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                                  ABSTRACT

  This paper  develops a  nurnerical  precedure  to  provide  an  appropriate  lower-bound solution

for the  wide  range  of  problems  of  stability  analysis,  To  represent  the  equation  of  equillbrium,

the stress  field is discretized in the  similar  manner  as  in FEM,  To  isolate a particular
stress  clistribution, the  prQblem  to find the  lower-bound $olution  is formulated as  an

optimization  problem.  When  optimizing  the  bearing capacity,  for instance, the  problem
is to find the  stress  distribution which  maximlzes  the  footing pressure  within  the  limitations
of  satisfying  the  equations  of  equilibrium  and  of  no-yield  condition.  The  formulated optirniza-
tion problem  is solved  numerically  by a nonlinear  programming  technique.  This  procedure
furnishes a  reasonable  solution  for the  problems  not  only  of  the  bearing capacity  analysis

but a]so  of  the  slope  stability  analysis.  The  results  of  several  case  studies  by using  the

procedure are  also  reported.

Key  words  :.b-taring  capacity,  comput.e.r-.app!ication,  guis.g .element method,  foundation,

plane  strain,  slope  stability,  .stqbility.-a-nalysis, stress  distribution (IGC : E31E6)

INTRODUCTION

  In spite  of  the  remarkable  development
of  FEM  (Finite Elernent Method),  limit anal-

ysis is as  yet the  principal method  of

strength  analysis  in geotechnical engineer-

ing. Chen  (1975) divided the  methods  of

stability  analysi$  into three  groups, i, e., slip

line method,  Iimit equilibrium  method,  and

limit analysis  method.  Accerding to  this

c!assification,  the  limit analysis  herein is the
method  based on  the  lower- and  upper-bound

theorems  in plasticity. The  most  dificult

s

**

aspect  m  applying  the  lower-  and  upper-

bound  theorems,  is the  skillful  construction

of  discontinuous fields of  stress  and  velocity

which  are  related  to the  collapse  mecha-

nism.  Moreover in the  upper-bound  theo-

rem,  the  velocity  fields due to the  collapse

mechanism  must  be compatible  or  kinematic-
ally  admissible.  On  the  other  hand in the

lower-bound  theorern,  the  stress  field must

be statically  admissible.  These  complicated

conditions  can  be easily  satisfied  by  the  use

of  discretization technique  in FEM.  For  in-
stance,  the  finite element  displacement ap-
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 proach  can  fulfi11 both the conditions  of  com-

 patibility ancl  of  equilibrium  by employ-

 ing the  displacement function and  the  virtual

 displacement theorem  respectively.  The  dis-

 cretization  technique  in FEM  makes  it pos-
 sible  to apply  the limit analysis  method  to

 wide  range  of  problems  which  have arbitrary

 geometry  and  boundary  conditions,  In the

 field of  geotechnical  engineering,  Fremond

 and  Salengon (1973), Turgeman  and  Pastor

 (1982) and  Tamura,  Kobayashi  and  Sumi

 (1984) proposed  sttch  procedures which  com-

 bined the  upper-bound  theorem  and  the  tech-

 nique  in the  finite element  displacement ap-

 proach.  In comparison  with  the  upper-

 bound approach,  it has been  known  to be

 generally  diMcult to  find the  appropriate
'lower-bound

 solution.  This is because of

 the  difieulty in constructing  a  statically  ad-

 missible  stress  distribution which  satisfies  the

 equation  of  equilibrium  and  which  nowhere

 violates  the  yield criterien.  By  employing

 an  analogous  technique  in FEM,  Lysmer

 (1970) first developed a numerical  procedure

 to find a lower-bound solution  for the  plane

 problems  involving arbitrary  geometry  and

 stress  boundary conditions.  Following  Lys-

 mer's  method,  Pastor and  Turgeman  (1982)
 added  extending  conditions  so  that  the  meth-

 od  can  deal with  axial  symmetry  problems.
 In order  to  isolate a  unique  stress  field, Lys-

 mer  formulated the  problem  to  find the

 lower-bound  solution  as  an  optimization  prob-

 Iem, which  was  solved  numerically  by a

 Iinear programming  technique.  Though

 Lysrner's method  is highly rational  and  es-

 sentiaL  his method  seems  to  centain  two

 points of  $hortcoming.  One  is too  intri-

 cate  discretization of  stress  field, The  other

 is toe  compulsory  lineqrization of  Mohr-

 Coulomb  yield criterion  which  has high non-

 linearity. Owing  to these  defects, the  solu-

 tion by Lysmer's  method  is considerably

 influenced by subdivision  system  of  the  soil

 mass  into elements.  And  this method  re-

 quires a lot of  computatienal  effort  when

 desiring to obtaln  highly ptecise solution.

