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ON THE CONCEPT OF CHARACTERISTIC
STATES OF COHESIONLESS SOIL AND
CONSTITUTIVE MODELING
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ABSTRACT

The concepts of two characteristic states and their representation as characteristic state lines
in the stress space are introduced to describe volumetric behavior of cohesionless soil during
shearing. The first characteristic state line represents the state of cohesionless soil at failure,
while the second characteristic line represents the state at which the rate of volumetric strain
momentarily vanishes as the soil passes from the compressive mode of deformation to the dila-
tive mode of deformation during shearing. Explicit forms of the two characteristic state lines in
the stress space are proposed and used to develop a constitutive model based on the framework
of plasticity theory. The general forms of the characteristic state lines are verified using drained
shear test data for a fine sand. Stress-strain and volumetric-axial strain responses are predicted
using the proposed model and good correlations are observed with experimental data.
dilatancy, elasticity,
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of constitutive models that are deficient in
describing the stress—strain and volumetric

INTRODUCTION

Numerical methods such as finite element
and boundary element are used frequently to
analyze geotechnical engineering problems un-
der static and dynamic loadings. As solution
tools, these numerical techniques are extremely
powerful and can be used for the analysis of
many geotechnical engineering problems in-
volving soil whose solutions are intractable
otherwise. However, use of sophisticated nu-
merical techniques do not always guarantee
useful practical solution of such problems.
One of the main reasons for this is the use

response of soils.

Many constitutive models have been develo-
ped in the past for cohesionless soil using
the framework of plasticity theory [1-13, 15,
17, 19, 20, 22, 23, 25, 26, 28 - 31]. A majority
of these models emphasize on the characteri-
zation of stress-strain response and do not
adequately address the volumetric behavior.
Consequently, predicted volumetric response
exhibits substantial deviation from experimen-
tal observation than the predicted stress-strain
response. For cohesionless soil, characterization
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of volumetric response is of particular impor-
tance because such soil can undergo significant
volume change during shearing.

The concepts of characteristic states and
their representation as characteristic state lines
in the stress space are introduced to describe
volumetric behavior of cohesionless soil during
shearing. Explicit forms of the characteristic
state lines in the stress space are proposed
and used to develop a constitutive model based
on the framework of plasticity theory. The
general forms of the characteristic state lines
proposed are verified using drained shear test
data for a fine sand. Stress-strain and volu-
metric-axial strain responses are predicted
using the proposed model and good correla-
tions are observed with experimental data.

THE CHARACTERISTIC STATES OF
COHESIONLESS SOIL

Past experimental investigations on cohe-
sionless soil have revealed two characteristic
states in its stress—strain response during shear-
ing (Fig.1) [1, 2, 6, 13, 14, 16, 19, 21].
One of these characteristic states (e. g., point
1 in Figs. la and 1b) is attained as the soil
approaches the state of failure. In this state
the soil experiences progressive shear defor-
mation under constant volume (i. e. zero rate
of volumetric strain). The second characteris-
tic state (e. g., point 2 in Figs. 1(a) and 1(b))
is realized when the rate of volumetric strain
momentarily vanishes as the soil passes from
the compressive mode of deformation to the
dilatant mode of deformation during shearing.
For a given cohesionless soil, these character-
istic states generally depend upon the initial
relative density, D, of the soil as well as the
confining pressure under which the test is
performed [1, 14, 16, 20, 21, 25]. When shear-
ing occurs under a moderately high confining
pressure, cohesionless soils often exhibit com-
pressive volumetric response up to failure indi-
cating merging of the two characteristic states
(e. g., points 1’ and 2’ in Figs. 1(a) and 1 ).
This may also be true when a relatively loose
soil undergoes shearing under moderately high
confining pressure. With the exception of the
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of cohesionless soil
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space. For various values of initial relative
a, density, D, (i=1, ... N), the characterisict
J state lines are shown schematically in Fig. 3.
' It is evident that the two characteristic state
lines are distinct in most parts and tend to
merge as the confining pressure becomes high.
Also, the deviation of the characteristic state
lines increases with the increase in initial
relative density.

