土 質 工 学 会 論 文 報 告 集 Vol.31, No.1, 212-221, Mar.1991

剛な擁壁に作用する主働土圧の弾塑性論による再検討

(Reconsiderations on Active Earth Pressures Acting on Rigid) Retaining Walls by Elasto Plastic Theory

鵜 飼 惠 三ⁱ⁾ (Keizo Ugai)

キーワーズ:<u>砂質土</u>/<u>主働土圧</u>/<u>塑性</u>/土の構成式 /平面ひずみ/<u>有限要素法</u>(**IGC**: E 5)

1. まえがき

剛な擁壁に作用する主働土圧は理論上も設計上も Rankine もしくは Coulomb 土圧論にもとづいて説明 されるのが普通である。一方,擁壁に作用する土圧は壁 の変形様式によって変化することが知られている。剛な 擁壁であっても,平行移動(滑動),回転(転倒)もし くは両者の組み合わせによって背面土圧や全土圧は変化 する^{1),2)}。従って,Rankine 土圧も Coulomb 土圧もあ る特定の変形様式に対応するはずである。これらの点に ついては,従来剛塑性論の立場から説明がなされてき た。しかし,本来剛塑性論は変形を考慮しない理論であ るため,変形様式の関数である擁壁土圧の問題について は再検討の余地があるように思われる。

本研究は, 歪硬化を考慮した弾塑性論に立脚して, 土 圧論の基礎的な問題について再検討を加えたものであ る。後に示すように, 剛塑性土圧論にもとづく従来のい くつかの結果に対して理論的な立場から問題点を指摘す ることができた。また, 土の塑性的な強度・変形特性と 主働土圧との関係をいくつかの点について明確にするこ とができた。本研究では, 裏込土は砂であるとし, 砂を Rowe の応力・ダイレイタンシー式^{3),1)}と双曲線応力・ 歪関係式によって表現される弾塑性材料であると仮定し た。

なお中井²⁾ は、主働・受働土圧問題を松岡・中井規準 にもとづいた弾塑性 FEM により解析している。中井の 論文中の図より、転倒と滑動では主働土圧が大きく異な ること、背面が滑らかな擁壁を下端回りに回転させても Rankine 主働土圧には収束しないこと、など重要な結 果が読み取れる。本文ではこれらの点についてもさらに 詳細な検討・考察を加えた。

2. 仮定と前提条件及びそれらの吟味

2.1 擁壁と地盤のモデル

高さ 8m の剛擁壁を想定し, 裏込砂は高さ 8m, 幅 16m とした (図-1)。擁壁は下端 (図-1 の B 点)を中 心に主働側に回転するとした。裏込砂の境界条件は, 鉛 直面 (AB 面と CD 面) は滑らかとし, 底面 (BC 面) は粗 (変位拘束) とした。なお, このケースに対する議 論を補強するためと, 過去の実験結果との比較のために これ以外のケースについても計算を行った。解析は歪硬 化を考慮した弾塑性 FEM により行った。要素の分割例 を図-1 に示す。要素は3角形3節点要素 (要素内で歪 と応力が一定)を用いた。

2.2 砂の構成則

裏込砂は歪硬化を示す弾塑性材料であると仮定した。 砂の構成則については、従来多くのすぐれた力学モデ ル^{4)~6)}が提案されているが、いずれも3次元モデルが基 本であること、初学者にはやや難解であることなどが指 摘される。従って、本研究では、①工学的な精度を保持 しつつわかりやすいこと、②歴史があり実験的な裏付け が豊富なこと、③2次元平面歪状態を出発点としている こと、の3条件を満たす構成則として、Roweの応力・ ダイレイタンシー式と双曲線応力・歪関係式をとりあげ た。龍岡¹¹ は豊浦砂の平面歪圧縮試験結果(ただし主応 力比がピークに至るまで)を両式を用いて説明している。 (1) Roweの応力・ダイレイタンシー式(流れ則) 平面歪状態での Rowe の応力・ダイレイタンシー式

i) 詳馬大学工学部建設工学科 助教授(群馬県桐生市天神町一丁目) (1989.5.20 原稿受付・討議期限 1991.10.1, 要請があれば1か月の 期限延長可能)

)

