacing « with

' a=2.0N,/S (22)
where S : sum of the areas of all elements.
Example 7 : The seventh example (see Fig.
15a) considers a simple slope of a homo-
geneous soil with zero pore pressure. The
base of soil stratum is supposed to be perfect-
ly rough, for the same reason as stated
in Example 6. Figs.15(a) and 15(b) show
the results by the present procedure together
with the result by the simplified Bishop’s
method (see Chowdhury, 1978 ; Naruoka et
al, 1977). The safety factor in the simpli-
fied Bishop’s method, F, is defined as the
ratio between the shear strength and the
mobilized shear stress. Fig.16 compares
these two safety factors concerning this ex-
ample. The direct comparison of these two
safety factor values has little reasonable
meaning because of the different definitions
of safety factor. However Fig. 17 is thought
to suggest the characteristics of these two
analysis methods.
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scale of stress 1 tf/nf =9.8kPa \
., 1 tf/m =9.8kN/mi
020  60tf/m
. 10m ) 15 r 10

. A

]
-+
JI

VE=7.16tf/n
Fw=4.77

*ﬁ:ﬁ::#i
10m

G Siss=
i -
HA

(a) Principal stresses

—_

simplified N
Bishop's method
Fs—1.86

2 I.OO/!.O4'I.1/4I.4I4

1.28 ~1.001.00 1.20/1.1(_)‘l

1.02 1.001.02 1.07/1.!1
1.00 7 1.00~71.04 / 1.07 1.07

1.68 1.08°| 1.08 1.01 1.10 1.06 1.07

1.16 1.09 1.01 1.09 1.14 1.10 1.08

(b) Safety factor F

Fig. 15. Results in Example 7 (¢=2 tf/m?2,
$=20°, 7,=1.5tf/m?)

6 o Fw:present procedure
" * Fs:simplified Bishop’s
L method ©
)
c
© -
z
L
g ° o
o
‘:—u o L]
> . o
2
ke .8
© [
]
o
v
0 10 20 30

friction angle ¢ (°)

Fig. 16. Comparison between two solutions
in Example 7

CONCLUSIONS

This paper developed a numerical procedure
to provide an appropriate lower-bound solu-

tion for the wide range of stability prob-
lems. In order to avoid the defects in Lys-
mer’s method such as too complex discretiza-
tion of stress field and too compulsory lineari-
zation of Mohr-Coulomb yield criterion, the
present procedure discretizes the stress field
in the similar manner as in the finite element
displacement approach, and employs a non-
linear programming technique. To isolate
a particular stress distribution, the problem
to find the lower-bound solution is formu-
lated as an optimization problem. When
optimizing the bearing capacity, the problem
is to determine the stress distribution which
maximizes the footing pressure within the
limitations of satisfying the equilibrium equa-
tion and the no-yield condition (Mohr-Cou-
lomb yield criterion). Through the several
case studies in bearing capacity analysis, it
has been proved that the present procedure
can successfully provide an appropriate and
stable lower-bound solution for general soils
which have cohesion,
own weight,

friction angle and its
so far as the friction angle
is not so large. This procedure furnishes
a reasonable lower-bound solution for the
problem not only of the bearing capacity
analysis but also of the slope stability analy-
sis. However this procedure cannot represent
the arbitrary stress conditions at the bound-
ary surface, because a set of stresses is
assumed to be constant within each element.
It is also difficult to apply the procedure
to the problem of interaction between the
soil and the structure, such as the problem
of earth pressure. This is because the pro-
cedure considers the stress as the independent
variable and assumes the soil mass as to
be rigid-perfectly plastic material. Such in-
sufficiency must be investigated in the future
study.
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