SOME SHORTCOMINGS OF THE EXIST-
ING MODELS

There are some shortcomings of the existing
plasticity based constitutive models for cohe-
sionless soil in regard to characterization of
dilatancy. This can be explained by using Fig.
Fig. 2(b). Schematic representation of the sec- 4 which shows the typical elements of a cap

ond characteristic state surface in J,— type constitutive model [1, 6-12, 19, 20, 22,

T ap—D: space 27]. Typically the yield cap originates from Jy
axis and terminates at the failure envelope

where the tangent to the yield cap is hori-

oK zontal. As a result, within the framework of
NER associative plasticity theory, only compressive
volumetric strain will be obtained for stress

1 states lying on the yield cap including point
L (Fig. 4). Since the normal to the yield cap

is vertical at point L, it represents the onset

5 of dilatancy which corresponds to point 2 (i.
B . Pzi e. the second characteristic state) in Fig. 1(a).
However, point L also lies on the failure en-
velope which corresponds to point 1 (i. e.

3 the first characteristic state) in Fig. 1 (a).
Fig. 3. Schematic representation of the two This is conceptually wrong because points 1
characteristic state lines for various initial and 2 are distinctly different for cohesionless.

relative densities (Dry, Dyi, D-n)

above cases, the two characteristic states for
a given cohesionless soil are distinct.
The characteristic states of a cohesionless

| . ¥allure Envelope
soil can be represented in the form of char-

acteristic state surfaces in the J;—./Jep—D; L
space as shown schematically in Figs. 2(a) Vi | Tiexd Cap
and 2(b). The variables J; and ./J:p denote 5 :

the first invariant of the stress tensor and the
second invariant of the deviatoric stress tensor,
respectively. For a given initial relative density,
the characteristic state surfaces degenerate to Fig. 4. Elements of a typical cap type consti-
the characteristic state lines in the Jy—./Jep tutive model

X
J1
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soil under general conditions as evident from
Fig.1(a). An exception of this is possible
when a cohesionless soil is subjected to high
confining pressures where the two character-
istic states merge as shown by points 1’ and
2 in Fig.1(a).

The constitutive models based on the non-
associative plasticity theory [19, 20] also do
not account for the second characteristic state
in the formulation and therefore the onset of
dilatancy and subsequent volumetric response
cannot be predicted in a rational manner.

FORMULATION OF THE PROPOSED
MODEL

First Characteristic State Line

Experimental observations have shown that
the first characteristic state line (CSL-1) for
cohesionless soil is an approximate straight
line on the J;—./Jop plane. This shows that
the shear strength of such soil increases lin-
early with the confining pressure which is
consistent with the Mohr-Coulomb theory of
failure of granular soils. The slope of the
characteristic state line (CSL-1) is a measure
of the internal frictional coefficient and in-
creases with increasing initial relative density,
D,, due to increasing compactness of the
grains. Fig. 3 shows the plots of CSL-1 for a
typical cohesionless soil at various initial
relative densities.

For a given initial relative density, the first
characteristic state line for cohesionless soil
also depends upon the orientation (8) of a
stress path on the octahedral plane. A com-
mon definition of ¢ is given by

_1 2 3/3 Jap
0=-COS [WJ (1)

1
where J3D=—3— Sij S Sws is the third invar-

iant of the deviatoric stress tensor (Sij).
The orientation # lies in the range 0°<#<60°,
where 0=0° represents a compression stress
path and #=60° represents an extension stress
path. As evident from experimental observa-
tions [1, 6, 12, 18], the slope of the first
characteristic state line is maximum for 6=0°
and minimum for §=60°.

In view of the above discussion, the equa-
tion of the first characteristic state line (CSL-
1) can be written in the form

N Jp=M g(g) Ju (2)
where M is a material response function of
the initial relative density, D, and g(0) is a
function that accounts for the change in the
slope of CSL-1 with . Following the works
of Podgorski [24] and Faruque and Chang
[11], g(9) can be expressed as

g(ﬁ):cos[% cos™! (—A cos 30)] (3)

where A is assumed to be unity to satisfy
convexity. Assuming M, as the value of M at
D,=0 (i. e. loosest possible state), a func-
tional form of M(D,) can be written as
MDy) =M, [1+h(D:] (4)

in which %,(D,) is a response function that
determines the ratio M/M, for a given initial
relative density, D, and satisfies the condition
h1(0) =0. Note that h((D,) is a monotonically
increasing function of D, and attains maxi-
mum value at D,=1 (i. e., densest possible
state) . Denoting the maximum value of A;(D,)
as A;, the following form of A, (D,) is pro-
posed

hy(Dy) =4, D (5)

where the exponent 7, signifies the shape of
the function 4,(D,). In general, A;(D,) can
assume the representations shown by curves
A, B and C in Fig. 5.