 To  compensate  for such  deMciency, this  paper
 investigates n  different numerical  procedure

to find the  lower-bQund solution  by employ-

ing a  nonlinear  programming  technique,  It
is noted  that  the  plane  strain  condition  is
assumed  throughout  this  paper.

PROBLEM  FORMULATION

 The  conditions  required  to establish  a

lower-bound  solution  are  essentially  as  fol-
lows (see Chen, 1975). 1) The  stress  dis-
tribution  must  eveTywhere  satisfy  the  euqa-

tion  of  equilibrium.  2) The  stress  field at

the  boundary  must  satisfy  the  stress  bounda'ry
conditions.  3) The  stress  field must  nowhere-

violate  the  yield condition.  These  conditions･

are  represented  as  follows.
Equation  of Egttilibrium : To  represent  the

equation  of  equilibrium,  the  soil  mass  subject

to  analysis  is subdivided  into many  elements

in the  same  manner  as  in FEM.  Within
each  element  a  set  of  stresses  is assumed

to be constant,  because the  stress  is the
independent  variable  to be determined  by
the  lower-bound approaeh,  The  present pro-
cedure  adopts  the  quadrilateral  element  which

is composed  of  four constant  strain  triangular

elements  as  illustrated in Fig,1. The  [B]
matrix  to  calculate  strains  from nodal  dis-
placements in this quadrllateral  element,  is
constructed  by  the  superposition  of  the  [B]
matrix  in each  triangular  element.  And
both the  strain  and  stress  are  assumed  to

be constant  throughout  the  quadrilateral ele-

ment.  By  employing  the  principle  of  virtual

displacement, the  following equation  defines
a  set  of  equivalent  nodal  forces which  is
statically  equilibrium  with  the  stress  condi-

tion  of  element

    {FxtM,Fytm,･-･,E,lm,Fulm}T
==  

.().[B]T

 {a.m, acrm, Tmvm}  Tdv

ixx
-

×

x
×

1

×

    jFig.

 1. Quadrilateralkelement

(1)
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  Fig. 2. Models  in Examples  1, 2, 3

where  JF"..M, Fu." : respectively

and  vertical  equivalent  nodal

oym,  T.y'm:horizontal  and  vertical

stresses  and  shear  stress  in the

V.:volume  of  the  element,  m:

number,  and  n:node  number.

tion  of  equilibrium  is represented

same  manner  as  in FEM.  That  is,

nodal  point  the  sum  of  the

forces and  external  nodal  leads
to zero.  When  considering  the

city  problem  as  illustrated in

following equation  of  equiiibriurn

satisfied  at the  all  points of  node.

  Pi" =Z  LnM+G..=O  n=  1, 2, ･･･, IVb
      m

  4n=2F,.M+G,.+H},･q=O
      m

         7i=1,  2, ･･･, IVlo

where  G.., Gy.:respectively

vertical  nodal  loads, H.:
the  uniform  footing pressure g
nodal  Ioad, and  Np:total  number

points. The  term  G,. in Eq.(3)

the  weight  of  soil  mass.

Boundary  Conditions:The

technique  described above  is

founded on  the  finite elernent

approach.  Then  the  conditions  of

rium  are  not  necessarily  satisfied

interfaces between two  elements,

similar  reason,  the  present  procedure
represent  the  arbitrary  stress

the  boundary surface.  For 
'

sider  the  interface between the soil

footing base, in the

as  shown  in Fig,2, For  the

footing base, the  horizontal clis

unlfeFmsoilstratum

       and  5

     horizontal

   forces, oxM,

        normal

      element,

       element

     The  equa-

        in the

       at  each

equivalent  nodal

  must  be equal

   bearing capa-

    Fig,2, the
      must  be

(2)