は次式である。これは流れ則を表わす。

$$R = \sigma_1 / \sigma_3$$

$$=K(-d\varepsilon_3^p/d\varepsilon_1^p) \tag{1}$$

 σ_1, σ_3 は最大,最小主応力 (圧縮を正)。 $d\epsilon_1^p, d\epsilon_3^p$ は 最大·最小塑性主歪増分(収縮を正)。Kは定数であり、 拘束圧の大きさや砂の密度によらないで成り立つと言わ れている7),8)。主応力の方向と塑性主歪増分の方向が一 致する(同軸性)と仮定すると、式(1)より塑性ポテ ンシャル Ø は次のように表現される⁸⁾。

$$\Phi = \sigma_1^k / \sigma_3 \tag{2}$$

 σ_1, σ_3 は一般的な応力成分 $\sigma_x, \sigma_y, \tau_{xy}$ により次のよ うに表わされる。

$$\sigma_{1} = (\sigma_{x} + \sigma_{y})/2 + \sqrt{(\sigma_{x} - \sigma_{y})^{2} + 4\tau_{xy}^{2}/2} \\\sigma_{3} = (\sigma_{x} + \sigma_{y})/2 - \sqrt{(\sigma_{x} - \sigma_{y})^{2} + 4\tau_{xy}^{2}/2}$$
(3)

ただし,実際の地盤では 2 は水平方向, 9 は鉛直方向に 対応するものとする。式(2),(3)より xy 座標表示 での塑性歪増分 $d\varepsilon_x^p$, $d\varepsilon_y^p$, $d\gamma_{xy}^p$ は

 $d\boldsymbol{\varepsilon}^p = \lambda \partial \boldsymbol{\Phi} / \partial \sigma$ (4)と表わされる。ここで、 $d\varepsilon^p = (d\varepsilon_x^p \ d\varepsilon_y^p \ d\gamma_{xy}^p)^T (T)$ は 転置を表わす)。 $\partial \Phi / \partial \sigma = (\partial \Phi / \partial \sigma_x \partial \Phi / \partial \sigma_y \partial \Phi / \partial \tau_{xy})^T$ 。 んは比例係数。なお同軸性が成り立たない場合には式 (2)と(4)の組み合わせは成立しない。

(2) 双曲線応力·歪関係式(硬化則)

三軸圧縮試験における粘土や砂の応力・歪関係が双曲 線式によって近似的に表現できることはよく知られてい る9),10)。 龍岡7)は, 豊浦砂の平面歪圧縮試験において, ピーク強度前までの実測値が次式によってよく近似され ることを示した(ただし初期状態は $\sigma_1 = \sigma_3$)。

> $R=1+\gamma^p/(a+b\gamma^p)$ (5)

ここで、 γ^{p} (= $\varepsilon_1^{p} - \varepsilon_3^{p}$) は最大塑性せん断歪を表わす。 式(5)は図-2のように表示される。1/a は曲線の初 期勾配, 1+1/b はRの最大値 R_m を表わす。応力・歪 関係が式(5)で表示される砂の摩擦角を

ゆとすれば、

図-2 双曲線応力·歪関係

破壊条件式は

 $R = (1 + \sin \phi) / (1 - \sin \phi) \quad (=R_m)$ (6)と表わされる。

式(5)は γ^{p} の増大と共にRが双曲線的に増加する ことを表わしており、降伏関数と考えられる。従って、 この場合の降伏曲線はR=一定,で表示される。今,応 カパラメータとして $s=(\sigma_1+\sigma_3)/2$, $t=(\sigma_1-\sigma_3)/2$ を導 入し式(6)に代入すると、降伏曲線の傾き(=t/s)は 一定になり、 t と s は図-3 の実線のように直線関係と なる。表示は式(5)とは少し異なるが松岡ら¹¹⁾は、2 次元状態でせん断・垂直応力比とせん断歪との間に双曲 線関係を仮定している。

図-4 は Lade-Duncan 規準に従う砂を平面歪状態で 圧縮した場合の $R \ge \gamma^p$ の関係である。文献 5) に示さ れる Sacramento River 砂のゆるづめ (ϕ_{ps} =44.4°) と密づめ (ϕ_{ps} =56.4°) のデータを用いて計算した。図

中の曲線は対応する双曲線を表示したものである。双曲 線による近似性は十分である。

以上より,砂の構成則として Rowe の式(式(1)) と双曲線式(式(5)を用いれば,決定すべき塑性パラ メータは K, a, b の3つのみとなる。これらのパラメー タは,基本的には平面歪試験より決定すべきではある が,平面歪試験結果と三軸試験結果との関係を調べた研 究(文献 12) など)や,これまでに提案されている砂 の3次元構成則を参考にすることにより,三軸試験のデ ータからも予測することができる。

(3) 砂の圧縮(圧密)特性について

砂が等方的に圧縮される場合,塑性変形(圧縮)が生 じるが,密な砂の場合にはこの圧縮量は小さいといわれ ている。本研究では議論を簡略化するためと,主に主働 土圧(除荷)を対象とすることから,等方圧縮による塑 性変形の影響は無視した。なお中井ら⁴⁾は,応力比Rが 大きい異方圧密では平均主応力の増加に対して体積膨張 が生じることを強調している。この体積膨張現象は式 (5)のaに拘束圧の影響を考慮すれば R>K の場合に 生じうるが¹³⁾,本研究では主働状態を対象としているこ とからこの影響も無視した。