The rate of change of M with D, (i. e.,
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Fig. 5. Schematic representation of yield cap
and dilating yield surface on J,—./J;p space
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dm/dD,) generally decreases with increasing
initial relative density. Therefore, curve A (Fig.
5) is an unlikely representation of Ay (D).
The proposed form of Ay (D,) in Eq. (5) can be
validated using appropriate experimental data.

Second Characteristic State Line

Unlike the first characteristic state line (CSL
-1), experimental observations as to the sec-
ond characteristic state line is non-existent
in the literature. It is, however, known that
the second characteristic state tends to merge
with the first characteristic state as the confin-
ing pressure becomes very high. As a result,
the second characteristic state line should
approach the first characteristic state line as
the confining pressure increases. The proposed
forms of CSL-2 on the Ji—./Jzp plane for
various initial relative densities are schematically
shown in Fig. 3. For relatively loose cohesion-
less, soils, the characteristic state lines are
quite close as indicted in Fig. 3. For higher
initial relative density, the deviation of the
characteristic state lines increases. Referring
to Fig. 3, an equation of the second char-

acteristic state line (CSL-2) is proposed in
the form

s ()

g0 J (6)
where p is a material constant, P, is the at-
mospheric pressure expressed in the same unit
as J; and N is a material response function
of the initial relative density D,. For high
values of J;, the exponential term in Eq. (6)
becomes negligible and thereby, Eq. (6) ap-
proaches the first characteristic state line de-
fined by Eq. (1). Referringto Eq. (6), the
secant slope (/JsoplJ1) at J1=0 is obtained as
M(1 —N) g(0). Therefore, the material re-
sponse function N determines the initial slope
of the second characteristic state line at J;=
0. When N=0, both characteristic state lines
have the same initial slope of M. Preliminary
results on a beach sand [13] indicates that
the initial slope of the second characteristic
state line is smaller than M and in general,
a function of the initial relative density, D;.

Assuming N=N, at D,=0 (i. e., loosest pos-
sible state), a functional form of N(D,) can
be written as
NDy) =N, [1+h:(Dn)] (7)

where hy(D,) determines the ratio N/N, for
a given D, and satisfies the condition h;(0) =
0. Following the analogy of A;(D.), it is pos-
tulated that A, (D,) is a monotonically increas-
ing function of D, and attains maximum value
A, at D,=1 (i. e., densest possible state). In
view of this, the following form of A;(D;,) is
proposed

hy(Dy) =2,D, (8)

The exponent 7 in Eq. (8) dictates the
shape of the function A3 (D,). The proposed
form of hy(D,) in Eq. (8) can be validated
by using appropriate experimental data.

Compressive Yield Surface

Consistent with the definition of CSL-2, all
states of stress below the second characteristic
state line yield compressive volumetric strain
only. Therefore, within the associative theory of
plasticity, an yield surface between the J;—axis
and the second characteristic state line should
be defined such that the normal to the yield
surface at any point has non-negative slopes.
Besides, the normal to the yield surface at
the point of intersection with the second char-
acteristic line (CSL-2) should be parallel to
the ./Jzp—axis. This is because, by definition,
CSL-2 contains all stress states where the
rate of volumetric deformation momentarily
vanishes as the soil passes from the compressive
mode of deformation to the dilatant mode of
deformation during shearing. An elliptical
yield surface that satisfies the above require-
ments is used in the proposed model and is
shown schematically in Fig. 6. It is evident
that the tangent to the yield surface at the
intersection with J;—axis is vertical. This
insures purely spherical response under hy-
drostatic loading and is required for an iso-
tropic material. An equation of the compressive
yield surface is proposed as

FCEJE—\/aZ—R}z—UI—CV g(6)=0 ()
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hy (D)
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o