           (3)
    horizontal and

coeMcient  to  replace

        with  the

         ef  nodal

          contalns

         discretization

            essentially

          displacement

              equilib-

              at  the

             For the

               cannot

         conditions  at

        lnstance,  con-

              and  the

bearing eapacity  problem
       perfectly rough

         placement  are

completely  restricted  at  the  corresponding

points qf ,node. And  the  equation  of  equilib-

rium  aS'Eq.  (2) is ignorecl at  the  nodal  point

(see Lysmer,  1970). The  adequacy  of  this

representation  will  be proved by  the  com-

putational results.  On  the  other  hand, for
the  perfectly  smooth  base, the  shear  stress

at  the  interface between the  soil  and  the

footing must  be equal  to zero.  This  bound-
ary  condition  cannot  be specified  in this

lower-bound analysis,  as  the  analysis  assumes

a  set  of  stresses  to be constant  within  each

element,  Since Lysmer  (1970) and  Pastor
and  Turgeman  (1982) use  the  linearly vari-

able  stress  fields in each  element,  it is posT
sible  to specify  the  general  stress  conditions

at  the  surface  of  boundary. When  giving
no  special  boundary  condition  for the  footing
base, the  present  procedure  regards  the  inter-
faee as  being intermediate between  perfectly
rough  and  perfectly  smooth.  Such a  case

is called  
`pseudo-smooth'

 interface in this

paper. However,  the  perfectly  smooth  in-
terface  between  the  soil  and  the  structure

may  not  exist  in most  of  the  actual  engineer-

ing practices, Based on  the  upper-bound  ap-

proach,  Chen  (1975) proves  that  a  rather

modest  value  of  base friction is suthcient

to create  an  essentially  perfect rough  condi-

tion. These  facts make  it sense  in engineer-

ing  to  apply  the  present procedure by assum-

ing the  perfectly rough  interface between
the  soil  and  the  structure.  In addition,  the

use  of  triangular  element  did not  provide
a stable  solution  in this lower-bound analy-

sis.  This result  may  be attributed  to the

matter  that  this  analysis  assumes  a  set  of

stresses  to be constant  in each  element.

No-Yield  Conditien:When  employing  the

Mohr-Coulomb  yield  criterion,  the  following
inequality must  be satisfied  in each  element.

    P3" ==  {(a=M+avM)sin ¢ +2c  eos  ¢ } 2

         
-{(axM-avM)2+(2TxvM)2}lO

            m=:  1, 2, ･･･, IVb (4)
where  c:cohesion,  ip:friction angle,  and

N,:total  number  of  elements,  Eq. (4) re-

presents  that  Mohr's stress  circle  is always

located below the  yield surface  as  illustrated
in Fig. 3.
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         Fig. 3. Yield criterion

  Furthermore  assuming  that  soil  mass  has
no  tensile  strength,

     a.M)O,  avM20  m=1,2,･-,Nle  (5)
This  constraint  is effective  to  stabilize  the

iteration behaviour in the  subsequerrt  numeri-

ca!  analysis.

Problent Formulation  (Problem J) : Based on

Lysmer's method,  the  problem  to find an

appropriate  lower-bound selution  is formu-
lated as  an  optimization  problem  which  iso-

lates the  particular  stress  field. The  con-

straints  to be satlsfied  are  Eqs. (2), (3), (4)
and  (5). When  optimizing  the  bearing capac-
ity as  shown  in Fig, 2, the  objective  function

is to rnaximize  the  footing pressure g.

           minimize:J==  -q  (6)
The  unknown  variables  to be determined
are  the  footing pressure  g and  stress  compo-

nents  in each  element.  The  maximized  foot-

ing pressure is designated as  the  bearing
capacity  q*. It is easy  te  extend  the  present

procedure  to layered soil  deposits.

Problem  II:As  shown  later in Example  3,
when  the  bearing capacity  beeomes too large,
the  numerical  proeedure  founded  on  Problem

I cannot  provide a  reasonable  solution.  This

may  be because of  the  limitation in the

employed  nonlinear  programrning  technique.

This  deficiency is easily  covered  by the  fol-

lowing  modifieation  of  Problem  I.

        minimize:J-rm-q""--g/c  (7)
subject  to

     ZFxnM+Gxn=Q  (8)
     m

     ZFwnM+Gvn+Hn'q-=O  (9)
     m

     {(fi."Z+a,M)sin¢ +2cosO}2

       
-{(a.M-d,M)2+(2T.,M)2})O

 (10)

     tim.mlO,  tt,m)O  (11)

TAGYO

where  xL denotes the  quantity normalized

by cohesion  c  such  as  q---gtc. And  the  bear-
ing capacity  factor N, is defined as  N,=q'lc.