(4) 拘束圧, 異方性

砂の強度・変形特性に対して,拘束圧,異方性(堆積 による)及び主応力回転が影響することはよく知られて いる¹⁴⁾。これらの影響を考慮した平面歪試験が行われれ ば,その試験結果に合わせる形で塑性パラメータ K, a, りの修正近似式を定めることは可能である。この点につ いては今後の課題としたい。本研究では議論を簡略化す るためにこれらの影響を無視したが,このことにより以 下の議論の本質が妨げられることはない。ただし,厳密 に言えば本研究は等方硬化則を前提としているので,砂 地盤が単調に載荷される場合や特定の方向にのみ変形を 受ける場合,主応力回転の影響が少ないと考えられる場 合などに適用される。

(5) 弾性係数

ポアソン比レは0.2とした。ヤング係数については過 去に多くの式が提案されているが,ここでは拘束圧の平 方根に比例する式を仮定し

 $E = E_0 \sqrt{s/s_0} \tag{7}$

を用いた。ここで、 $s=(\sigma_1+\sigma_8)/2$ (平均主応力)。 E_0 は $s=s_0$ でのヤング係数。本文では基準圧 s_0 は 10 tf/m² (98.1 kN/m²) とした。

(6) 入力パラメータの値

裏込砂の単位体積重量 r は 1.5 tf/m³ (17.4 kN/m³) とした。 パラメータ 値の 組み合わせ (a=0.001, b=0.2779, K=3.238, $E_0=5,000$ tf/m² (49,100 kN/m²)) を標準データとした。このケースは最終破壊状態におい て摩擦角 $\phi=40^{\circ}$, ダイレイタンシー角 $\phi=10^{\circ}$ に相当 する。この標準データを基本にして, a, K, E_0 を変化さ せ土圧問題への影響を調べた。b は一定($\phi=40^{\circ}$)とし て計算を行った。b は ϕ の関数であるため, 最終的な (壁の変位が非常に大きくなった)段階での主働土圧の 値に直接関係する。以下において特にことわらない限 り, パラメータの値は標準データのものである。標準デ ータを用いたときの $R \ge \gamma^p$ 及び ε_v^p (塑性体積歪)と の関係を図-5 に示す。

2.3 弾塑性 FEM への定式化とプログラミング

弾塑性 FEM への定式化は通常の方法¹⁵⁾により行った。簡単なケースについて電算プログラムのチェックを行った¹³⁾。初期の弾性限界を与えるために初期の $\gamma^{p} = \gamma_{i}^{p} = 0.001 (0.1%) とした。収束計算は修正 Newton-Raphson 法を用いて処理し,収束の判定規準は(変位 増分のノルム)/(全変位のノルム)<10⁻⁵ とした。$

3. 滑らかな擁壁に生じる主働土圧

従来,滑らかな擁壁が転倒もしくは滑動する場合には Rankine 土圧が生じると考えられてきたが,土の塑性 変形を考慮した検討は十分にはなされていない。この章 では滑らかな擁壁の場合について,Rankine 土圧の位 置づけ,土圧と壁変位の関係,及び各種の土質パラメー タ(特に変形に関するパラメータ)が土圧・変位関係に 及ぼす影響について論じる。

3.1 Rankine 土圧の再検討

標準データの裏込砂の場合について,境界条件を変え て主働土圧と受働土圧を計算した。壁上端変位δと全土 圧との関係を図-5 に示す。実線は裏込砂の底面が滑で 壁が滑動(平行移動)するケースである。このケースで

は主働・受働いずれも変位が大きくなると Rankine 土 圧に収束する傾向が見られる。また土圧分布は直線分布 に近づく (図は省略)。すなわち Rankine 土圧は厳密 には裏込砂の3つの境界 (図-1 の AB, BC および CD の各面)が滑らかで擁壁が平行移動するという特別な場 合にのみ生じる。このことは Terzaghi¹⁶⁾の示すところ と一致し,直観的にも納得しうる。もし裏込底面にすべ り抵抗が生じれば,主働土圧は軽減され,Rankine 主 働土圧より低下することが予想される。このことは中 井²⁾の計算結果からも首肯される。一方,転倒のケース では主働土圧の収束値は Rankine 土圧より大きくなる 傾向が見られる (図-6)。ただし,この点はメッシュ分

割の影響を受けている可能性があるため、3.2 において より詳細な考察を行う。なおこのとき裏込め内の歪分 布は一様ではなく,壁上端に近いほど大きな値を示す (図-7(a),(b))。