Fig. 6. Schematic representation of function
h, (D)

where R is a constant associated with the ratio
of the axes of the ellipse and is a material con-
stant and, in general, C is a response function
that denotes the value of J; at the point of
intersection of the yield surface and the second
characteristic state line. In Eq. (9), a repre-
sents the axis of the elliptical yield surface
parallel to ./J;p axis and is defined in terms
of C as

a=M[1—N-exp(—p-C/P)] g@C

(10)

Note that elliptical yield surface has been used
in other models such as cap model [1, 6-12,
19, 20, 22, 28] in the past and found to be
satisfactory for the prediction of response in
the compressive mode of deformation. Howev-
er, other convex mathematical functions that
satisfy the requirements of a yield surface dis-
cussed earlier may also be used.

The proposed model utilizes a nonassociative
formulation to describe the volumetric re-
sponse in the compressive regime. A plastic
potential function, Q¢, is defined in the form

Q= /Too — A @ = (1:=C)* g 0)

(11)
where A is a material constant. Taking the
derivatives of F. and Q. with respect to Ji,
the following relationship can be obtained

0Q. = oF.
27.=4 55 12)

As evident from Eq. (12), the constant A sig-
nifies deviation from normality and should
have a positive value. The condition A >0 is
necessary to maintain compressive volumetric
strain for stress states below CSL-2. For A =1,
Qc= F¢, which represents associative formulation.

Dilating Yield Surface

By definition, a dilating yield surface refers
to the stress states that cause dilating response
at a material point. As described earlier, at a
high confining pressure, cohesionless soil ex-
periences compressive mode of deformation at
all stages of loading up to failure. This indi-
cates that the dilating yield surface is bounded
by CSL-1 and CSL-2 at all times and identi-
fies itself with the first characteristic state
line (CSL-1) when the confining pressure is
very high (Fig. 6). An equation of the dilat-
ing yield surface that satisfies the above re-

quirements is proposed in the form

— MC
Fd=Jsz—al: 1—(1 —JI/C)T] g(8) =0
(13)

A schematic representation of Eq. (13) is shown
in Fig. 6. As evident, the tangent to the
dilating yield surface at the point of intersec-
tion with the second characteristic state line
is horizontal and thereby satisfies slope com-
patibility with the compressive yield surface,
F.=0. At J;=0, the slope of the dilating yield
surface is M and therefore, tangential to the
first characteristic state line at that point.

It is evident from Fig. 6 that the normal
to the dilating yield surface at any point has
a non-positive slope which decreases with the
stress state approaching the first characteristic
state line. As a result, within the associative
theory of plasticity, the model predicted rate
of dilatancy increases continuously as the
stress paths approach the first characteristic
state line.  This is contrary to the definition
of CSL-1 that contains all stress states for
which a soil experiences progressive shear
deformation at constant volume (i. e., zero
rate of dilatancy). It is, therefore, necessary
to incorporate some mechanism in the model
that will enable it to predict zero rate of di-
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latancy when the stress state is on the char-
acteristic state lines (both CSL-1 and CSL-2)
and nonzero rate of dilatancy when the state
of stress lies in between the characteristic
state lines. In the proposed model, this is
achieved by using non-associative formulation.
To this end, a dilating potential function, Qu,
is defined by the following equations.

0Qa OF,
aJl - q(‘]l’ JZD) *‘a‘j;‘ (14)
' an _ aFd
anD - ajzp (15)
0 oF,
_a%d‘: aad (16)
where
) Bty
Q(JI, J2D> :a%;?r__(l —‘G)T GT (l7>
in which
G (J1, J2p) = MJ,—/J2p/g () 18)

_MN eXP(—"UJl/Pq,).Jl

In above equations a, J and 7 are material
constants and the function G (Ji, J2p) assumes
a value of unity at CSL-2 and zero at CSL-1.
Consequently,. the function ¢ (Ji, Jzp) becomes
zero at the boundaries (CSL-2 and CSL-1)
and is nonnegative elsewhere. ¢ (Ji, J2p) has
a maximum value of a at G (Ji, Jap) =/ (B+
7). Note that only derivatives of the potential
function Qu is required to obtain the elasto—
plastic constitutive matrix. As such an explicit
form of Qg is not necessary.