NUMERICAL  ANALYSIS

SUMT  : To  solve  the  constrained  optimiza-

tion  problem  formulated above,  the  present

procedure  employs  SUMT.  (Sequential Un-
constrained  Minimization  Technique)  interior

point method  proposed by Fiacco and  Mc-
Cormick  (1968). This  method  achieves  the

minimization  of  objective  iunction in the

interior of  the  feasible region  by avoiding

the  boundary which  represents  constraints.

On  the  other  hand, in SUMT  exterior  point
method  the  movement  of  solution  is from
the  outside  or  infeasible region  toward'  the

inside of  the  feasible region,  The  property
of  the  interior point  method  is rnore  compat-

ible with  the  lower-bound  approach  in which

the  stress  field must  be strictly  on  the  inside
of  the  yield surface.  Moreover  in this  partic-
ular  problem,  the  solution  by exterior  point

method  is considerably  influenced by the

choice  of  penalty  coeMcient  value.

  The  procedure  in SUMT  interior point
method  is outlined  as  follows. 1) Consider
the  optimization  problem  which  is to find

x*  solving

           minimize:J=f(x)  (12)
subject  to

           h(x)=  O,g(x)IO  (13)
2) Define the  modified  objective  function
P(x,  2re) as

       P(x,  Zk) ==  f  (x) +Ak  :  gt (x) mi
                        t

               +A,-rf2Zht(x)2  (14)
                     t

where  2k is a  positive number  and  is refered

to penalty  coeMcient,  3) As  a  starting

point, determine  the  initial value  x,  in the
interior of  the  feasible region.  4) Starting
from  xo, find an  unconstrained  minimum

of  P(x,2i)  for some  2i. Denote  it by
x(2,).  5) Starting from x(R,),  find an  un-

constrained  minimum  of  P(x,  12) where  22<

2i. 6) Proceed  in this  fashion, minimizing

P(x,  2ta) for a  strictly  monotonously  decreas-
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ing sequence  {Rk}. As  Rk-O,  the  sequence

of  unconstrained  minima  will  approach  a  local
constrained  minimum  x".  The  modified  ob-

jective function for Problem  I is defined as

 P(x, Ak) = -q+  ai (Zk-if2t/\.l, (Pi")2

          +Ak-if2 t/i.i, (4n)2+Ak tr. 
,
 (P, M)  

-i)

         =-q+ev{a,fii12Q,+Zle-i12Q2+ZkQs}

                                   (15)
where  cr : positive  constant  which  adjusts  the

order  of  magnitude  both of  q and  of  the

penalty  terms.  In SUMT,  it is important
to control  the  order  of  magnitude  both of

the  original  objective  function and  of  the

penalty terms  in the  rnedified  objective  func-
tion, so  that  the  values  of  2k and  ev can

be commonly  used  for the  wide  ranging

values  of  strength  parameters  and  of  element

stresses,  In the  formulation of  Problem I,
the  order  of  magnitude  of  the  penalty  terms

varies  considerably  with  the  strength  para-
meter  values.  The  formulation of  Problem II
avoids  this  dithculty by normalizing  the  pen-
alty  terms  by cohesion  c. The  constraint  by
Eq, (5) can  be sirnply  dealt with  at  the  itera-
tion  step  as  subsequently  explained  (see Pagu-
rek  and  Woodside, 1968).
Iteration Procedure:In  the  search  for the

unconstrained  rninimum  of  the  modified  ob-

jective function P(x,2k)  for a  certain  2k,
the  present procedure employs  the  conjugate

gradient  technique  proposed by Fletcher and

Reeves  (1964). The  Davidon's method  (see
Fletcher and  Powell, 1963) requires  too much

cornputation  time  to obtain  the  search  diree-
tion  at  each  iteration step,  due to  a  great
number  of  decision variables  to be deter-
mined.  The  iteration procedure  in the  con-

jugate gradient  technique  by FIetcher and

Reeves is summarized  as  follows. 1) Set
the  initial values  of  decision variable  x.