ところで図-6からわかるように、主働土圧が収束値 に近い値になるためには、 δ/H (=壁上端変位/壁高) が 少なくとも 1/100 以上になる必要がある。この値は土質 パラメータの大きさによって変化する(後述)が、それ でも Terzaghi¹⁷⁾ や市原・松沢¹⁸⁾の実験結果に比べて1 桁大きい値である。この理由を考察しよう。図-7(a), (b)は、図-6の×印のケース(主働,裏込底面粗,転 倒,標準データ)について、 $\delta = 4 \text{ cm} \ge 40 \text{ cm}$ のとき の裏込砂内の γ^p の分布を示したものである。 $\delta=4 \text{ cm}$ (δ/H=1/200)のとき壁面に接する土要素では 0.5%≤ $\gamma^{p} \leq 1.3\%$ であり、図-5 よりわかるように裏込砂は十 分塑性化しているとは言えない。従って主働土圧も未だ 収束値には至っていない。一方、 $\delta = 40 \text{ cm}$ のときには 十分塑性化しており、主働土圧はほぼ収束値に至ってい る。このように主働土圧は裏込土の塑性化(すなわち γ^pの値)と密接な関係をもつため、 収束値に近づくた めには擁壁がある程度以上変位する必要がある。過去の 実験17),18)において、δ/H<1/1,000 で主働土圧が急激に 低下し、収束値に近い状態に至るのは、その時点で裏込 土の塑性化がかなり進んでいるからであり、一方図-6 の×印のケースで δ/H が 1/200 になっても収束値に至 らないのは裏込砂が未だ十分塑性化していないからであ る。

3.2 メッシュ分割の大きさの影響

滑らかな擁壁が主働側に転倒する場合についてメッシ ユ分割の大きさの影響を調べる。裏込め土の底面は粗と

し標準データを用いる。図-8 に全土圧と壁上端変位と の関係を示す。×印は図-1 のメッシュ分割に対応し, ・印はこの分割を2倍に粗くしたケースである。また□ 印は図-1 で壁面に接する要素をさらに細分割したもの である。変位が小さい間は主働土圧はそれほど変わらな いが、収束値はメッシュ分割によって異なる。一般にメ ッシュ分割が細かくなるほど主働土圧は小さくなるよう である。メッシュ分割が小さい(□印)場合には、Rankine 主働土圧に近い値に収束する傾向が見られる。

図-9 は図-8 の□印のケースで、 $\delta=4 \text{ cm} \geq 40 \text{ cm}$ のときの擁壁背面の土圧分布図(節点に作用する水平土 圧の分布図)である。 $\delta=40 \text{ cm}$ のときには、壁頂より 5.5mの深さまでは Rankine 土圧分布とほぼ一致して いるが、壁底付近では応力状態は Rankine 土圧値とは 一致せず複雑な分布を示している。後者については、 図-7(a)からわかるように、壁底付近では γ^p の変化 が急激であることと弾性域に近いことから、応力状態を 直観的に予測することは困難である。ただし、このよう な γ^p の急激な変化を、本論文で用いた定歪3角形要素 で十分表現しうるかどうかについては疑問がある。従っ て、図-9の分布図は、要素の種類を変えた場合に、多 少変化する可能性がある。

以上の考察より、メッシュ分割を細かくすると、全土 Eは Renkine 土圧に近い値に収束する傾向を示すが、 土圧分布は、全土圧が収束値に近い段階でも直線分布に なっていないことがわかった。

3.3 裏込め砂の各種のパラメータが変化する場合の 主働土圧の変化

ここでは、双曲線パラメータa、Roweの式の係数K及びヤング係数 E_0 の変化が主衛土圧に及ぼす影響を論

じる。また,裏込砂内の初期静止土圧係数 K_0 が1とは 異なる場合についても考察を加える。滑らかな擁壁が転 倒する場合を考え,裏込砂の底面は粗とした。標準デー タを基本において各種パラメータの値を変化させた。メ ッシュ分割は図-1 と同じである。

(1) Kの変化の影響

図-10 は K=2.255, 3.238, 4.599 の 3 種類に変化さ せたときの全主働土圧と壁上端変位 δ との関係である。 それぞれ,最終破壊状態における砂のダイレイタンシー 角は, 20°, 10°, 0° に相当する。図-10 よりこのK値の 範囲では,Kの変化の影響は小さいことがわかる。従っ て,要素試験よりK値を決定する場合,高い精度は必要 とされないことが知られる。