Hardening Behavior

In this work, modeling of soil response un-
der monotonic loading is attempted using the
concept of isotropic hardening plasticity. Both
the compressive yield surface, F., and the
dilating yield surface, Fu, are allowed to ex-
pand in the stress space to account for stress
states in the elasto-plastic regime. As discussed
by many investigators in the past [8], hard-
ening behavior of cohesionless soil is primarily
attributed to irreversible (plastic) volumetric
deformation. As such, history of inelastic vol-
umetric strain is frequently used to describe
hardening of cohesionless soil during hydro-
static loading as well as during shear loading.

Commonly a hardening function is prescribed
in terms of the accumulated plastic volumetric
strain and the associated material constants
are determined using hydrostatic compression
test data only. It is important to realize that
the mechanism of inelastic volume change dur-
ing hydrostatic compression is quite different
from that in shear. As a result, a hardening
function, with its constants determined from
hydrostatic compression test data, generally
cannot describe elasto-plastic stress-strain and
volumetric behavior during shearing in a ra-
tional manner. This problem can be resolved
by expressing a hardening function in terms
of two parameters, the total volumetric plastic
strain, €g, in the hydrostatic compression
phase and an inelastic deformation measure,
&, in shearing phase. The quantities £z and &;
can be expressed in terms of the incremental

plastic strain tensor, de};, as

eH=S de?, 3y (19)

1/2

c, ZS (de?, de, (20)

where, 0;; is the Kronecker delta and [ de-
notes history. Note that & has zero value
throughout hydrostatic compression. §m, on
the other hand, reaches its maximum value at
the end of hydrostatic compression and re-
mains constant throughout shearing.

Referring to Fig. 6, the compressive yield
surface, F., originates from the Jy—axis (i.e.
point X) and terminates at a point on the
second characteristic state line (CSL-2) where
Jy assumes a value of C. The dilating yield
surface, Fz, on the other hand, starts from
the origin O and terminates at CSL-2 where
Ji=C. As such, expansion of both F. and
Fs can be described conveniently by making
C a (hardening) function of the parameters
€y and &s.

For hydrostatic loading, C is a function of
&x only. To obtain an explicit form of C(§xn),
consider the representation of X in Fig. 6 (a
point on the J;—axis where the yield surface
F, originates) frequently used in the cap type
models as '
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X— 1 nl1 Exm @1 In view of Eq. (26), it is apparent that the
-~ D ™ W hardening behavior in the shearing phase is

where D and W are material constants.
Physical meaning of these constants are well
established and therefore, is not discussed
here. Using the relationship, X=(C+Ra), as
indicated by Eq. (9), the following form of
C (éy) is obtained

_“lel [1—5—“‘;]—& 22)
It should be noted that the function C (éx)
attains a value of C at the end of hydrostatic
loading and corresponds to €x=E&gx. During
shearing, evolution of the hardening function
C is due to & only and therefore requires
an additional representation.

An evolution equation for C (&) in the
shearing phase is proposed as '

C=C+Dln [1+W &] (23)

where D and W are material constants that
describe hardening during shearing. Evaluation
of the elasto-plastic cnostitutive relation matrix
involves the derivatives of the hardening func-
tion C (Egs. (22) and (23)) with respect to
&x and & rather than the function C itself.
It is, therefore, important to maintain conti-

C=C¢n)=

nuity of the derivatives g ¢ as the load-

3 053

ing changes from hydrostatic to shear. Referr-

ing to Egs. (22) and (23), the derivatives-—gg{

and can be written as

0€s

oc 1

05q D (1+R_gécl_>(W_§H> (24)
oC D W (25)

B8, (1+W &)

At the end of hydrostatic loading éx=&x and
&=0 and the continuity condition requires
that ==— oC _ 9C
aEH aés
with Egs. (24) and (25), the following expres-
sion for D can be obtained

D= 1
WD<

. Using this condition, along

(26)

c=?> (W—EH)

described by W only. As the state of stress
approaches CSL-1, the quantities & and C
tend to be unbounded. This characteristic is
reflected in the expression of C in Eq. (23).