2) Calculate the  gradient  rt:tOP(x,  2k)fex,
where  i implies the  iteratlon number,  3)
si=-ri+(riTri)/(ri-iTri"i)-siui.  When  the

iteration number  i ceincides  with  the  total

number  of  decision variables,  si==-r"  4)
xi+i=xi+Bsi,  where  B has to be determined
so  that  P minimizes  the  modified  objective

SOLVTION  41

function locally. To  decide the  value  of

P, the  present  proceclure  uses  the  one-dimen-

sional  search  method  by Sayarna (1969).
When  stress  component  violates  Eq. (5), take

the  boundary  value.  5) Repeat  the  steps

1) to 4) until  the  fol!owing condition  is
satisfied.

    iP(x, ilk)i-P(x, JIA)i-IP(x, Jln)il$10u`
                                   (16)
Uniqueness  of Solution : Under the  several

conditions,  it is proved  that  SUMT  interior

point methed  gives  a  global  minimum  solu-

tion  (see Kowalik  and  Osborne, 1968). In
these  conditions,  the  following ones  are

thought  to be important from  the  practical
point  of  view.  1) Both  the  original  objec-

tive function f(x) and  the  eonstraint  equa-

tions are  continuously  twice  differentiable.
2) f(x) has a lower lirnit. 3) The  region

involving the  decision variables  is closed  with

boundary. 4) Both  f(x) and  g(x)-'  are  con-

vex  functions. When  these  conditions  are

not  satisfied,  the  solution  by  SUMT  should

be considered  as  a  local minimum.  In the

present  bearing capacity  problem  (Problem
I and  II), the  original  objective  function

f(x) is only  once  differentialbe, and  that

f(x) has neither  lower limit nor  convexity,

As shown  in Fig.3, the  region  containing

the  element  stress  (decision variable)  has
not  the boundary which  restricts  the  expan-

sion  of  Mohr's  circle.  This  tendency  be-
comes  more  remarkable  with  the  increase
in friction angle  e. In conclusion,  the  solu-

tion by the  present procedure should  be re-

garded as  a local minimum,  (The devision
such  as  replacing  the  righthand  side  of  Eq. (6)
with  ltg did not  provide a  stable  solution.)

When  applying  the  present  procedure, one

must  take  care  both of  the  penalty coeMcient

value  and  of  the  initial value  of  decision
variables.  Many  trials prove  that  the  fol-
lowing selection  provides  a  reasonable  solu-

tion  in general  cases.

Z,J LO,  Z,==O.Ol, 1,=:O.OOOI
a(see  Eq. 15) =O.  25 NL/B
initial value  : q=3c,  axM=ayM=c+roh,

  TxyM=O

(17)
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where  B:width  of  the  strip  footing (see
Fig.2), ro:unit  weight  of  the soil, and  h:
depth from the  ground  surface  to the  ele-

ment.  
'

Causes of Error  : The  solution  by the  present
procedure  involves the  following errors.  1)

In the  particular  problem  in which  no  initial
strains  and  no  initial stresses  exist,  the  finite
element  displacement approach  is known  to

produce  a smaller  solution  both of  displace-
ment  and  of  stress  than  the  correct  solution

(see Zienkiewicz, 1971). It is noted  that
the external  Ioads are  specified  in the  primary
finite element  analysis.  When  optimizing

the bearing capacity  or  external  Ioad by use

of  the  independent element  stresses,  the  ob-

tained  bearing capacity  may  be greater  than

the  precise solution  under  the  condition,

This  tendency  will  become more  pronounced
as  the  rough  discretization of  soil  mass  as

seen  in Example  2. 2) SUMT  furnishes at

most  an  approximate  solution  roughly  satisfy-

ing the  equality  constraints  such  as  Eq. (3)
which  relates  the  footing pressure  with  the

element  stresses.  3) As  pointed  out  previ-
ously,  with  the  increase of  friction angle

¢ , the  effect  that  the  region  containing  the

element  stresses  is not  closed  with  boundary,
becomes  more  considerable.  4) The  iteration
procedure by a  cembination  of  SUMT  and

conjugate  gradient  technique  may  not  be able

to  reach  the  strictly  optimum  solution.  And
that, the  final result  by the  iteration pro-
cedure  is a  local optimum  solution.  5) At
the  boundary where  displacement is fixed,
the  stress  field becomes close  te the  yield
state.  This  phenomenon  is remarkable  in
the  weightless  soil  mass  and  at  the  corner

element  being Iower and  remote  from  the
footing, as  shown  later in Figs,5 through