鵜飼

擁壁土圧論の再検討

(2) aの変化の影響

aが小さいと、図-5の双曲線 ($R-r^{9}$ 曲線) は立ち上 がりが急になるので、塑性歪状態に至るスピードは早く なる。図-11 は a=0.005, 0.001, 0.0002の3種類に変 化させたときの全主働土圧と δ との関係である。図-11 よりわかるように、aが小さいほど全主働土圧- δ 曲線 は小さな δ の値で急激に降下するようになり、過去の実 験結果^{17),18)}の傾向に近づくように見える。しかし、曲線 が最も急激に降下する a=0.0002の場合でも、 $\delta=2$ cm ($\delta/H=1/400$)のとき全主働土圧は約 24 tf (235 kN)の 値を示しており、未だ収束値へは至っていない。

(3) E₀の変化の影響

図-12 は E_0 =1,000, 5,000, 15,000 の3種類に変化 させたときの全主働土圧と δ との関係である。土圧と δ

x□ 15000

2

図-13 壁に隣接する 1m 幅の要素内に生じる ^{γ⁹}の平均値 (δ=4 cm) (1 tf/m²=9.81 kN/m²)

との関係はヤング係数の影響を大きくうけ、 E_0 が大き いほど曲線は急激に降下するようになる。この理由を考 えてみよう。図-13 は擁壁から1mの範囲内にある要素 に生じている最大塑性せん断歪 γ^p の平均値を示したも のであり、 $\delta=4$ cm のときの値である。 E_0 が大きいほ ど大きな γ^p が生じており、このことが前述の理由にな っている。

(4) Ko の変化の影響

図-14 は静止土圧係数を $K_0=1$, 0.6 の2種類に変化 させたときの全主働土圧と δ との関係である。 $K_0=0.6$ のケースのほうが主働土圧の低下が速い。これは,式 (5) で, Rが 0.6 から出発するため,同じ擁壁変位に 対して裏込砂の塑性変形の出現が早くなるためである。 なお, $K_0=1-\sin \phi'=0.357$ のケースについて同様な 計算をしたところ,擁壁変位が小さい段階でいったん土 圧が大きくなり,そののち減少してゆく傾向を示した。 初期の段階で土圧が上昇したのは式(5) をそのまま用 いたためである。 $K_0=1$ の場合にも応力・歪曲線が双 曲線式に従うと仮定すると,式(5) は次のように修正 する必要がある。

$$R = 1/K_0 + \gamma^p/(a + b\gamma^p) \tag{8}$$

 $\gamma^{p} \rightarrow \infty$ のとき式(6)が成り立つとすれば

 $1/K_0+1/b=(1+\sin\phi)/(1-\sin\phi)$ (9) すなわち、 β は ϕ と K_0 によって決まるパラメータとな る。上2式が実際に成り立つかどうかは実験により確認 する必要がある。本研究では考察を簡単にするために、 降伏関数は K_0 によって変化しないと仮定し、式(5) をそのまま用いた。

217

218

4. 粗い擁壁に生じる主働土圧

従来,粗い擁壁が転倒する場合には Coulomb 土圧が 生じると考えられてきたが,土の塑性変形を考慮した検 討は十分ではない。この章では粗い擁壁の場合につい て,Coulomb 土圧の位置づけ,土圧と壁変位の関係, 及び壁面摩擦を表現する各種パラメータ(摩擦角,弾性 定数など)が土圧・変位関係に及ぼす影響ついて論じ る。

4.1 壁面摩擦のモデル化

簡単のために壁面摩擦は弾完全塑性ジョイント要素で モデル化した。弾性応力・歪マトリクス D^e は

$$D^{e} = \begin{bmatrix} E_{J} & 0\\ 0 & G_{J} \end{bmatrix} \tag{9}$$

とした。 ここで, E_J , G_J はジョイント要素のヤング係数,せん断弾性係数である。

降伏則は次のように仮定した。

 $|\tau| = \mu \sigma$ ただし、 $\mu = \tan \phi_J$ (10) ここで、 μ は壁面摩擦係数、 ϕ_J は壁面摩擦角。

流れ則は次のように仮定した。

 $d\varepsilon^{p}/d\gamma^{p} = -\mu'$ ただし、 $\mu' = \tan \phi_{J}$ (11) ここで、 $d\varepsilon^{p}, d\gamma^{p}$ は塑性歪増分。 ϕ_{J} はダイレイタンシ ー角に相当する。もし $\phi_{J} = \phi_{J}$ なら関連流れ則が成り立 つ。式 (11) に対応する塑性ポテンシャル ϕ_{J} は $\phi_{J} = \tau - \mu'\sigma$ (12)

である。

応力増分と歪増分の関係式は文献 19) にならって導出 した。また、ジョイント要素の節点力と節点変位の関係 を与える弾性剛性マトリクスは、文献 20) で提案されて いるものと同じである。以上より、このジョイント要素 の力学的特性は E_J , G_J , ϕ_J , ϕ_J の 4 つのパラメータに より表現される。