ELASTO-PLASTIC CONSTITUTIVE
RELATIONS

Using the concept of non-associative plas-
ticity theory, incremental plastic strain tensor,

de¥;, can be expressed as

0Q
defj:dzm 27)
where Q is the plastic potential function and
d2 is an unknown scalar to be determined
from the consistency condition of prager, dF
=0, F being the yield function. Following
the standard steps of the theory of plasticity,
elasto~plastic constitutive relation tensor, Ciig

can be written as

z]kl Ci_;kl

oo OF 0Q .,

ijuv ao’uv ao'mn mnkl

OF 90 _Aew, &, on)

Ce
00pq TV 00ys

(28)

where Cij;;, is the elastic constitutive tensor

and A (€m, &, 0ij) is a measure of plastic
modulus involving derivatives of the yield
function F with respect to &z and & and
derivative of the potential function Q with
respect to g;5. Eq. (28) is valid in the com-
pressive as well as dilative regimes of shear
deformation provided Q is appropriately de-
fined. In the compressive regime, Q=Q. (Eq.
11), while in the dilative regime Q=Q. ddefine
implicitly by Eqs. 14-18.

APPLICATION

Drained shear test data [1] for a fine sand
with an uniformity coefficient of 1.84 is used
in this study to investigate the characteristic
states and to verify the proposed constitutive
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Fig. 7. The two characteristic state lines for
a beach sand obtained from experimental
data at 81 9% initial relative density

model. A stress controlled cylindrical triaxial
device is used. The density of the test samples
is in the range of 16.29 kN/m?3 to 16. 59 kN/m?
with an average relative densiy (D,) of 81%.
The characteristic state lines (CSL-1 and 2)
obtained from the experimental data are depic-
ted in Fig. 7. It is evident that the observed
characteristic state lines are in agreement
with the general forms proposed in the model.
The second characteristic state line shows
substantial deviation from CSL-1 in the low
confining pressure range and tends to approach
CSL-1 as the confining pressure becomes high.

Prediction of stress-strain response requires
evaluation of material constants associated
with the model. Since the tests are performed
at a constant relative density (D,=81%), only
the following set of parameters are evaluated
using a computer-aided complex optimization
procedure [27] : K=130 MPa, G=70 MPa, M=
0.27, N=0.44, p=0.072, D=0.00087/KPa,
W=0.0085, W=1.0, R=2.5, A=0.09, a=
0.35, 8=2.0 and 7=0. 4.

Fig. 8 shows a comparison of the stress—
strain response of a CTC (Conventional
Triaxial Compression) test performed at a
confining pressure of 104 KPa (15 psi). Evi-
dently the model prediction is in excellent
agreement with the experimental observation.
A similar comparison of volumetric-axial strain
response is shown in Fig. 9. It is observed
that the proposed model is able to predict the

Fig. 8. Comparison of stress-strain response
for conventional triaxial compression test

0.004]
=
K]
£ 0,002
2 N Experimental
:;j‘ Predicted
= 0.0
=1 —
=
-t
Q
=1
-0.0024
-0.0045 .01 0702

Axial Strain

Fig. 9. Comparison of volumetric-axial strain
response for conventional triaxial com-
pression test

onset of dilatancy and subsequent dilatant
behavior in an accurate manner. The discrep-
ancy between predicted and experimental
axial strains at the onset of dilatancy (Fig. 9)
can be attributed partly to error in measuring
volumetric response using a burette. Detailed
application of the proposed model is currently
in progress and will be reported in subsequent
papers.

CONCLUDING REMARKS

The concepts of two characteristic states
and their representation as characteristic state
lines in the stress space are introduced to
describe volumetric behavior of cohesionless
soil during shearing. The first characteristic
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state line represents the state of cohesionless
soil at failure, while the second characteristic
line represents the state at which the rate of
volumetric strain momentarily vanishes as the
soil passes from the compressive mode of
deformation to the dilative mode of deforma-
tion during shearing. Explicit forms of the
two characteristic state lines in the stress
space are proposed and used to develop a
constitutive model based on the framework
of plasticity theory. The general forms of
the characteristic state lines are verified using
drained shear test data for a fine sand. Stress—
strain and volumetric-axial strain responses
are predicted using the proposed model and
good correlations are observed with experi-
mental data.
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