11. This effect  may  prevent  the  footing
pressure from  approachipg  to more  precise
solution.  The  factors 1) through  3) cause

the  overestlmation  of  bearing capacity,  where-

as  the  factors 4) and  5) yield the  underes-

timated  result.  However  the  errors  by the

factors 1) and  2) may  not  be larger than

the  solution  violates  the  lower-bound.  So
far as  ernploying  Eq.(17), the  present pre-

TAGYO

cedure  provides  a  stable  lower-bound  solu-

tion  within  a  certain  limit of  friction angle.

CASE  STUDIES  IN  BEARING  CAPAC-
ITY  PROBLEM

  Throughout the  examples  ef  bearing capac-
ity problem, the  force acted  on  the  footing
is assumed  to be normally  and  uniformly

loaded. It is further assumed  that  the inter-
face between the  soil  and  the  footing is
either  pseudo-smooth  or  perfectly  rough,  In
most  cases,  however, the  footing base is
assumed  to  be pseudo-smooth  except  in Ex-
ample  4. Because concerning  the  imponder-
able  soil  the  result  by the  present  procedure
is little affected  by such  interface conditions.

Based on  the  upper-bound  approach,  Chen
(1975) draw the  same  conclusion  concerning

the  imponderable  soil. As shown  in Fig,2,
the  base of  soil  stratum  is supposed  to be
rigid  and  pseudo-smooth,  since  this assump-

tion  provides more  precise  and  stable  solution
.In

 most  cases.

Example  1 : The  first example  (see Fig.2)
considers  a  strip  footing on  a  purely  cohesive

weightless  soil.  At  first the  cohesion  c is
supposed  to be ltflm2 (9.8kPa). Table 1
shows  the  performance  of  SUMT  interior

point method  by use  of  the  forrnulation of

Problem  I. Fig.4 illustrates the  iteratien
behaviour of  the  conjugate  gradient tech-

nique  at  each  SUMT  stage.  As  seen  in
Fig.4, the search  for the  optimum  solution

requires  a  number  of  iterations, due  to the

non-convexity  in the  original  objective  func-
tion  as  stated  previously.  The  computation

time  required  for the  total  iteration steps

in this case,  is about  8 minutes  when  using

a  combination  of  a  personal  computer  NEC
PC  9801, TALOS  68 K  (CPU : MC  68000, 8
MHz),  CP/M-68K  and  SVS  FORTRAN
                       '

Table 1. Performance  in SUMT  (Example 1)

     1 ilt p(x,Ah), q Qi 1 02 1 Qs stage

   1 Le  4. 63 2. 42                        O.5470                              O. 1651                                     6.82
             -4.30   2      O. Ol                   4. 66                        e,ooos                              O.O039                                    3L47
   3      O. OOOI             -4.59                   4. 67                        D.OO02                              O.OO06                                    44.51

 Ah : penalty  coefficient,  q  : footing pressure  (tfl}ll2Ji'and

 Ql, Qz and  e3 : see  Eq.(15). (1 tflm2=9.8kpa)
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  Fig. 5. Results in Example1  (c=1 tflm2,

      ip=Oe, re=O  tf/mS)

compiler.  As seen  in Table 1, the  optimized

bearing capacity  q"  takes  the  underestimated

value  comparing  with  the  lower-bound solu-

tion  q"==5.0c  obtained  by Shield (1955).
Fig,5(a) shows  the  principal  stress  distribu-

tion  by the  present  procedure. Fig.5(b)
shows  the  distribution of  safety  factor F

which  is defined as

                F==b!a (18)

]

]

]

(a) Principal stresses

      

      

      
      
      

 Fig. 7. Results  in Example  2 (c =1  tflm2,

     o=oe, ro =o  tffme)

where  both a  and  b are  prescribed  inlFig.3.
As  seen  in Fig.5(b), the  safety  facter F

becomes close  to unity  in the corner  element

being lower and  far from the  footing. This
result  is attributed  to the  constraint  by  bound-

ary  condition  as  stated  previously.  Fig.6
shows  the  bearing capacity  factor IV', by the

present procedure (Problem I) under  the  vari-

ous  values  of  cohesion  c.