4.2 Coulomb 土圧の再検討

図-15 に擁壁が滑動(平行移動)及び転倒する場合の 全水平主働土圧と壁上端変位 δ との関係を示す。ただ し,裏込砂の底面は前者では滑,後者では粗とした。裏 込砂は標準データのケースとし,壁面摩擦角 ϕ_J が 0° と 40°の場合について計算を行なった。

図-15 より擁壁が滑動する(ただし裏込底面は滑)場 合には、全水平土圧とるとの関係は ϕ_J に無関係にほぼ 同一になり、Rankine の全土圧値に収束するのがわか る。一方土圧分布を見ると $\phi_J=0^\circ$ と 40°の場合ではか なり異なっていることが図-16よりわかる。ここで図-16 は、全水平土圧がほぼ収束値に達している $\delta=40$ cm の ときの擁壁背面の土圧分布(節点に作用する水平土圧の 分布)である。すなわち、 $\phi_J=0^\circ$ の場合には土圧分布 も Rankine 土圧理論で予想されるような直線的(静水

図-16 擁壁背面の土圧分布 (図-15 のケース, δ=40 cm) (1 tf/m=9.81 kN/m)

圧的)変化を示しているのに対し、 $\phi_J = 40^{\circ}$ 場合には下端付近で Rankine 土圧分布値より大きい値を示し、それより上方では小さい値を示している。なお裏込底面が粗な状態で擁壁が滑動する場合には、全土圧の収束値は **図-15** 中に示される Coulomb 土圧値より小さくなることが、中井の論文²⁾の Fig. 16 より予想される。

次に擁壁が転倒する場合には、図-15 からわかるよう にメッシュ分割を細かくすると全水平土圧は Coulomb 土圧値に近い値に収束する傾向を示す。しかし土圧分布 は、図-16 からわかるように全土圧が収束値に近い段階 でも下端付近で直線(静水圧)分布からかなりはずれ る。

また全土圧の作用点は直線分布のときより下がる。こ の点は Fang・Ishibashi²²⁾ により実験的にも 確認され ている。彼らによればこの理由は、下端付近では水平変 位が小さいので裏込砂の塑性化が遅れるためである。な お図-15 よりわかるように、擁壁背面の摩擦の有無は全 水平土圧とるとの間の初期の関係よりも最終的な関係, すなわち収束値に大きな影響を与える。

4.3 ジョイント要素の各種パラメータが変化する場合の主働土圧の変化

ここでは E_J , G_J , ϕ_J , ϕ_J の変化が主働土圧に及ぼす 影響を論じる。擁壁が転倒する場合を考え裏込砂の底面 は粗とした。また裏込砂のパラメータの値は、特にこと わらない限り標準データを用いた。

表-1 はジョイント要素の弾性係数 E_J , G_J が変化する 場合の全水平土圧と δ との関係を数値で表示したもので ある。 $\phi_J = 40^\circ$, $\psi_J = 0^\circ$ とし, E_J (= G_J) が 10,000 tf/m²(98,100 kN/m²) と 250,000 tf/m²(2,450,000 kN/ m²) の 2 ケースを比較した。 E_J の影響は非常に小さい ことが表-1 よりわかる。

表-2 はジョイント要素のダイレイタンシー角 ψ_J が 変化する場合の全水平土圧と δ との関係である。 ϕ_J = 40°, $E_J = G_J = 10,000 \text{ tf/m}^2$ (98,100 kN/m²) とした。 ψ_J の影響は非常に小さいことがわかる。

 ϕ_J が変化する場合の影響については、すでに図-15 に計算結果を示し、4.2 で考察を行なった。

4.4 従来の主働土圧実験結果の解釈

これまで砂の主働土圧実験は数多く行なわれている (文献 17),18),21)など)が、本研究結果を直接適用 して定量的な考察を行なうことはできない。その理由

表-1 E_J (= G_J) を変化させたときの全水平主働土圧と δ との関係 (ϕ_J =40°, ϕ_J =0°)

(単位:tf/m)

(単位:tf/m)

		ļ	壁上女	耑 変 岱	ζδcm		
$\frac{E_J(=G_J)}{(tf/m^2)}$	0.5	1	2	4	7	10	15
10,000	39.48	32.47	23.36	16.15	13.08	12.24	11.79
2 50, 0 00	39.24	32.02	22.77	15.64	12.78	12.03	11.62

(1 tf/m = 9.81 kN/m)

表-2 ψ_J を変化させたときの全水平主働土圧と δ との関係 (ϕ_J =40°, E_J = G_J =10,000 tf/m²)