Example  2 : To  investigate the  effect  of  ele-

ment  subdivision  system,  the  second  example

considers  the  model  illustrated in Fig,7(a).

NII-Electionic  
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The  caleulated  bearing capacity,  principal
stress  distribution, and  the  distribution of

safety  factor F  are  shown  in Figs.7(a) and

7(b). The  optimized  bearing capacity  is
more  precise  one  than  the  solution  given
in Example 1. This  may  be becattse of  the

overvaluation  of  footing pressure  caused  by
the  rough  discretization of  stress  field as

stated  previously in the  paragraph  Causes

of Error. It is irnportant to note  that  the

solution  by the  present procedure is not  ex-

tremely  influenced by the  element  subdivision

system.

Example  3 : The  third  example  (see Fig. 2)
investigates a  strip  footing on  a  weightless

soil  which  has both cohesion  c  and  friction
angle  e. Figs.8(a) and  8(b) show  the  re-

sults  under  the  certain  values  of  soil para-
meters.  Fig, 9 compares  the  bearing capacity
factor N,  by the  present procedure  (Problem
I) with  the  lower-bound solution  by Shield

(1955) and  with  the  upper-bound  solution

by  Chen  (1975). As  seen  jn Fig.9, when

the  friction angle  ip increases ,beyond 250,
the  solution  of  Problem  I becomes  unstable.

                               '

      

      

Fig.

(a)'
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 Fig. 9. Comparisen  between  some  solutiolls

    in Example  3 (weightless soil)

Generally the  precedure  by Problem I dose
not  provide  a  reasonable  solution,  when  the

bearing capacity  g*  to be determined  exceeds

about  100tflmE  (980kPa). In such  a  case,

one  should  employ  the  procedure by  Problem
II which  corresponds  to  the  case  of  cohesion

c=1tffm2  in Fig. 9. Even  if employing  the

procedure  by Problern II, Fig,9 reveals  that

a  reasonable  solution  cannot  be obtained

when  friction angle  di exceeds  30e. This
is becattse of  the  property of  this lower-
bound problem  that  the  region  containing

the  element  stress  is not  closed  with  bound-
ary  as  pointed  out  previously.

Example  4 : The  fourth example  (see Fig. 2)
studies  a strip  footing on  a  ponderable  soil.

Figs.10(a) through  11(b) show  the  results

under  the  certain  values  of  soil  parameters.
Fig. 12 compares  the  bearing capacity  factor
N,  by the  present  procedure  with  the  two

types  of  upper-bound  solution  by Chen (1975)
according  to the  interface condition  between
the  soil  and  the footing base, For the  case

of  pseudo-smooth  base, the Iower-bound
selution  by the  present  procedure exceeds

the  upper-bound  solution  for the  perfectly
smooth  base. This  result  means  that  the

pseudo-smooth  base is rather  close  to  the
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perfectly rough  base than  the  perfectly
smeoth  base in this bearing capacity  prob-
lem.Exampte

 5 : The  fifth example  (see Fig.2)
considers  a strip  footing on  a  rnulti-layered

soil  deposit. Figs.13(a) and  13(b)  show  the
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results  for the  particular values  of  soil  para-

meters.  It may  be an  accident  in numerical

computation  that  the  bearing capacity  in Fig.

13(a) is less than  that  in Example  1.

Example  6:The  sixth  example  (see Fig.

14a)  investigates a  strip  footing on  a  slope.

Being different from  Figs,2 through  13, the

base of  soil  stratum  is supposed  to  be perfect-
ly rough.  In this  particular case  the  present

procedure  provides  too  small  bearing capacity

when  assuming  the  pseudo--smooth  base of

soil  stratum.  This  is because the  boundary
constraints  give  rnore  important effect  in

this example.  That  is, the  stress  field at

the toe of  slope  tends  to become  close  to

the  yield state.  This effect  prevents  the

footing pressure  from approaching  the  precise

sdlution.  The  results  are  shown  in Figs,

14(a) and  14(b). Kusakabe,  Kimura  and

Yamaguchi  (1981) gave  a  full study  to this

kind of  bearing capacity  problem,

APPLICATIONS  TO  SLOPE  STABILITY

ANALYSIS

Problem  Fermulation:  When  applying  the

present  lower-bound approach  to the  slope

stability  analysis,  the  quantity  to be rnaxi-

TAGYO

mized  is the  unit  weight  of  soil  which  cor-

responds  to the  footing pressure in the  bear-
ing capacity  analysis.  The  problem  here

(Problem III) is to find r* solving

           minimize:J==-r  (19)
subject  to Eqs. (2) through  (5). The  safety

factor in this slope  Stability analysis,  F.

is defined as

               Fl.=r"/ro (20)
where  re : primary  unit  weight  of  the  soil,

and  r*:unit  weight  of  soil  provided  by the

present procedure, which  corresponds  to the

maximum  unit  weight  of  soil  to be sustained
by the  slope  within  the  limitations of  the

lower-bound theorem.  This  Problem  III can

be solved  in the  same  manner  as  in bearing
capacity  analysis.  However  the  solution  of

Preblem  III is high]y sensitive  to the  selec-

tion  of  penalty coeMcient  value  in SUMT

interior point method.  Hence  Problem  III

is converted  to Problem  IV  as

         mtnimize  : J=-r-=-rfc  (21)
subject  to the modified  form  of  Eqs, (2)
through  (5) which  are  normalized  both by

r and  by  cohesion  c. Eq, (17) is also  valid

in this Problem  IV  except  replacing  a  with

       ' cr =2･ONe/S  (22)
where  S:sutn  of  the  areas  of  all elements,

Example  7:The  seventh  example  (see Fig.
15a)  considers  a simple  slope  of  a homo-

geneeus  soil  with  zero  pore pressure. The
base of  soil  stratum  is supposed  to be perfect-

ly rough,  for the  same  reason  as  stated

in Example  6. Figs.15(a) and  15(b) show

the  results  by the  present  procedure  together

with  the  result  by the  simplified  Bishop's

method  (see Chowdhury,  1978  ; Naruoka  et

al,  1977). The  safety  factor in the  simpll-

fied Bishop's method;  4  is defined ,as the

ratio  between  the  shear  strength  and  the

mobilized  shear  stress.  Fig.16 compares

these  two  safety  facters concerning  this ex-

ample,  
'
 The  direct comparison  of  these  two

safety  factor values  has little reasonable

meaning  because of  the  different definitions
of  safety  factor. However  Fig. 17 is thought
te  suggest  the  characteristics  of  these  two

analysis  methods.
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Exarnple 7

CONCLVSIONS

 This  paper  deveioped a  numerical  procedure
to  provide  an  appropriate  Iower-bound  solu-

tion  for the  wide  range  of  stability  prob-
lems. In order  to  avoid  the  defects in Lys-
mer's  method  such  as  too complex  discretiza-
tion  of  stress  field and  too  compulsory  lineari-
zation  of  Mohr-Coulomb  yield criterion,  the

present  procedure  discretizes the  stress  field
in the  similar  manner  as  in the finite element

displacement approach,  and  ernploys  a  non-

linear programming  technique.  To  isolate
a  particular  stress  distribution, the  probiem
to  find the  lower-bound solution  is formu-
lated as  an  optimization  problem. When
optimizing  the  bearing capacity,  the  problem
is to  determine  the  stress  distribution which

maximizes  the  footing pressure within  the

limitations of  satisfying  the equilibrium  equa-

tion  and  the  no-yield  condition  (Mohr-Cou-
lomb  yield criterion).  Through  the  several

case  studies  in bearing capacity  analysis,  it
has been  proved  that  the  present  procedure
can  successfully  provide an  approprlate  and

stable  lower-bound solution  for general  soils

which  have  cohesion,  friction angle  and  its
own  weight,  so  far as  the  friction angle

is not  so  large. This  procedure  furnishes
a  reasonable  lower--bound selution  for the

problem  not  only  of  the  bearing capacity

analysis  but also  of  the  slope  stability  analy-

sis. However  this  procedure  cannot  represent

the  arbitrary  stress  conditions  at the  bound-
ary  surface,  because a  set  of  stresses  is
assumed  to  be constant  within  each  element.

It is also  dithcult to  apply  the  procedure
to  the problem  of  interaction between  the

soil  and  the  structure,  such  as  the  problem
of  earth  pressure. This  is because the  pro-
cedure  considers  the  stress  as  the  independent
variable  ancl  assumes  the  soil  mass  as  to

be rigid--perfeetly  plastic material.  Such  in-
suMciency  must  be investigated in the future
study.
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