			壁上	端 変	位ðcm		
ψ_J	0.5	1	2	4	7	10	15
0°	39.48	32.47	23.36	16.15	13.08	12.24	11.79
40°	39.50	32.52	23.53	16.53	13.59	12.63	12.08

(1 tf/m = 9.81 kN/m)

は、実験に用いられた裏込砂の平面歪試験結果に関する 情報が少ないこと、特に主働土圧実験に対応させるため には、要素試験として鉛直荷重(最大主応力)を一定に 保ちながら水平荷重(最小主応力)を減少させるような 除荷試験が行なわれねばならないが、これに関する情報 が全く無いことである。しかし、いくつかの点について 定性的な考察を行なうことは可能である。ここでは、 (1) $\delta/H < 1/1,000$ で全主働土圧が収束値に至る理由の 背景、(2) Sherif ら²¹⁾の土圧計測結果の解釈、の2点 について論じる。

(1) δ/H<1/1,000 で全主働土圧が収束値に至る理
 由の背景

擁壁が転倒する場合,全水平主働土圧が δ の小さい段 階で急激に減少し収束値に近づくのは,裏込砂のaが小 さい, K_0 が小さい,及び E_0 が大きいときであること が,本論文のこれまでの計算結果からわかった。図-17 は裏込砂のパラメータをa=0.0002, $K_0=0.6$, $E_0=$ 15,000 tf/m² (147,000 kN/m²) とし,ジョイント要素 のパラメータを $\phi_J=40^\circ$, $\phi_J=0^\circ$, $E_J=G_J=250,000$ tf/ m² (2,450,000 tf/m²) とした場合の計算結果 (図中の 丸印)である。この場合には $\delta=1$ cm (すなわち $\delta/H=$ 1/800) で土圧は収束値に近い値になっているのがわか る。 a, K_0, E_0 の値をさらに厳しくとることにより, δ/H <1/1,000 で収束値に至らせることも可能である。また

これら3つのパラメータを同時に小さく(もしくは大き く)する必要はなく、たとえば K_0 が1であっても*a*と E_0 の値をより厳しくとることにより可能となろう。い ずれにせよ $\delta/H < 1/1,000$ で全主働土圧が収束値に近い 値に至るのは、*a*、 K_0 及び E_0 の値が適切に組み合わさ った結果であると判断される。なお参考のために、図-17 中に $K_0=1$, $\phi_J=0^\circ$ 及び 40° の2 ケースの計算結果を 示した。

(2) Sheriif ら²¹⁾の土圧実測結果の解釈

Sherif らは高さ約1mの擁壁を主働側に回転させ,裏 込砂により生じる土圧と壁の回転角との関係を図-18の ように求めている。 図中の SPi はゲージ番号 i で測定 された土圧を表わし, i が小さいほど高い位置を表わす (SP1 は下端より 85 cm, SP5 は下端より 22 cm の高

節点水平土圧

図-19 いろいろな高さでの節点水平土圧とδとの関 係(図-17 の○印のケース) (1 tf/m=9.81 kN/m) さ)。図-18 より, 擁壁上端に近いほど主働土圧の発現 が早く, 収束値に至るスピードが速いことがわかる。こ れは,図-7 に示したように擁壁上端に近いほど裏込砂 の塑性化が速いことに基因している。図-19 は,図-17 のケースで擁壁下端より 2m,4m,6m の高さでの節点 水平土圧とるとの関係である。擁壁の大きさ,裏込砂の 土質特性などが異なるにも拘らず,図-18 と同様な傾向 を示している。

5. 結 論

本研究で得られた結論は次のようである。

(1) 擁壁に作用する全土圧及び土圧分布は,擁壁の 変形様式(転倒もしくは滑動)及び裏込砂の境界条件 (滑もしくは粗)によって大きく変化する。また裏込砂 の土質特性(塑性変形特性及び弾性変形特性),壁面の 摩擦特性によっても大きく変化する。

(2) Rankine 土圧 (全土圧及び土圧分布) は厳密 には裏込砂の3つの境界 (壁面,裏込砂の底面,及び裏 込砂の右端面)が滑らかで擁壁が滑動(平行移動)する という特別な場合に生じる。

(3) 擁壁が転倒する場合,裏込砂の底面が粗である ときには、全水平主働土圧は Rankine もしくは Coulomb 土圧に近い値に収束する。土圧分布は全土圧が収 束値に近い段階でも直線的(静水圧的)分布とはなら ず、全土圧の作用点は直線分布の場合より下がる。ただ し、この結論は、メッシュ分割をさらに細かくした場合 や、要素の種類を変えた場合に、多少変化する可能性が ある。

(4) 上記(3)のケースにおいて、全水平主働土圧 と擁壁変位との初期段階(変位が小さいとき)の関係 は、裏込砂のパラメータ a, E_0, K_0 に支配される。最終 段階(変位が大きいとき)の関係は、裏込砂のパラメー タ b 及び壁面の摩擦特性を表わすパラメータ ϕ_J に支配 される。裏込砂のパラメータK及び壁面でのパラメータ ψ_J, E_J (= G_J とした)の影響はいずれの場合も小さい。 (5) 従来の主働土圧実験結果のいくつかを本研究結

果にもとづいて定性的に説明することができた。

謝 辞

電子計算及び図面のトレースにおいて,本学の井田寿 朗技官と都築信也技官に大変お世話になった。記して謝 意を表します。

参考 文献

- 1) 山口柏樹 (1984):「土質力学」, 技報堂, 第8章.
- Nakai, T. (1985) : "Finite element computations for active and passive earth pressure problems of retaining wall", Soils and Foundations, Vol.25, No.3, pp. 98-112.

- Rowe, P. W. (1962): "The stress-dilatancy relation for static equilibrium of an assembly of particles in contact", Proc. Royal Soc., London, Series A, Vol.269, pp. 500-527.
- 4) 中井照夫 · 松岡 元 (1981): 任意応力径路下の土の変形 挙動に関する統一的解釈,「土木学会論文報告集」,第 306 号, pp.23~34.
- Lade, P. V. and Duncan, J. M. (1975) : "Elastoplastic stress-strain theory for cohesionless soil", ASCE, Vol.101, GT 10, pp. 1037-1053.
- 6) 松井 保・阿部信晴(1983):講座:土の構成式入門, 5. 弾塑性理論と適用(その2),「土と基礎」, Vol.31, No. 12, pp.73~79.
- 7) 龍岡文夫(1987):第2章土のせん断強度(材料力学),「土の強さと地盤の破壊入門」,土質工学会, pp. 27~121.
- Barden, L., Ismail, H. and Tong, P. (1969): "Plane strain deformation of granular material at low and high pressures", Geotech., Vol.19, No.4, pp. 441-452.
- Kondner, R. L. (1963) : "Hyperbolic stress-strain response : cohesive soils", ASCE, Vol.89, SM 1, pp. 115-143.
- Duncan, J. M. and Chan, C. Y.: "Nonlinear analysis of stress and strain in soils", ASCE, Vol.96, SM 5, pp. 1629–1653.
- Matsuoka, H. and Sakakibara, K. (1987): "A constitutive model for sands and clays evaluating principal stress rotation", Soils and Foundations, Vol.27, No. 4, pp. 73-88.
- 12) 市原松平 · 松沢 宏(1970):平面ひずみ状態と軸対称ひ ずみ状態における乾燥砂の せん断特性,「土木学会論文報 告集」,第173号, pp.47~59.
- 13) 鵜飼惠三(1988): 歪硬化を考慮した砂地盤の変形解析, 「土木学会第43回年次学術講演会」,第3部, pp.630~

631.

- 14) Pradhan, T. B. S., Tatsuoka, F. and Horii, N. (1988): "Strength and deformation characteristics of sand in torsional simple shear", Soils and Foundations, Vol. 28, No.3, pp. 131-148.
- 15) 田中忠次(1987):土質力学における数値解析,「わわりや すい土質力学原論」,土質工学会, pp. 203~243.
- 16) Terzaghi, K. (1936) : "A fundamental fallacy in earth pressure computations", In Contributions to Soil Mechanics : 1925-1940, Boston Society of Civil Engineers, pp. 277-294.
- Terzaghi, K. (1934): "Large retaining wall tests: I-Pressure of dry sand", Engineering News Records, pp. 136-140.
- 18) 市原松平 · 松沢 宏(1970):壁変位中における土圧特性 と裏込め砂のせん断特性の関連,土木学会論文報告集,第 176 号, pp. 61~74.
- 19) Matsui, T. and San, K.C. (1988): "Finite element stability analysis method for reinforeed slope cutting", International Geotechnical Symposium on Theory and Practice of Earth Reinforcement (Fukuoka), Balkema, pp. 317-322.
- 20) 里 優・亀村勝美・中尾健児・岩野政治(1986):ジョ イント要素を用いた岩盤の不連続性の表現法について、第 1回地盤工学における数値解析法シンポジウム、pp.15~ 22.
- 21) Sherif, M. A., Fang, Y. S. and Sherif, R. I. (1984): "KA and Ko behind rotating and non-yielding walls", ASCE, Vol.110, No.1, pp.41-56.
- 22) Fang, Y.S. and Ishibashi, I. (1986): "Static earth pressures with various wall movements", ASCE, Vol. 112, No.3, pp.317-333.